
An Operational Semantics for Simulink’s Simulation Engine

Olivier Bouissou
CEA LIST, DILS/LMeASI – Point Courrier 174,

F91191 Gif sur Yvette CEDEX, France
olivier.bouissou@cea.fr

Alexandre Chapoutot
ENSTA ParisTech, UEI – 32 boulevard Victor 75739

Paris cedex 15, France
alexandre.chapoutot@ensta-paristech.fr

Abstract
The industrial tool Matlab/Simulink is widely used in the design
of embedded systems. The main feature of this tool is its ability
to model in a common formalism the software and its physical en-
vironment. This makes it very useful for validating the design of
embedded software using numerical simulation. However, the for-
mal verification of such models is still problematic as Simulink is
a programming language for which no formal semantics exists. In
this article, we present an operational semantics of a representa-
tive subset of Simulink which includes both continuous-time and
discrete-time blocks. We believe that this work gives a better un-
derstanding of Simulink and it defines the foundations of a general
framework to apply formal methods on Simulink’s high level de-
scriptions of embedded systems.

Categories and Subject Descriptors D.3.1 [Formal Definition
and Theory]: Semantics; D.3.2 [Language Classifications]: Data-
flow languages; I.6.4 [Simulation and Modeling]: Model valida-
tion and analysis

General Terms Languages, Reliability, Verification

Keywords Hybrid systems, Operational semantics

1. Introduction
Design of embedded systems is based on tools coming from con-
trol theory. Such tools use a mathematical model of the plant, gen-
erally with differential equations, which is then used to define a
mathematical model of a controller. This model may contain both
continuous- and discrete-time parts. An exact solution of this math-
ematical model is in general not computable and numerical simu-
lation methods are used to study the behavior of the closed-loop
system made of the controller and the plant. This is even more ob-
vious when the model involves complex non-linear computations.

Matlab/SimulinkTM is the de facto standard tool used for the de-
sign of embedded control systems. The cycle of development based
on Simulink, especially in automotive industry, runs as follows.
First, the Model in the Loop (MIL) step concerns the definition
of a mathematical model of the plant and the control law. Numer-
ical simulation is used to validate that the control law fulfills the
specifications. Moreover, the simulations results will be used as an
“oracle” for the validation of the next steps. Then, the Software in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES 2012 June 12–13, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1212-7. . . $10.00

the Loop (SIL) step concerns the implementation of the control al-
gorithm (automatically or manually) in a low-level language such
as C. Results of the numerical simulation of the plant model and
the controller implementation are compared to those obtained at
the MIL step. Finally, the Processor in the Loop (PIL) step concerns
the compilation of the controller implementation into an executable
running on a particular hardware. Results of the simulation of the
plant model and the execution of the executable (on an emulator or
on a board) are compared to the results obtained at the MIL step.
In summary, we can see that Simulink is used in all the steps of
the cycle of development and that the numerical simulation plays a
crucial role in the design and implementation of control-command
software. Even more, the designer accepts or rejects the design of
embedded software based on the results of numerical simulations.

As a widely used tool, Simulink is a good target to apply formal
verification methods on the earlier stage of the design of control
systems. One of the goals of the formal verification of Simulink
models is to guarantee that the mathematical model of the con-
troller fulfills the specification [2, 5, 6, 12, 20]. Presently, this is
done by numerical simulations of the model and checking if the
simulations fulfill the specifications. Our long term goal is to for-
mally verify the correctness of the numerical simulation process
w.r.t. the mathematical behavior. That is, we want to verify that the
approximations introduced in the different steps of the numerical
simulation are small enough to ensure that the run of the real sys-
tem will not violate the specification. The first challenge in this task
is to understand how Simulink simulation engine works because no
formal semantics of it exists. This article focuses on this task.

Simulink lacks a formal semantics. But contrary to the other ap-
proaches, we do not consider the solver as a black box. We think
that hiding the mechanism of the solver prevents the comparison
between the results of the numerical simulation and the mathe-
matical behavior. Our main contribution is a formal definition of
a structural operational semantics [15] of the Simulink solver that
emphasizes how the numerical simulation works. We consider a
core subset of Simulink with both discrete and continuous blocks,
as well as the zero-crossing detection process.

The rest of the article is organized as follows. In Section 2, we
present an example of a Simulink program and explain in more
details why we believe it is important to apply formal methods
on it. We then briefly present the main tools used in numerical
simulation in Section 3. In Section 4, we show how to transform
a Simulink program as a sequence of equations and define some
notations. Finally, we define our operational semantics in Section 5
and discuss its correctness in Section 6. We then conclude by
comparing our approach to related work in Section 7.

2. Motivating example
The plant We consider a system that controls the speed of a
vehicle. The physical system (also named the plant) is a vehicle
whose speed v and position x is given by the differential equations

of Equation (1) (ẋ = dx/dt stands for the derivative of x w.r.t.
time t) where b is the friction coefficient (reducing the speed of the
vehicle), m is the mass and u(t) is the power given by the engine
over time.

mv̇(t) = −b× v(t) + u(t) and ẋ(t) = v(t) . (1)

The controller The controller defines the function u(t) such
that the speed v(t) stabilizes at 10m.s−1, and the speed reaches
9m.s−1 in less than 3 seconds. To achieve these requirements,
we use a Proportional-Integral controller (PI controller). So, the
function u(t) is given by Equations (2a) to (2c).

∀t ∈ R, u(t) = 900× (vm − v(t)) + 40× ui(btck) (2a)

∀k ∈ N+, ui(btck) =
k∑
j=0

0.1× (vm − v(0.1× j)) (2b)

btck = max{0.1× k | k ∈ N ∧ 0.1× k ≤ t} (2c)

Equation (2b) is the implementation of the integral part of the PI
controller using Euler method and sampling rate of 0.1. We see
that this control is discrete-time as it only outputs new values at
specific time instants, i.e., at t = k × 0.1 for some k ∈ R. Note
that the proportional term (see Equation (2a)) is implemented using
an analog controller to ensure a fast response (second requirement).

Moreover, we added a safety mechanism to the system: we
assume that, as soon as the vehicle reaches 7.1 meters, it tries to
stop, i.e., to reach the speed vm = 0. This would be, for example,
a device that continuously monitors the position of the vehicle and
sends a signal as soon as this position passes 7.1 meters. So in the
motion equations (Equations (2a) and (2b)), the term vm is actually
given by: if x(t) < 7.1 then vm(t) = 10, otherwise vm(t) = 0.
This will be useful to illustrate zero-crossing methods.

Figure 1 shows a Simulink implementation of the whole system
made of the plant, the discrete and the continuous-time controller.
We will describe with more details in Section 4 the Simulink
language. On the right of the system, circled with dashed lines,
there is the plant where the integrator blocks (labeled with dv and
dx) express differential equations. On top of the system, circled
with dotted lines, is the continuous-time part of the controller, while
the discrete-time controller is circled with full lines. In the discrete-
time controller, the Unit Delay block is a one-buffer memory and
serves for the discrete integration. Remark that nothing in this block
diagram indicates that some part of it is discrete; it is only the
options set for the Gain-h block (which multiplies its input by h)
that makes the subsystem discrete: we specified that this block has
a sampling rate of 0.1s. The safety mechanism is modeled by the
Switch block on the left of the diagram: it changes the desired
speed to 0 as soon as the position x is such that x ≥ 7.1.

From simulation based validation to formal verification We
want to stress two main points: first the physical environment plays
an important role in the design of the controller, second numerical
simulation is used to check if the design verify the requirements.

vm

vm

dx

1
s

dv

1
s

Zero

0

Unit Delay
z
1Switch

Gain1

1/m

Gain h

h

Gain Kp

Kp

Gain Ki
Ki

Gain

b/m

�1

�2

�3

�4
�5

�6 �7

�9

�10

�11 �12 �13

�14�15

�8

Figure 1. A cruise-control system in Simulink. We mark the plant
(circled with dashed lines), the continuous controller (circled with
dotted lines) and the discrete controller (circled with full lines).

However, numerical simulation alone cannot be trusted due to nu-
merical approximations: even for this simple, linear example.

Of course, validation of low-level code implementation of em-
bedded control software will always be mandatory in safety critical
systems. Abstract interpretation-based static analysis [3, 8] in par-
ticular is more and more used. However, formal verification tech-
niques applied at this level face two difficulties: the control algo-
rithm is flooded with implementation details (mainly to increase
efficiency) such as the use of fixed-point arithmetic or pointers, and
there is no information on the physical environment which strongly
influences the run of the control-command system. We thus believe
that new methods to formally verify more complex properties such
as the requirements on the vehicle controller have to be developed
as the continuous environment must be taken into account to prove
the requirements. As Simulink allows to model the environment
and the discrete controller using the same formalism, we believe
that it is the good level of description to apply formal verification
on control embedded systems with their physical environment.

In that context, we believe that our approach fits the next chal-
lenges of formal verification defined in the articles [7, 18]. Our
claim in this article is that, before defining formal verification meth-
ods on Simulink models, we must understand what Simulink does.
In this article we define an operational semantics of Simulink mod-
els which will give us the fundamental basis to apply static analysis-
based formal verification of control embedded software taking into
account their physical environments.

3. Simulation engine overview
In this section, we briefly describe the main features of the numer-
ical simulation of dynamical systems such as the one presented in
Section 2. Indeed, the behavior of the Simulink solver relies on
such methods and so does the semantics we define in Section 5.

3.1 Simulation steps
A classical mathematical model to represent dynamical systems is
the state-space representation. In our case a state-space is described
by a system of equations (see Equations (3)), t being the time
variable, made of a continuous-time state function fx : R×Rnx ×
Rnd → Rnx , a discrete-time state function fd : R×Rnx×Rnd →
Rnd and an output function g : R× Rnx × Rnd → Rm.

ẋ(t) = fx(t,x(t),d(t)) with x(0) = x0 (3a)

d̄(t) = fd(t,x(t),d(t)) with d(0) = d0 (3b)

y = g (t,x(t),d(t)) . (3c)

The continuous state is x, the discrete state is d and the output
is y. For the sake of simplicity, we consider that the potential input
u of the system is encoded in the functions fx, fd and g. In this
article, a bold symbol represents a vector of values or variables.
We denote by nx the number of continuous state variables, by nd
the number of discrete state variables and by m the number of
outputs. The notation d̄(t) stands for a difference operator: d̄(t) =
(d1(t + s1), . . . , dnd(t + snd)), where each discrete variable di
evolves at rate si. Note that we adapt the classical definition of
state-space, which is only continuous-time or only discrete-time, to
represent the fact that Simulink models are hybrid systems, i.e., a
mix of discrete-time and continuous-time systems.

The solution of the state-space equation is a flow function φx(t)
which is the solution of the differential equation (Eq. (3a)) and a
step function φd(t) which is the solution of the finite difference
equation (Eq. (3b)). A close form of these functions is not com-
putable in general, so the goal of the numerical simulation is to
compute approximated solutions φ̃x(t) and φ̃d(t) based on a tem-
poral discretization which may be dynamically chosen during the

simulation. As the function φd is a step function with discontinu-
ities at specific time instants (given by the rates si), the temporal
discretization will have to be chosen so that it contains all these
instants. The functions φ̃x and φ̃d are defined as a sequence of ap-
proximations of the solution of the state-space equations on small
intervals [tn, tn + hn]. Each approximation is computed using a
numerical solver that behaves well on small time intervals. So in
Simulink, the simulation of dynamical systems (i.e., the solver) fol-
lows a simple simulation loop where t is the time and h is the inte-
gration step-size which defines the mesh of time:

Input : x0, d0, t0, h0;
n = 0;
loop until tn ≥ tend

evaluate g(tn,xn,dn)
compute d′ = fd(tn,xn,dn)
solve ẋ(t) = fx(t,x(t),dn) over interval [tn, tn + hn]
find zero crossing
compute hn+1 ; compute tn+1 ; dn+1 = d′ ; n = n+ 1

The values x0, d0 and h0 are the initial values of the state variables
and of the step-size respectively. The simulation loop behaves as
follows. The output function of the system is first evaluated and
the next value d′ of d is stored. Then the solution of continuous
state function fx is computed with a numerical integration method
on a small interval defined by the step-size hn. Note that the
result of this stage is a new value xn+1 which will be used as
the initial value of the next iteration. We present in Section 3.2 the
algorithms for computing xn+1. The third step, find zero crossing,
is the detection of particular events appearing between tn and
tn + hn, as for example the safety mechanism in Section 2. More
details on zero-crossing methods are given in Section 3.3. Finally,
the time tn and the integration step-size hn are updated. Note that
the step-size may vary during the simulation (for more details see
Section 3.2).

In order to have an approximation close to the mathematical
model, the time instants chosen by the simulation loop should be
such that they verify the following properties. Property 1 states that
the numerical simulation will eventually end, that is the time tn
keeps increasing at each iteration until it reaches tend.

Property 1 (Monotone simulation time). Letx0 be the initial state.
Let {tk : k ∈ [0, n]} be the set of n+ 1 time instants taken during
the simulation such that t0 = 0 and tn = tend. Then we have:

∀i ∈ [0, n− 1], ti < ti+1 .

Property 2 guarantees a good interaction between the discrete-
time part and the continuous-time part of a system. Actually, to
compute the value of xn+1 at time tn + hn, the numerical integra-
tion methods require that fx is (at least) continuous. In particular,
this means that the discrete variables must be constant between tn
and tn + hn. Property 2 ensures this.

Property 2 (Consistent sampling time). Let x0 be the initial state.
Let {tk : k ∈ [0, n]} be the set of n+ 1 time instants taken during
the simulation. Let also S = {k · si : k ∈ Z, i ∈ [0, nd]} be
the set of all discrete instants where the variables di are updated
according to the rate si. Then we have:

∀t ∈ S, t0 ≤ t ≤ tn ⇒ t ∈ {tk : k ∈ [0, n]} .

3.2 Numerical integration
We now describe how the continuous-time part (Eq. (3a)) of a dy-
namical system is updated during the simulation loop. To compute
an approximation xn+1 of x at time tn + hn from an approxima-
tion xn at time tn, the solver must solve an initial value problem:

ẋ(t) = fx(t,x(t),dn) with x(tn) = xn . (4)

Let us note f(t,x) = fx(t,x,dn). An important known result
[11] is that Equation (4) has a unique solution if f : R × Rnx →

Rnx is continuous in the first variable and f satisfies a Lipschitz
condition in the second variable. By extension, all functions piece-
wise Lipschitz continuous f have also a unique solution.

Simulink can use many of numerical integration methods,
see [16] for a complete list of them to solve Equation (4). A numer-
ical integration method computes the approximation xn+1 using
xn and approximations of the derivative of x(t) on the interval
[tn, tn + hn]. For example, the solver named ode23 in Simulink,
based on the Bogacki-Shampine method [17], is a a variable step-
size method defined at Equations (5).

k1 = f(tn, xn) (5a)

k2 = f(tn + (1/2)hn, xn + (1/2)hnk1) (5b)

k3 = f(tn + (3/4)hn, xn + (3/4)hnk2) (5c)

xn+1 = xn + hn ((2/9)k1 + (1/3)k2 + (4/9)k3) (5d)

k4 = f(tn + hn, xn+1) (5e)

zn+1 = xn + hn ((7/24)k1 + (1/4)k2 + (1/3)k3 + (1/8)k4) (5f)

Usually, to compute the solution of an ordinary differential equa-
tion xn+1 over the interval [tn, tn + hn] and from the initial value
xn, we need to compute a few intermediate approximations in this
interval (e.g., the values of k2 and k3). The solution xn+1 is then
obtained by a weighted mean of the intermediate results, see Equa-
tion (5d). Note that this method assumes a Lipschitz continuity con-
dition on the interval [tn, tn +hn]. We can know better understand
Property 2 stating that no difference operator d̄ is updated in the in-
terval I = [tn, tn+hn]. This property guarantees that the function
f is continuous over the interval I and the solution of the differen-
tial equation exists on this interval.

The main feature of variable step-size methods, like ode23,
is that the step-size can be adapted during the simulation process
(that is why we have hn in Equations (5)) in order to keep the
approximated solution φ̃(tn) = xn close to the mathematical
solution φ(tn), that is |φ(tn) − φ̃(tn)| ≤ δ for a given small
value δ. To do so, the error is estimated as err = |xn+1 − zn+1|,
that is as the distance between two approximation points with
two different methods. This estimated error is used to validate the
integration step from tn to tn + hn and compute the next step-size
hn+1. The integration step is validated [17] if:

err ≤ max (atol, rtol×max(|xn+1|, |xn|)) . (6)

The values atol and rtol are the absolute and relative tolerances
given by the user to keep a precise approximation. Note that these
two values are problem dependent, that is the good choice of atol
and rtol depends of the function f . Once the integration step is
validated, we can adapt the value of the step-size, a simple method
[17, p. 47] is given by:

hn+1 = hn ×
(

rtol/err
)1/(q+1)

. (7)

The value q is defined as q = min(p, p̂), where p and p̂ are the
order of the method used to compute xn+1 and zn+1, e.g., q = 2
for ode23. The modification of the step-size is useful to reduce
the number of steps in the simulation loop when the function f
of Equation (4) has a smooth dynamic, but also to increase the
precision of φ̃(t) when it varies a lot on one interval [tn, tn + hn].
Note that an efficient method to adapt the step-size requires many
other parameters such as hmin and hmax, the minimal and maximal
values of hn. We refer to [11, p. 167] for a complete description on
such methods.

In this article, we only consider Simulink’s solvers based on
Runge-Kutta methods i) fixed step-size: ode1 (Euler’s method),
ode2 (Heun’s method), ode3, ode4 (Runge-Kutta’s method), ode5
(Dormand-Prince’s method). ii) variable step-size: ode23, ode45.
All these methods can be described by a Butcher table (see Fig-
ure 2(a)). The di represent the time instants of the intermediate
steps needed to compute the solution of ẋ = f(t,x) over the inter-

d2 a21

d3 a31 a32

...
...

. . .
ds as1 as2 · · · as,s−1

w1 w2 · · · ws

w′1 w′2 · · · w′s
(a) General form.

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9 0

7
24

1
4

1
3

1
8

(b) ode23 table.

Figure 2. Butcher table.

val [tn, tn + hn]. The matrix made of the elements aij represents
the weights used to approximate the interval solution from the pre-
vious intermediate steps. The elements wi, w′i (only for variable
step-size methods) represent the latest weights to approximate the
solution at time tn + hn with two methods of different orders. For
example, the Butcher table associated to ode23 is given at Fig-
ure 2(b). In consequence the elements of the Butcher table give a
unified description for all the numerical integration methods mem-
bers of the Rung-Kutta family.

3.3 Zero-crossing detection
In some cases, the simulation should detect when particular events
happen without knowing the exact time of occurrence. Such phe-
nomena are taken into account in zero-crossings methods. More
precisely, we can represent such events by looking at the sign of
some functions z, named zero-crossing functions. For example, the
safety mechanism in Section 2 is associated to the zero-crossing
function z(t) = x(t)− 7.1 detecting when the vehicle has reached
7.1 meters of distance. Therefore after each integration step, we
have to check if the sign of z(t) changed, this is the zero-crossing
detection. Once we detect a particular event, we must find the exact
time instant t̃when this event happens, this step is the zero-crossing
localization. Usually, we use a bisection method to find t̃ up to a
given precision. More details are given in Section 5.4.2. In con-
sequence the time is varying during this step, it explains why this
process is only used with variable step-size integration methods.

Note that a cascade of zero-crossing events may happen during
a numerical simulation, so Simulink adds elements to detect when
such case happens, for example when the number of consecutive
zero-crossings is too important. For the other issues with zero-
crossing detection, we refer to [21].

4. Formalism: Simulink language
In this section, we present the subset of Simulink for which we
defined our operational semantics. We also present how Simulink
models are translated into an equation language on which our
operational semantics is defined.

4.1 Overview of Simulink
Simulink is a graphical language that allows the designer to easily
write dynamical systems by replacing the state-space representa-
tion (as given by Equations (3)) by a block diagram where all oper-
ations are represented by blocks connected with lines. Each block
may have several inputs and outputs, which are named ports. The
data that is exchanged between the blocks via the lines are named
signals; a signal is a function ` : R+ → R that associates at each
time instant a value. Note that in Simulink, the signals may be func-
tion of time into Rn for some n ∈ N, for the sake of simplicity we
only consider real valued signals here. In Table 1, we present a core
subset of Simulink blocks for which we defined our operational
semantics. We also give the equations that make explicit how the
input signals are linked to the output signals. For example, the ad-
dition block has two input ports (named `1 and `2 for example), one

output port (`3) and the equation `3 = `1 + `2 means that the out-
put signal on `3, say `3(t), is such that: ∀t, `3(t) = `1(t) + `2(t).
In the rest of this article, we will not distinguish lines and signals.

Let us remark that for the Integrator, the input signal is not
directly linked to the output signals. Instead, this block has an
internal state named x such that the output of the block is equal
to the internal state. However, to compute the value of this state,
we must solve a differential equation: if the input of the block is
`1, then the internal state is given by the equation ẋ(t) = `1(t).
Equivalently, for Unit Delay blocks, there is an internal state
named d whose value is given by a first order difference equation:
we write d̄ = `1 for d(t+ s) = `1(t), where s is the sampling time
of the block, which must be given by the block parameters.

The Switch block is also parametrized by a predicate pr , which
can be either `2 > r, `2 ≥ r or `2 6= 0, where `2 is the second input
signal of the block and r a given constant value.

In Simulink, blocks may have many parameters that modify
their behaviors (for example the predicate for the Switch block or
the value c for a Constant block). All these parameters are made
explicit by the equations. Another important parameter that can be
set for almost all blocks is the sampling period p. Actually, it can
be specified that a block must output a new value only at times
k × p, for all k ∈ N. This option will also be made explicit in the
equations: for example, if a Sum block has a sampling time s, we
will write the equation `3 =Ss `1+`2, with Ss = {k×s : k ∈ N}.
The meaning of this equations in term of signals is then:

∀t ∈ R+, `3(t) =

{
`1(t) + `2(t) if t ∈ Ss
limτ→t, τ<t `3(τ) otherwise

.

So in this case, the signal `3(t) is a step function whose value
changes at each time k × s, k ∈ N.

Using these equations, we can reconstruct, from a Simulink
model, the state-space equations of the dynamical system repre-
sented by the model. The simulation engine of Simulink computes
a numerical simulation of this state-space representation using the
techniques presented in Section 3.

4.2 Simulink equations from a Simulink model
From now on, we thus consider a Simulink program to be a se-
quence of equations described by the BNF rules given in Equa-
tions (8). An expression e is made of constants r ∈ R, vari-
ables `, x and d coming from a finite set V , arithmetic operations
(� ∈ {+,−,×,÷}) as well as Boolean expressions (./∈ {<,≤
, >,≥,=, 6=}) and conditional expression if. Equations eq are ei-
ther non-temporal equations ` := e, sampled equations ` :=S e,
differential equations of the form ẋ := e or a difference equations
denoted by d̄ :=S e. We associate to a Simulink model M a system
of flow equations EqM (we denote this system Eq when M is clear
from the context).

e ::= r | ` | x | d | e1 � e2 | e1 ./ e2 | if
(
e1, e2, e3

)
(8a)

eq ::= ` :=S e | ` := e | ẋ := e | d̄ :=S e (8b)

p ::= eq | eq; p (8c)

Three comments: i) We do not have functions as Simulink al-
ways flatten its models. ii) Equations are easily and automatically
generated by inspecting the content of the mdl file used to save
Simulink models. iii) Our language is able to model a large sub-
set of Simulink blocks as many of them are syntactic sugar e.g.,
StateSpace block is only a system of linear differential equations.

Remark 1. In Simulink, the Integrator block can be associated
to many features which may change its behavior as resetting the
integrator if a specified event occurs. In this article, we will only
consider, for conciseness, the simplest version but our operational
semantics is able to deal with all the other features.

Example 1. The Simulink program of the PI controller of Figure 1
is associated with the following equations:

Table 1. Subset of Simulink blocks
Library Blocks Representation Equations Description

Source Constant
c

Constant

1

In1

!1

`1 = c Constant value

Sinks Output
1

Out1

!1
out1 = `1 System output

Arithmetic operations Add/Mul

Subtract

1

Gain

Add

!1
!2

!3
�1
�2

�3
Relational
Operator

<=

Product

Integrator

1
s

`3 = `1 + `2 or `3 = `1 × `2 Addition/Multiplication

Signal routing Switch Switch

!1
!2
!3

!4

`4 = if (pr(`2), `1, `3) Conditional statement

Continuous-time Integrator
1/s

Integrator

!1 !2

{`2 = x; ẋ = `1;x(0) = init} Continuous-time integration

Discrete-time Unit Delay
z

1

Unit Delay

!2!1

{`2 = d; d̄ = `1; d(0) = init} Discrete-time delay

ẋ1 := `13; ẋ2 := `14; d̄1 := `7;

`14 := x1; `1 := x2 ; `8 := d1; `2 := 0; `3 := vm;

`4 := if(`1 < 7.1; `3; `2); `5 := `4 − `14; `6 :=S0.1
h× `5;

`7 := `6 + `8; `9 := Kp × `5; `10 := Ki × `7;

`11 := `9 + `10; `12 := 1/m× `11; `13 := `12 + `15;

`15 := −b/m× `14
Within the equations Eq, we distinguish four subsets that will be

evaluated one after another during the simulation loop. They are:

• the major step equations Eq(M) that contain all equations of
the kind ` :=S e or ` := e where e is an expression;
• Eq(m) that contains all equations of the kind ` := e, i.e., blocks

without sampling;

• Eq(d) that contains all equations of the kind d :=S `;
• Eq(x) that contains all equations of the kind ẋ := `.

Note that Eq(m) is included in Eq(M) which contains, in ad-
dition to Eq(m), all the sampled equations. In Eq(M) and Eq(m),
the order in which equations appear is important. Actually, an equa-
tion links the output of a block with its input. So, if the output of
block b1 is the input of block b2, the equation eq1 corresponding
to b1 must be evaluated before the equation eq2 of b2. So the se-
quence of equations Eq is built using a dependency relation: blocks
with internal state (Integrator and Unit Delay) are indepen-
dent of the others, and a block b1 is dependent of b2 if an output
of b2 is an input of b1. Obviously there may be a loop in this re-
lation (i.e., a block being dependent of itself) if there is a loop in
the Simulink model without Integrator or Unit Delay blocks.
In such cases, named algebraic loop in Simulink, the simulation
engine must compute a fixpoint to compute the value of all sig-
nals within the loop. In this article, we assume that all loops in the
Simulink model contain a Integrator or Unit Delay block.

Note also that the order in which equations ẋ := ` and d̄ :=S `
appear is not important as the computation of the next value of
the internal state x or d is done after the evaluation of g in the
simulation loop (see Section 3), and this new value will be used at
the next iteration of the simulation loop. So all internal states may
be computed in parallel, we thus use the vector notations d := `
and ẋ := ` for the equations in Eq(d) and Eq(x) respectively.

In the equations Eq, we made visible the sampling rate which
is a parameter that can modify the behavior of a block. Another
parameter must be taken into account, namely the zero-crossing
functions. Actually, some blocks can define a zero-crossing event
in order to detect a particular event. For example, the Saturated
Integrator block tries to detect when its state enters or leaves an
upper or a lower limit. Note that some blocks do not allowed zero-
crossing detection while they are based on continuous-time inte-

gration, e.g., Transfer Fcn and StateSpace. Each block allow-
ing zero-crossing defines one (or more) local zero-crossing function
zi : Σ → R, with Σ the set of states (see Section 4.3); for exam-
ple the Saturated Integrator block bi (whose state is xi and
with saturation values m and M), is associated with the functions
zmi (σ) = σ(xi)−m and zMi (σ) = M − σ(xi). If the sign of one
of these functions changes between states σ and σ′, a zero-crossing
event is detected. As all zero-crossing events must be detected and
handled simultaneously, we define the global zero-crossing func-
tion Eqz as a function Eqz : Σ → Rd, where d is the number of
local zero-crossing functions in the Simulink model. If these func-
tions are named z1, . . . , zd, then Eqz(σ) =

(
z1(σ), . . . , zd(σ)

)
.

Finally, we will denote by Eq(sampling) the set of all discrete
sampling times that appear in the equations:

Eq(sampling) = ∪{S | ` :=S e ∈ Eq(M) ∨ d̄ :=S e ∈ Eq(d)} .

Example 2. If we consider our running example, then the set of
equations Eq is made of: Eq(M) = {`14 := x1; `1 := x2 ; `8 :=
d1; . . . }, Eq(m) contains all equations of Eq(M) except `6 :=S0.1

h×`5. Also, Eq(d) = {d̄1 = `7} and Eq(x) = {ẋ1 = `13; ẋ2 = `14}.
The zero-crossing equation is Eqz(σ) = `1 − 7.1. Eq(sampling) =
{0.1k : k ∈ N}.

Our semantics is a transition system defined by a Simulink
model and that depends on the solver parameters: we write the
transitions as: Eq, π ` σ → σ′, meaning that the state σ is
modified by the equations Eq into a new state σ′. This modification
depends on the solver parameters π, which are defined by the user
before the simulation starts. We now define our notion of states and
parameters, the derivation rules for the transitions are in Section 5.

4.3 Variables and states
The equations representing a Simulink program involve different
kinds of variables: outputs of blocks `i, states of continuous blocks
xk and states of unit-delay blocks dj . Two additional important
variables will be necessary for the execution of a Simulink model:
the time t and the step-size h. We denote by V the set of variables
of a Simulink model. For a model with nb blocks, nx continuous
blocks (integrator for example) and nd discrete blocks, we have:
V = {`i, i ∈ [1, nb]}∪{xi, i ∈ [1, nx]}∪{di, i ∈ [1, nd]}∪{t, h} .

Definition 1. The state σ of a model associates to each variable
v ∈ V its value in R. It is thus a mapping σ : V → R and Σ is the
set of all states. For a variable v ∈ V , let σ(v) be the value of v in
the state σ and let σ[v 7→ r] be the state σ′ that is identical to σ
except for the value of v:

∀v′ ∈ V, σ′(v′) =

{
σ(v′) if v′ 6= v

r otherwise
.

As the internal state of Integrator and Unit Delay blocks
are modified in parallel, we denote by x ∈ Vnx the vector contain-
ing the states of all continuous blocks of a Simulink model. Equiv-
alently, d ∈ Vnd is the vector containing the states of all unit-delay
blocks. In this article, a bold symbol x represents a vector of val-
ues or variables, and xi is the ith component of x. The arithmetic
symbols � ∈ {+,−,×, . . . } are used on vectors with:

z = x � y ⇔ ∀i, zi = xi � yi .

In order to modify or access to vectors in a state, we shall use the
following shortcut notations:
σ(x) = (σ(x1), . . . , σ(xnx)), σ(d) = (σ(d1), . . . , σ(dnd))

σ[x 7→ r] = σ[x1 7→ r1][x2 7→ r2] . . . [xnx 7→ rnx]

σ[d 7→ r] = σ[d1 7→ d1][d2 7→ d2] . . . [dnd 7→ rnd]

4.4 Parameters
Before running the simulation, the user chooses various parameters,
known as configuration parameters in Simulink, that control the
precision of the solver and of the zero-crossing algorithm. In our
formalism, all these parameters are given as a record π such that:

• π(εr) (resp. π(εa)) is the relative (resp. absolute) tolerance.
Note that π(εr) ∈ R is a real number while π(εa) is a vector
giving the absolute tolerance for each integrator block.
• π(t0) and π(tend) are the start and end time.
• π(h0) (resp. π(hmin) and π(hmax)) is the initial (resp. minimal

and maximal) step-size.
• π(εz) is the tolerance used in the zero-crossing detection.

The record π also includes the Butcher table of the chosen
solver (see Section 3.2): the ith line of the table is recorded as
π(di) ∈ R and π(ai) ∈ Ri. The last line is given by π(w) ∈ Rn
and if the solver is a variable step-size method, it has one more line
recorded as π(w′) ∈ Rn.

Example 3. We consider again the Simulink model given at Fig-
ure 1 for which the parameters are (these are the default values
given by Simulink for each parameter): π(t0) = 0, π(tend) = 10,
π(εr) = 10−3 and π(εa) is the vector with all values equal to
10−6; π(hmin) = t · 16 · 2−53 and π(hmax) = (tend − t0)/50;
π(εz) = 10× 128× 2−53. We consider ode23 solver presented in
Section 3.2 so π(d1) = 1/2, π(a1) = 1/2, etc.

5. Operational semantics
In this section, we define the operational semantics associated to the
subset of Simulink language defined in Section 4. This semantics
is a transition system that closely follows the Simulink simulation
engine described in Section 3: each stage of the simulation loop
is a transition and the main transition system is the composition
of all these transitions. In order to keep notations manageable and
our semantics understandable, we present it in a “top-down” way:
we start with the high level transitions and decompose them into
specialized transitions. This is done in Sections 5.1 to 5.4.

5.1 Run of a Simulink program
A state σ0 is the initial state of a program Eq in a configuration π if
σ0(x) and σ0(d) are the initial values as defined by the equations
of Eq and σ0(t) = π(t0) and σ0(h) = π(h0). A state is final
in a configuration π if σ(t) = π(tend). A run of the system of
equations Eq in a configuration π is a finite sequence of states
σ0, σ1, . . . , σn ∈ Σ such that σ0 is an initial state, σn is a final
state and ∀i ∈ [0, n − 1], Eq, π ` σi ⇒ σi+1, where the ⇒
transition is given in Figure 3. The transition⇒ depends on various
other transitions: the ”major step transition” M−→ that evaluates the

σ(t) = π(tend)

Eq, π ` σ ⇒ σ
SIMULATION-END

σ(t) < π(tend)

Eq, π ` σ M−−→ σ1 Eq, π ` σ1
u−→ σ2 Eq, π ` σ2

s−→ σ′

Eq, π ` σ ⇒ σ′

Figure 3. Operational semantics rules: global rules.

equations Eq(M), the ”update transition” u−→ that evaluates Eq(d)

and the ”solver transition” s−→ that evaluates Eq(x).

5.2 Major and minor steps transition

We now define the o−→ transition that defines how a state σ ∈ Σ is
modified by a sequence of equations. In Figure 4 we give the rules
that define this transition. We recall that ./∈ {<,≤, >,≥,=, 6=},
� ∈ {+,−,×,÷}. We see that it is very similar to the transitions of
the operational semantics of an imperative programming language,
as defined in [15]. The main difference comes from the affectation
` :=S e whose effect depends on the simulation time: if the time
t is one of the sampling times of the corresponding block (i.e., if
t ∈ S), then the instruction is executed (rule AFFS), otherwise it
has no effect on σ (rule AFFNS).

Based on the o−→ transition, we define the major steps output M−→
which evaluates all equations, and minor steps output m−→ which
only evaluates the equations corresponding to continuous blocks.
The transition M−→ (resp. m−→) is just the application of o−→ on the
set of major (resp. minor) step equations Eq(M) (resp. Eq(m)).

5.3 Update transitions
Once the output of all blocks at time t is computed, the internal
state of unit-delay and continuous blocks can be computed. These
internal states are the input of the other blocks at the next simulation
step, i.e., at time t+h. The unit delay block is a memory block that
outputs at time t+ h its input at time t. Thus, the update transition
simply stores in the internal state the input value: this is stated by
the rules UPDATENS and UPDATES of Figure 4. It is clear that the
order in which these updates are made does not affect the execution,
thus we can consider that they are all performed simultaneously.
We use the vectorial notation σ(`) and σ(d) to model this. Let us
remark that for this transition also, we must consider two cases:
when the time belongs to the sampling time of the unit-delay (rule
UPDATES) and when it is not the case (rule UPDATENS).

5.4 Solver transitions
Next, the internal state of all continuous blocks (integrator for
example) must be computed: this means that the numerical solver
computes a value x(t + h) for all the continuous states x. Note
that the step-size may be reduced by the solver in order to keep the
integration error within the bounds given by π. Also, zero-crossing
events will be detected and, if necessary, tightly approximated
using a specific algorithm. Finally, once the step is validated, the
next step-size is computed and the simulation time is increased. We
decompose these three stages into: the integration transition i−→, the
zero-crossing transition zc−→ and the step-size transition h−→ that we
detail in the next sections. The rule for the solver transition is:

Eq, π, σ ` σ i−→ σso

Eq, π, σ ` σso
zc−→ σzc Eq, π ` σzc

h−→ σ′

Eq, π ` σ s−→ σ′
SOLVER

.

5.4.1 Integrator transitions
We now describe the transitions for the integrator stage, i.e., how
the continuous state x(t+ h) is computed. Let us first remark that,

〈r, σ〉 o−→ r
CTE

〈`, σ〉 o−→ σ(`)
VAR

〈e1, σ〉
o−→ r1 〈e2, σ〉

o−→ r2

〈e1 � e2, σ〉
o−→ r1 � r2

ARITH
〈e1, σ〉

o−→ r1 〈e2, σ〉
o−→ r2

〈e1 ./ e2, σ〉
o−→ r1 ./ r2

CMP

〈e1, σ〉
o−→ true 〈e2, σ〉

o−→ r2

〈if (e1, e2, e3) , σ〉 o−→ r2
THEN

〈e1, σ〉
o−→ false 〈e3, σ〉

o−→ r3

〈if (e1, e2, e3) , σ〉 o−→ r3
ELSE

〈eq1, σ〉
o−→ σ′ 〈eq2, σ′g〉

o−→ σ′′g

〈eq1; eq2, σ〉
o−→ σ′′g

SEQ

σ(t) 6∈ S
〈` :=S e, σ〉

o−→ σ
AFFNS

σ(t) ∈ S 〈e, σ〉 o−→ r

〈` :=S e, σ〉
o−→ σ[`← r]

AFFS
〈e, σ〉 o−→ r

〈` := e, σ〉 o−→ σ[`← r]
AFF

〈Eq(m), σ〉 o−→ σ′

Eq, π ` σ m−→ σ′
MINOR

〈Eq(M), σ〉 o−→ σ′

Eq, π ` σ M−−→ σ′
MAJOR

Eq(d) = d :=S ` σ(t) 6∈ S
Eq, π ` σ u−→ σ

UPDATENS
Eq(d) = d :=S ` σ(t) ∈ S

Eq, π ` σ u−→ σ[d 7→ σ(`)]
UPDATES

Figure 4. The output and update transitions.

〈sc1(σM (x),Eq(x), π) , σ〉 o−→ σ1 〈sc2(σM (x),Eq(x), π) , σ1〉
o−→ σ2 check err(σ, σ1, σ2, π) = 1

Eq, π, σM ` σ
i−→ σM [x 7→ σ1(x), h 7→ σ1(h)]

INTEGRATION-SUCCES

〈sc1(σM (x),Eq(x), π) , σ〉 o−→ σ1

〈sc2(σM (x),Eq(x), π) , σ1〉
o−→ σ2 check err(σ, σ1, σ2, π) = 0 Eq, π, σM ` σM [h 7→ max(π(hmin),

σ(h)

2
)]

i−→ σ′

Eq, π, σM ` σ
i−→ σ′

INTEGRATION-FAIL

Figure 5. The rules for the integrator transition.

as for the update transition, the order in which the internal state of
each continuous block is computed is not relevant, all states can
be computed simultaneously. We will thus use again the vector
notation for this. The integration rules are given in Figure 5, we
explain them in the sequel. Let us first recall that the equations for
the integrator blocks are of the form ẋ := ` (in the vector notation)
and that Eq(x) returns these equations.

To compute x(t + h), a numerical solver uses a composition
of two kinds of computations. First, the derivatives at ti = t +
di · h are stored. In Simulink, this means evaluating the output
of all blocks and storing the input of the integrator block. Here,
di is the first coefficient of the ith row of the Butcher table (see
Section 3.2). Then, x(ti) is estimated using a linear extrapolation
with the parameters of the Butcher table.

Once all extrapolations are done, the value at t + h is defined
as a linear extrapolation from x(t), using a linear combination of
the derivatives at all ti. The coefficients of this extrapolation are in
the last row of the Butcher table. In the classical variable step-size
scheme, the derivatives at points ti are stored in variables named ki

(ki is a vector of the size of x(t)). We use the same notations and
suppose that the concatenation of the vectors ki forms a matrixK.
We denote the matrix-vector multiplication by ×: ifK is a n×m
matrix and v a m× 1 vector, thenK × v is a n× 1 vector.

In our semantics, evaluating the output of all blocks means ap-
plying the o−→ transition: the integrator transition is thus a sequence
of numerical computations (for the extrapolation) and call to o−→ on
the minor time step equations (for the derivatives). We will extend
the state σ so that they also associate to each variable ki a value.
We expand the equation ẋ := ` in a solver-dependent code that
will be evaluated by the o−→ transition. This code is of the kind:

k1 := `;

x := expl(x0,k1, π(a1), h); t := t+ π(d1)h; Eq(m);k2 := `;

x := expl(x0, [k1k2], π(a2), h); t := t+ π(d2)h; Eq(m);k3 := `;

. . .

x := expl(x0, [k1 . . .ks], π(w), h)

We recall that Eq(m) is the sequence of equations that must be
executed during the minor time steps. Note that the first instruction
is always k1 := ` as the first coefficient k1 is always equal to

the derivative estimated at x that was already computed by the m−→
transition. The expression expl(x0,K,a, h), where x0 and a are
vectors andK is a matrix, will be evaluated by the o−→ transition as:

r = x0 + h · (K × a)

〈x := expl(x0,K,a, h) , σ〉 o−→ σ[x 7→ r] .

For variable step-size methods, this code will be completed by an-
other one that computes the second approximation used for error
estimation. This second code is of the same kind as above. For
a configuration π (i.e., a choice for the solver), we will denote
sc1(x0, ẋ := `, π) the code (sc stands for solver code) to com-
pute the first approximation point (denoted xn+1 in Section 3.2)
and sc2(x0, ẋ := `, π) the code to compute the second approxi-
mation point (denoted zn+1 in Section 3.2). For fixed step solvers,
this second code will be empty.

Example 4. Using ode23 solver with our running example,
sc1(x0, ẋ := `, π) is interpreted as this sequence of equations
(in vectorial notation, with t the transpose):
k1 :=

(
`14 `13

)
; x := x0 + 0.5h

(
`14 `13

)
; t := t+ 0.5h;

Eq(m); k2 :=
(
`14 `13

)
; x := x0 + 0.75h

(
`14 `13

)
;

t := t+ 0.75h; Eq(m); k3 :=
(
`14 `13

)
;

x := x0 + h
(
k1 k2 k3

)
·
(
2/9 1/3 4/9

)t
.

The computation of sc2(x0, ẋ := `, π) is very similar.

We may now explain the two rules for the integrator transition.
Both rules start by evaluating the code for the two stages of the
solver (i.e., they compute xn+1 and zn+1), thus getting two states
σ1 and σ2 that contain two approximations for x(t + h). As
explained in Section 3.2, the simulation step will be validated only
if the distance between these two approximations is smaller that a
(user-defined) bound. The function check err returns true if it is
the case, false otherwise. Following Equation (6), it is defined by:

check err(σ, σ1, σ2, π) =
‖σ1(x)− σ2(x)‖∞

max(max(|σ1(x)|, |σ(x)|), atol
rtol)
≤ rtol.

If the check err returns 1, then the step is validated and the new
state is σ1(x) (rule INTEGRATOR-SUCCES). Otherwise, the step is
rejected and the integration starts over with a step-size reduced to
h/2 (rule INTEGRATOR-FAIL).

Remark that, contrary to the semantics defined in [14], our
semantics mask the backtracking of time inside the solver method
call. This is indeed closer to what Simulink does as the time of the
major steps are always in increasing order.

5.4.2 Zero-crossing transitions
To handle zero-crossing events, Simulink performs three tasks:
zero-crossing detection, zero-crossing bracketing and finally pass-
ing through the zero-crossing. A good survey of how zero-crossing
is detected and various algorithms to handle it can be read in [21].

The detection phase relies on the Eqz function that we defined
in Section 4.2. Assume that the state at time t (called major time
state) was σM , and that the state after the integration transition is
σso. Then, there is a zero-crossing event between σM and σso if
Eqz(σM) ·Eqz(σso) ≤ 0: this means (for example) that the output
of the Saturated Integrator block at σM was between m and
M and that it is above M at σso. We thus define the zero-crossing
detection function dzc : Σ× Σ× Eq→ B by:

dzc(σ1, σ2,Eq) =(Eqz(σ1) · Eqz(σ2) ≤ 0)

∧
(
Eqz(σ1) 6= 0 ∨ Eqz(σ2) 6= 0

)
.

The first condition means that the sign of Eqz must change between
σ1 and σ2, the second states that at least one of these values must
be different from 0. Remark that in this formula, 0 is the vector
containing only zeros; the tests≤ and 6= are done component-wise.
So, a zero-crossing event is detected on the whole program if a
zero-crossing event is detected in one of its blocks.

To detect a zero-crossing event, we compute the output of each
block using the m−→ transition on σso and call the dzc function. The
rule ZC-F in Figure 6 deals with the case when no zero-crossing
event is detected: the numerical integration is validated and so the
simulation time is increased. The rule ZC-T deals with the case
when a zero-crossing event is detected: the zero-crossing event is
located (using the loc−−→ transition), which yields two states, σL and
σR, such that there is no zero-crossing between σM and σL and
one zero-crossing between σL and σR. We explain the localization
algorithm later. Then, the solver increases the simulation time up
to σR(t), i.e., just after the zero-crossing event. To do so, it first
advances up to σL(t) using a major output (m−→ and u−→ transitions
in the ZC-T rule), then it sets x to σR(x) and t to σR(t). The
simulation is then ready to start a new step.

The localization algorithm is what is called the search loop:
the solver brackets the zero-crossing event by states σL and σR
and reduce this interval until the time precision |σL(t) − σR(t)|
is smaller than the parameter π(εz). This is represented by the
rules LOC-F and LOC-T. To reduce the bracketing, the lr−→ transition
works as follows (see rules LR1 and LR2 in Figure 6). The time t̃
at which the zero-crossing occurs is estimated using interpolation
(function computeTz, explained later) and the state of the system
at t̃ is estimated using an approximation method (interpolateX,
explained later); this yields a new state σ, and, depending on the
result of dzc(σL, σ,Eq), we set σL or σR to σ, and repeat.

To estimate the time t̃ at which the zero-crossing event oc-
curs, the solver does a linear interpolation between EqZ(σL) and
Eqz(σR) and solves when this interpolation crosses zero. Thus,
the function computeTz is defined in Equation (9) with xL =
Eqz(σL(x)) and xR = Eqz(σR(x)).

computeTz(σL, σR) = minL

(
σL(t)− xL · σR(t)−σL(t)

xR−xL

)
(9)

The values xL and xR are vectors and the numerical opera-
tions (including the division) are performed component-wise, so
the formula

(
σL(t) − xL · σR(t)−σL(t)

xR−xL

)
computes a vector t of

times at which the linear interpolation crosses 0. The result of
computeTz is the smallest component of t that is greater than
σL(t): this is the meaning of the minL function, i.e., minL(t) =

min{ti | ti ≥ σL(t)}, where t = (t1, . . . , tm). Remark that,
as their is a zero-crossing event between σL and σR, we have:
computeTz(σL, σR) ∈ [σL(t), σR(t)] .

To approximate the state x at t̃, the solver uses a method called
continuous extension [17, p. 54]. This method is specific to the
numerical integration method and yields a very good polynomial
approximation of the solution of the differential equation on the
interval [t, t + h]. Moreover, this approximation is very fast to
compute, thus well suited for the zero-crossing process. Such con-
tinuous approximation exists for most numerical methods used in
Simulink [17]. For example, for ode23, the interpolation method is
the cubic Hermite interpolation: see Equation (10) with t1 = σ1(t),
t2 = σ2(t), h = t2 − t1 and τ = (t − t1)/h. Moreover, the term
p1 (resp. p2) is the derivative of the state at time t1 (resp. t2). These
values are easily computed in Simulink: it is the input of the inte-
grator block in states σ1 and σ2, respectively.

interpolX(σ1, σ2, t) = (2τ3−3τ2+1)σ1(x)+(τ3−2τ2+τ)hp1

+ (−2τ3 + 3τ2)σ2(x) + (τ3 − τ2)hp2 (10)

In Equation (10), σ1 is the state of the system at time t and σ2 is
the state at time t + h: we will thus use for σ1 the state before
the i−→ transition (σM in the rules of Figure 6) and for σ2 the state
after (σso in Figure 6). Note that we always use the same function
(i.e., interpolX uses the same states for σ1 and σ2) for the whole
search loop, as it is the best approximation we can have on [t, t+h].

Example 5. We illustrate the impact of zero-crossing process on
the simulation by considering once again our running example.
Recall that the safety mechanism, described in Section 2, has to
stop the vehicle as soon as it reaches 7.1 meters of distance. The
zero-crossing function z(t) = x(t)−7.1 where x(t) is the position
of the vehicle is associated to this mechanism. The interesting step
is between time 1.5 and 1.6. The numerical integration starting at
time 1.5 with x = 6.769693 and provides as a result x = 7.507278
at time 1.6. However, a zero-crossing is detected and the zero-
crossing location process estimates the time t̃ = 1.54433. As a
result, a new major step is computed at time 1.54433 and the
simulation restarts from this point

5.4.3 Step-size update transitions
Once the zero-crossing event has been handled, the simulation time
at the next simulation step is known. If no zero-crossing event
was detected, it is σM (t) + σso(h) (i.e., the time computed by
the solver); if there was a zero-crossing event, it is σR(t). Now,
the step-size of the next simulation step must be computed. There
are two reasons for changing the step-size. First, the solver may
decrease or increase the step-size in order to control the error or
improve the performance. Second, the simulation time must be
compatible with the sampling times chosen for all blocks in the
system: if a block has a sampling rate of s seconds, the simulation
must make a major step at each time instant tk = k × s for k ∈ N.

So, the solver first changes the step-size according to a formula
like Equation (7) (see Section 3.2). Let us denote changeH(h, π)
the function that computes this new step-size h′. Then, the simu-
lation engine checks if there is a sampling time between tM and
tM + h′. If so, it reduces h′ so that tM + h′ is the first sampling
time. This is done by the rule of Equation (11).

h′ = changeH(σ(h), π)
t′ = min{τ ∈ Eq(sampling) : τ > σ(t)}

Eq, π, σM ` σ
h−→ σ[h 7→ min(h′, t′ − σ(t))]

UPDATE-H
(11)

Recall that Eq(sampling) is the set of all sampling times for
the considered Simulink model, as defined in Section 4.4.

Eq, π ` σso[t 7→ σM (t) + σso(h)]
m−→ σ′ dzc(σM , σ

′,Eq) = false

Eq, π, σM ` σso
zc−→ σso[t 7→ σM (t) + σso(h)]

ZC-F

Eq, π ` σso[t 7→ σM (t) + σso(h)]
m−→ σ′

dzc(σM , σ
′,Eq) = true Eq, π, σM , σso ` σM , σ′

loc−−→ σL, σR Eq, π ` σL
m−→ σ1 Eq, π ` σ1

u−→ σ′

Eq, π, σM ` σso
zc−→ σ′[x 7→ σR(x), t 7→ σR(t)]

ZC-T

Eq, π, σM , σso ` σL, σR
lr−→ σ′L, σ

′
R |σ′L(t)− σ′R(t)| ≤ π(εz)

Eq, π, σM , σso ` σL, σR
loc−−→ σ′L, σ

′
R

LOC-F

Eq, π, σM , σso ` σL, σR
lr−→ σ′L, σ

′
R |σ′L(t)− σ′R(t)| > π(εz) Eq, π, σM , σso ` σ′L, σ

′
R

loc−−→ σ′′L, σ
′′
R

Eq, π, σM , σso ` σL, σR
loc−−→ σ′′L, σ

′′
R

LOC-T

t̃ = computeTz(σL, σR) r = interpolX(σM , σso, t̃) Eq, π ` σL[x 7→ r, t 7→ t̃]
m−→ σ

Eq, π, σM , σso ` σL, σR
a−→ σ

ZC-APPROX

Eq, π, σM , σso ` σL, σR
a−→ σ dzc(σL, σ,Eq) = true

Eq, π, σM , σso ` σL, σR
lr−→ σL, σ

LR1
Eq, π, σM , σso ` σL, σR

a−→ σ dzc(σL, σ,Eq) = false

Eq, π, σM , σso ` σL, σR
lr−→ σ, σR

LR2

Figure 6. Operational semantics rules: zero-crossing detection and localization.

Example 6. A simpler version of changeH for ode23 is:

h′ =

h/temp if err ≤ rtol and temp > 0.2

5.0h if err ≤ rtol and temp ≤ 0.2

max
(
hmin, 0.5h

)
otherwise (decreasing step-size)

with err = h
(
‖xn+1−xn‖∞/max

(
max(|xn+1|, |xn|), atol/rtol

))
,

the inner max being the maximum value of all elements of both
vectors, and temp = 1.25(err/rtol)1/3. Note that to update h we
have to keep in memory the integration error err, see Section 5.4.1.

5.5 Remarks about the semantics
All the rules we have presented so far define our operational se-
mantics for Simulink. It handles variable step-size solvers, zero-
crossing detection and models that combine discrete and continu-
ous blocks. As far as we know, this semantics is the first to gather
and formalize all the information on the Simulink solver that is
found in the documentation of Simulink, in the text books on nu-
merical integration [17] and some pieces of source code available in
the Simulink distribution. However, to keep the presentation read-
able, we have voluntarily omitted some details that we now present.

First, fixed step-size solvers do not allow zero-crossing events,
which is not the case in the zc−→ transition. To handle this, we only
need to make the dzc function solver dependent: it returns 0 for
fixed step-size solvers. Also, during the computation of the zero-
crossing time (function computeTz, Equation (9)), two special
cases must be handled. First, if 0 ∈ Eqz(σL), we always have
computeTz(σL, σR) = σL(t). Simulink has a solution for this
case: it sets σR(t) to σL(t) + ε, where ε is the machine precision,
and does a first-order interpolation to have the state σR(x). Second,
if their is a component of xL and xR such that xL(i) = xR(i),
we have a division by zero in Equation (9). In this case, we can
easily check that no zero-crossing event exists for this component,
so we can omit it in the computation of computeTz.

Finally, when the step-size is modified, we must check that h
remains between π(hmax) (the maximal step-size) and π(hmin)
(the minimal step-size). So the rule of Equation (11) should be
modified to limit the new value of h.

6. Correctness of the semantics
As the source code for Simulink is not fully available, it is difficult
to formally prove that the semantics we propose exactly describes
what Simulink computes. However, we are confident that it is
exact for two reasons: it conforms to the properties mentioned in

Section 3.1 and, on various examples, it conforms to the results of
Simulink simulations. This is detailled in the rest of this section.

Properties verified by our semantics We give two theorems that
prove that our semantics conforms to Properties 1 and 2. Both
theorems are easily proved using our derivation rules, we only list
as proof sketches the rules that make the theorems true.

Theorem 1 (Conform to Property 1). Let σ0 be the initial state.
Let {σk : k ∈ [1, n]} be the sequence of states such that σ0 ⇒
σ1 ⇒ · · · ⇒ σn. For each k ∈ [0, n], let ti = σi(t). Then we
have: ∀i ∈ [0, n− 1], ti < ti+1 .

Proof sketch. The only rule in which time could go “backward” is
the integrator transition i−→, during the various stages of multi-stage
solvers. However, as the transition σ ⇒ σ′ only occurs once a step
is validated, we know that σ′(t) ≥ σ(t).

Theorem 2 (Conform to Property 2). Let σ0 be the initial state.
Let {σk : k ∈ [1, n]} be the sequence of states such that σ0 ⇒
σ1 ⇒ · · · ⇒ σn. For each k ∈ [0, n], let ti = σi(t). Let also
S = Eq(sampling) be the set of all sampling times for the blocks
of the Simulink program. Then we have:

∀t ∈ S ∩ [t0, tn], t ∈ {ti : i ∈ [0, n]} .

Proof sketch. Consequence of the rule UPDATE-H (Eq. (11)).

Numerical correctness of the semantics To establish the correct-
ness of our semantics, we developed a prototype simulator that uses
the equation representation of a Simulink program and applies the
rules of our semantics. We tested it on three systems that are rep-
resentative of the different features of Simulink. First, we used a
spring-mass system3 which is a purely continuous system without
zero-crossing detection nor sampling rates. Then we used our run-
ning example which mixes continuous and discrete behaviors as
well as zero-crossing events. Finally, we tested our simulator on
the bouncing ball system3 which is an example for which zero-
crossing algorithms are intensively used. This example also uses so
called zero-crossing signals, which are special actions taken only
when a zero-crossing event is detected. For conciseness we did not
present such signals in our semantics but it is able to handle them.

For all these examples, our simulation gives exactly the same re-
sults as Simulink: the time instants chosen by the simulator and the

3 http://matlabtutor.com

values of the output variables are the same. We are thus confident
that our semantics is correct with respect to Simulink simulation.

7. Related work and conclusion
Related work A few works tried to define a formal semantics of
Matlab/Simulink considering all its features. Caspi et al. [4] use the
synchronous language Lustre to define the semantics of a discrete-
time subsets of Simulink. Agrawal and al. [1] and Tiwari [19] based
their semantics on hybrid automata. The latter quickly describes
the effect of numerical integration without precisely describing the
Simulink solver. Nevertheless none of these works define formally
the semantics of Simulink solver: instead of defining the result of
Simulink simulation, they formally define what Simulink should
compute, i.e., the solution of the state-space equations encoded
by the Simulink model. Our approach is different as we gave
a semantics of Simulink that formally defines the result of the
numerical simulation. The work by Denckla et al. [9] defines a
semantics to a block diagram language very similar to Simulink.
Their semantics can mix both discrete and continuous time blocks,
but it does not consider zero-crossing nor variable step solvers that
are probably the main features of Simulink simulation engine.

Conclusion We presented an operational semantics of Simulink’s
models. We hence emphasized all aspects of the solver, espe-
cially the major steps and the minor steps. More precisely, we
described the numerical methods used in the solver such as numer-
ical integration methods and zero-crossing process. Our seman-
tics has two main contributions. First, it mixes both continuous-
and discrete-time blocks while previous works only focused on
one of it. Secondly, our semantics is solver-dependent, so that we
can compute the result of a simulation using different solver or
solver parameters. As it covers all aspects of the Simulink solver
(e.g., variable step-size methods and zero-crossing localization),
this work improves previous attempts to define a formal semantics
of Simulink [4, 9].

In this article, we used a core subset of Simulink blocks, in-
cluding both discrete and continuous aspects of the language. We
want to stress out that this subset is large enough to capture more
advanced features like enabled or triggered subsystems. Actually,
a subsystem with an “enabling” signal can be replaced by all its
blocks, each of it preceded by a switch block indicating if it must be
executed. Using this transformation, we were able to simulate sys-
tems with triggered and enabled subsystems in our simulator and
obtained the same results as Simulink. Remark that this work re-
vealed an unreported bug1 in the Simulink simulation engine when
dealing with enabled subsystems with integrator blocks and fixed-
step solvers. We cannot describe this bug in details due to space
limitation, but its effect is that the output of the subsystem when
it becomes disabled is a minor step, which, according to Simulink
documentation, should never happen. So, the results of the simula-
tion are very different depending on the chosen solver.

We believe that this semantics can be used for various purposes.
First, we want to apply formal methods, in particular abstract in-
terpretation based techniques, on Simulink models to compute (an
over-approximation of) the distance between the simulation (as de-
fined by our semantics) and a perfect, mathematical execution. We
want to adapt techniques from Goubault et al. [10] for the static
analysis of numerical programs where the distance between the
program execution using floating-point numbers and the mathemat-
ical semantics using real numbers is computed as the sum of simple
errors associated with each operation. This could be adapted to de-
termine which part of the simulation loop causes the biggest error
and thus help to increase the trust we can have in Simulink outputs.

1 Similar to http://www.mathworks.fr/support/bugreports/361167.

Another interesting follow-up of this work is to define a set-based
simulation, i.e., the simulation of a model where some parameters
(or input values) are unknown but within some set. This could be
used to determine the behavior of a system with uncertain param-
eters and thus add some non-determinism in the modelling of a
physical system. The main challenge in this direction is the han-
dling of zero-crossing events for which techniques coming from
hybrid systems analysis could be used [13].

References
[1] A. Agrawal, G. Simon, and G. Karsai. Semantic translation of

Simulink/Stateflow models to hybrid automata using graph transfor-
mations. ENCS, 109:43–56, 2004.

[2] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic anal-
ysis for improving simulation coverage of Simulink/Stateflow models.
In EMSOFT, pages 89–98. ACM, 2008.

[3] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
and X. Rival. Static analysis by abstract interpretation of embedded
critical software. In UML and Formal Methods. IEEE, 2010.

[4] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translat-
ing discrete-time Simulink to Lustre. ACM Transaction on Embedded
Computing Systems, 4(4):779–818, 2003.

[5] A. Chapoutot and M. Martel. Abstract Simulation: a static analysis of
Simulink models. In ICESS, pages 83–92. IEEE Press, 2009.

[6] C. Chen, J. Dong, and J. Sun. A formal framework for modeling and
validating simulink diagrams. Formal Aspects of Computing, 2009.

[7] P. Cousot. Integrating physical systems in the static analysis of em-
bedded control software. In APLAS, volume 3780 of LNCS, pages
135–138. Springer, 2005.

[8] P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

[9] B. Denckla and P. Mosterman. Formalizing causal block diagrams for
modeling a class of hybrid dynamic systems. In IEEE Conference on
Decision and Control, 2005.

[10] E. Goubault, M. Martel, and S. Putot. Static analysis-based validation
of floating-point computations. In Numerical Software with Result
Verification, volume 2991 of LNCS, pages 306–313. Springer, 2003.

[11] E. Hairer, S. Norsett, and G. Wanner. Solving Ordinary Differential
Equations I: Nonstiff Problems. Springer-Verlag, 2nd edition, 1993.

[12] A. Kanade, R. Alur, F. Ivancic, S. Ramesh, S. Sankaranarayanan,
and K. C. Shashidhar. Generating and analyzing symbolic traces of
Simulink/Stateflow models. In CAV, volume 5643 of LNCS, 2009.

[13] C. Le Guernic and A. Girard. Zonotope-hyperplane intersection for
hybrid systems reachability analysis. In HSCC’08, volume 4981 of
LNCS, pages 215–228. Springer, 2008.

[14] E. A. Lee and H. Zheng. Operational semantics of hybrid systems. In
HSCC, number 3414 in LNCS. Springer, 2005.

[15] G. D. Plotkin. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60-61:17–139, 2004.

[16] L. Shampine and M. Reichelt. The MATLAB ODE Suite. Journal on
Sci. Comput., 18(1):1–22, 1997.

[17] L. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with
MATLAB. Cambridge Univ. Press, 2003.

[18] J. Sifakis. A vision for computer science – the system perspective.
Central European Journal of Computer Science, 1(1):108–116, 2011.

[19] A. Tiwari. Formal semantics and analysis methods for Simulink
Stateflow models. Technical report, SRI Intl., 2002.

[20] A. Tiwari, N. Shankar, and J. Rushby. Invisible formal methods for
embedded control systems. Proceedings of the IEEE, 91(1):29–39,
2003.

[21] F. Zhang, M. Yeddanapudi, and P. Mosterman. Zero-crossing location
and detection algorithms for hybrid system simulation. In 17th IFAC
World Congress, pages 7967–7972, 2008.

