Interval Slopes as a Numerical Abstract Domain
for Floating-Point Variables

Alexandre Chapoutot

LIP6 - Université Pierre et Marie Curie
4, place Jussieur F-75252 Paris Cedex 05 France
alexandre.chapoutot@lip6.fr

Abstract. The design of embedded control systems is mainly done with
model-based tools such as Matlab/Simulink. Numerical simulation is the
central technique of development and verification of such tools. Floating-
point arithmetic, that is well-known to only provide approximated re-
sults, is omnipresent in this activity. In order to validate the behaviors
of numerical simulations using abstract interpretation-based static anal-
ysis, we present, theoretically and with experiments, a new partially re-
lational abstract domain dedicated to floating-point variables. It comes
from interval expansion of non-linear functions using slopes and it is
able to mimic all the behaviors of the floating-point arithmetic. Hence
it is adapted to prove the absence of run-time errors or to analyze the
numerical precision of embedded control systems.

1 Introduction

Embedded control systems are made of a software and a physical environment
which aim at continuously interact with each other. The design of such systems
is usually realized with the model-based paradigm. Matlab/Simulink® is one of
the most used tools for this purpose. It offers a convenient way to describe the
software and the physical environment in an unified formalism. In order to verify
that the control law, implemented in the software, fits the specification of the
system, several numerical simulations are made under Matlab/Simulink. Never-
theless, this method is closer to test-based method than formal proof. Moreover,
this verification method is strongly related to the floating-point arithmetic which
provides approximated results.

Our goal is the use of abstract interpretation-based static analysis [9] to val-
idate the design of control embedded software described in Matlab/Simulink. In
our previous work [3], we defined an analysis to validate that the behaviors given
by numerical simulations are close to the exact mathematical behaviors. It was
based on an interval abstraction of floating-point numbers which may produce
too coarse results. In this article, our work is focused on a tight representation of
the behaviors of the floating-point arithmetic in order to increase the precision
of the analysis of Matlab/Simulink models.

! Trademarks of The Mathworks™™ company.

2 Alexandre Chapoutot

To emphasize the poor mathematical properties of the floating-point arith-
metic, let us consider the sum of numbers given in Example 1 with a single
precision floating-point arithmetic. The result of this sum is —2.08616257.10~6
due to rounding errors, whereas the exact mathematical result is zero.

Ezample 1.

0.0007 + (—0.0097) + 0.0738 + (—0.3122) + 0.7102 + (—0.5709) + (—1.0953)
+ 3.3002 + (—2.9619) + (—0.2353) 4 2.4214 4+ (—1.7331) + 0.4121

Example 1 shows that the summation of floating-point numbers is a very ill-
conditioned problem [28, Chap. 6]. Indeed, small perturbations on the elements
to sum produce a floating-point result which could be far from the exact result.
Nevertheless, it is a very common operation in control embedded software. In
particular, it is used in filtering algorithms or in regulation processes, such as for
example in PID? regulation. Remark that depending on the case, the rounding
errors may stay insignificant and the behaviors of floating-point arithmetic may
be safe. In consequence, a semantic model of this arithmetic could be used to
prove the behaviors of embedded control software using floating-point numbers.

The definition of abstract numerical domains for floating-point numbers is
usually based on rational or real numbers [13,24] to cope with the poor mathe-
matical structure of the floating-point set. In consequence, these domains give an
over-approximation of the floating-point behaviors. This is because they do not
bring information about the kind of numerical instability which appeared dur-
ing computations. We underline that our goal is not interested in computing the
rounding errors but the floating-point result. In others words, we want to com-
pute the bounds of floating-point variables without considering the numerical
quality of these bounds.

Our main contribution is the definition of a new numerical abstract domain,
called Floating-Point Slopes (FPS), dedicated to the study of floating-point num-
bers. It is based on interval expansion of non-linear functions named interval
slopes introduced by Krawczyk and Neumaier [20] and, as we will show in this
article, it is a partially relational domain. The main difference is that, in Propo-
sition 1, we adapt the interval slopes to deal with floating-point numbers. More-
over, we are able to tightly represent the behaviors of floating-point arithmetic
with our domain. A few cases studies will show the practical use of our domain.
Hence we can prove properties on programs taking into account the behaviors
of the floating-point arithmetic such that the absence of run-time errors or, by
combining it with other domains e.g. [4], the quality of numerical computations.

Content. In Section 2, we will present the main features of floating-point arith-
metic and we will also introduce the interval expansions of functions. We will
present our abstract domain FPS in Section 3 and the analysis of floating-point
programs in Section 4 before describing experimental results in Section 5. In
Section 6, we will reference the related work before concluding in Section 7.

2 PID stands for proportional-integral-derivative. It is a generic method of feedback
loop control widely used in industry.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 3

2 Background

We recall the main features of the IEEE754-2008 standard of floating-point arith-
metic in Section 2.1. Next in Section 2.2, we present some results from interval
analysis, in particular the interval expansion of functions.

2.1 Floating-Point Arithmetic

We briefly present the floating-point arithmetic, more details are available in
[28] and the references therein. The IEEE754-2008 standard [18] defines the
floating-point arithmetic in base 2 which is used in almost every computer?.

Floating-point numbers have the following form: f = s.m.2°. The value s
represents the sign, the value m is the significand represented with p bits and
the value e is the exponent of the floating-point number f which belongs into the
interval [emin, €max] Such that emax = —emin + 1. There are two kinds of numbers
in this representation. Normalize numbers for which the significand implicitly
starts with a 1 and denormalized numbers that implicitly starts with a 0. The
later are used to gain accuracy around zero by slowly degrading the precision.

The standard defines different values of p and epiy: p = 24 and ey = —126
for the single precision and p = 53 and ey, = —1022 for the double precision.
We call normal range the set of absolute real values in [26min (2 — 217P)2¢max]
and the subnormal range the set of numbers in [0, 2°min].

The set of floating-point numbers (single or double precision) is represented
by F which is closed under negation. A few special values represent special cases:
the values —oco and 400 to represent the negative or the positive overflow; and
the value NaN* represents invalid results such that v/—1.

The standard defines round-off functions which convert exact real numbers
into floating-point numbers. We are mainly concerned by the rounding to the
nearest ties to even® (noted fl), the rounding towards +oco and rounding toward
—00. The round-off functions follow the correct rounding property, i.e. the result
of a floating-point operation is the same that the rounding of the exact math-
ematical result. Note that these functions are monotone. We are interested in
this article by computing the range of floating-point variables rounded to the
nearest which is the default mode of rounding in computers.

A property of the round-off function fl is given in Equation (1). It charac-
terizes the overflow, i.e. the rounding result is greater than the biggest element
of F and the case of the generation of 0. This definition only uses positive num-
bers, using the symmetry property of F, we can easily deduce the definition for

3 Tt also defines this arithmetic in base 10 but it is not relevant for our purpose.

4 NaN stands for Not A Number.

® The IEEE754-2008 standard introduces two rounding modes to the nearest with re-
spect to the previous IEEE754-1985 and IEEET754-1987 standards. These two modes
only differ when an exact result is in half-way of two floating-point numbers. In
rounding-to-nearest-tie-to-even mode, the floating-point number whose the least sig-
nificand bit is even is chosen. Note that this definition is used in all the other revisions
of the IEEE754 standard, see [28, Chap. 3.4] for more details.

4 Alexandre Chapoutot

the negative part. We denote by o = 2émin—P+1 the smallest positive subnormal
number and the largest finite floating-point number by ¥ = (2 — 217P)2¢max,

Ve eF,z >0, (1)

(e = {+0 if0<o <0/
+oo ifzx>X

An underflow [28, Sect. 2.3] is detected when the rounding result is less than
2¢min 4 e, the result is in the subnormal range.

The errors associated to a correct rounding is defined in Equation (2) and
it is valid for all floating-point numbers = and y except —oo and +oo (see [28,
Chap. 2, Sect. 2.2]). We represent the relative rounding error unit by p. In
single precision, u = 2724 and ¢ = 27'*% and in double precision, ¢ = 27%3 and
o = 27107 The operation ¢ € {+, —, x, =}, and it is also valid for square root.

1
fl(zoy)=(zoy)(1+e€1)+e with |e1| < p and |ez| < 50 (2)

If £1(x o y) is in the normal range or if ¢ € {4, —} then e is equal to zero. If
f1(x o y) is in the subnormal range then €; is equal to zero.

Numerical instabilities in programs come from the rounding representation
of values and they also came from two problems due to finite precision:

Absorption If |z| < uly| then it happens that fl(z +y) = fi(y). For example, in
single precision, the result of fi(10* — 10=%) is fi(10%). In numerical analysis,
the solution avoid this phenomenon is to sort the sequence of numbers [17,
Chap. 4]. This solution is not applicable when the numbers to add are given
by a sensor measuring the physical environment.

Cancellation It appears in the subtraction fl(z — y) if (Jx — y|) < p(|z| + |y|)
then the relative errors can be arbitrary big. Indeed, the rounding errors take
usually place in the least significant digits of floating-point numbers. These
errors may become preponderant in the result of a subtraction when the most
significant digits of two closed numbers cancelled each others. In numerical
analysis, subtraction of numbers coming from long computations are avoided
to limit this phenomena. We cannot apply this solution in embedded control
systems where some results are used at different instants of time.

2.2 Interval Arithmetic

We introduce interval arithmetic and in particular, the interval expansion of
functions which is an element of our abstract domain FPS.

Standard Interval Arithmetic. The interval arithmetic [27] has been defined
to avoid the problem of approximated results coming from the floating-point
arithmetic. It had also been used as the first numerical abstract domain in [9].

When dealing with floating-point intervals the bounds have to be rounded
to outward as in [24, Sect. 3]. In Example 2, we give the result of the interval
evaluation in single precision of a sum of floating-point numbers.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 5

Ezample 2. Using the interval domain for floating-point arithmetic [24, Sect. 3]
the result of the sum defined by Zgl 10! + Zgl 10% + 2321 103 4 23:(10 1073
is [11100,11101.953]. The exact result is 11101 while the floating-point result is
11100 due to an absorption phenomena. The floating-point result and the exact

result are in the result interval but we cannot distinguish them any more.

A source of over-approximation is known in the interval arithmetic as the
dependency problem which is also known in static analysis as the non-relational
aspect. For example, if some variable has value [a, b], then the result of z — x is
[a — b,b — a] which is equal to zero only if a = b. This problem is addressed by
considering interval expansions of functions.

Notations. We denote by = a real number and by @ a vector of real numbers.
Interval values are noted with capital letters X or with the notation [a, b] where
a is the lower bound and b is the upper bound of the interval. A vector of
interval values will be denoted by X. We denote by [f] the interval extension
of a function f obtained by substitution of all the arithmetic operations with
their equivalent in interval. The center of an interval [a,b] is represented by
mid([a,b]) = a+ 0.5 x (b— a).

Extended Interval Arithmetic. We are interested in the computation of
the image of a vector of interval X by a non-linear function f : IR" — IR only
composed by additions, multiplications and divisions and square root. In order to
reduce over-approximations in the interval arithmetic, some interval expansions
have been developed. The first one is based on the Mean-Value Theorem and it
is expressed as:
f(X) Cflz) +[f](X)(X—2) VzeX . (3)

The first-order approximation of the range of a function f can be defined thanks
to its first order derivative f' over X. We can then approximate f(X) by a pair
(f(2), [f'](X)) that are the value of f at point z and the interval extension of f’
evaluated over X.

A second interval expansion has been defined by Krawczyk and Neumaier [20]
using the notion of slopes which reduced the approximation of the derivative
form. It is defined by the relation:

f(X) Cf(z) + FI(X)(X - 2)

with F*(X) = { @)

f(z) — f(2)

r—z

::ceX/\z;ém}

Then we can represent f(X) by a pair (f(z), [F?](X)) that are the value of f in
the point z and the interval extension of the slope F#(X) of f.

Note that the value z is constructed, in general, from the centers of the
interval variables appearing in the function f for both both interval expansions.

An interesting feature is that we can inductively compute the derivative
or the slope of a functions using automatic differentiation techniques [1]. Tt is
a semantic-based method to compute derivatives. In this context, we call in-
dependent variables some input variables of a program with respect to which

6 Alexandre Chapoutot

derivatives are computed. We call dependent variables output variables whose
derivatives are desired. A derivative object represents derivative information,
such as a vector of partial derivatives like (de/0z1, ..., de/0x,) of some expres-
sion e with respect to a vector x of independent variables. The main idea of
automatic differentiation is that every complicated function f, i.e. a program, is
composed by simplest elements, i.e. program instructions. Knowing the deriva-
tives of these elements with respect to some independent variables, we can com-
pute the derivatives or the slopes of f following the differential calculus rules.
Furthermore, using interval arithmetic in the differential calculus rules, we can
guarantee the result.

We give in Table 1 the rules to compute derivatives or slopes with respect
to the structure of arithmetic expressions. We assume that we know the number
of independent variables in the programs and we denote by n this number. The
variable V" represents the vector of independent variables with respect to which
the derivatives are computed. We denote by ¢; the interval vector of length n,
having all its coordinates equal to [0, 0] except the ith element equals to [1, 1]. So,
we consider that all the independent variables are assigned to a unique position %
in V"d and it is initially assigned with a derivative object equal to §;. Following
Table 1 where g and h represent variables with derivative object, a constant
value ¢ has a derivative object equal to zero (the interval vector 0 has all its
coordinates equal to [0,0]). For addition and subtraction, the result is the vector
addition or the vector subtraction of the derivative objects. For multiplication
and division, it is more complicated but the rules come from the standard rules
of the composition of derivatives, e.g. (u X v)) =’ X v+ u X v’. A proof of the
computation rules® for slopes can be found in [20, Sect. 2]. Note also that we
can apply automatic differentiation for other functions, such as the square root,
using the rule of function composition, (f o g)' () = f'(g(z))g (x).

These interval expansions of functions, using either (f(z), [f'](X)) the deriva-
tive form or (f(2), [£%](X)) the slope form, define a straightforward semantics of
arithmetic expressions which can be used to compute bounds of variables.

Table 1. Automatic differentiation rules for derivatives and slopes

Function Derivative arithmetic Slope arithmetic
celR 0 0
g+h [g'](X) + [h'](X) [6*](X) + [H*](X)
g—h [g'](X) — [h](X) 6*)(X) — [H*](X)
gxh [g(X)xh(X)+g(X)x [W](X) [6*](X) x h(X) +g(z) x [H](X)
g [g)(X) x h(X) — [W](X) x g(X) [67)(X) — [B°](X) x &)
" h[2]}(()) [;])(())
1[g(X G*l(X
vE 2 /e X) AOESV/IES

5 In [20, Sect. 2], the authors went also into detail of the complexity of these operations.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 7

Remark 1. The difference in over-approximated result between the derivative
form and the slope form resides in the multiplication and the division. In the
derivative form, we need to evaluate the two operands (g and h) using interval
arithmetic while we only need to evaluate one of them in the slope form. Remark
also that we could have defined the multiplication by [H*](X) x g(X) + h(z) x
[G*](X) (the division has also two forms) but the two possible forms of slope are
over-approximations of f(X). Nevertheless, a possible way to choose between the
two forms is to keep the form which gives the smallest approximation of f(X).

MUY
8 /
//'\
-y = %
1 X
2
—1
(a) z € [-1,1/2] (b) z € [-1/2,1/2]

Fig. 1. Graphical examples of the interval expansion with slopes

In Figure 1, we give three graphical representations of the interval slopes.
For this purpose, we want to compute the image of x by the function f(z) =
x(1—x)+1 for different intervals. We consider in Figure 1(a) that z € [—1,0.5]
and we get as a result that f(z) € [—1,19/8] which is an over-approximation
of the exact result [—1,1.25]. The mid-point is —1/4 and the set of slopes is
bounded by the interval [0,9/4]. The dashed lines represent the linear approxi-
mation of the image. In Figure 1(b), we consider that z € [—1/2,1/2] and the
result is f(z) € [1/4,7/4] which is still an over-approximation of the exact result
[1/4,1.25]. In that case, the mid-point is 0 and the set of slopes is bounded by
the interval [0, 3/2]. We can see that the smaller the interval the better the linear
approximation is.

Example 3 shows that we can encode with interval slopes the list of variables
contributing in the result of an arithmetic expression. In particular, the vector
composing the interval slope of the variable ¢ represents the influence of the
variables a, b and ¢ on the value of t. For example, we know that a modification
of the value of the variable a produce a modification of the result with the same
order of the modification on a because the slope associated to a is [1,1]. But
a modification on the variable b by A will produce a modification on the ¢ by
Ay x V. because the slope of b is equal to V..

8 Alexandre Chapoutot

Ezample 3. Let t = a+ b x ¢, we want to compute the interval slope [T?](X) of
t. We consider that V" = {a, b, ¢} and X is the interval vector of the values of
these variables. We suppose that the interval slope expansion of a, b and c are
(za, [AZ](X) = 01), (2, [B*](X) = d2), and (2, [C*](X) = d3) respectively. The
interval value associated to cis V. i.e. V. = 2z, + [C*](X)(X — 2).

[T*](X) = [A%](X) + 2[C7](X) + [B*)(X) (2 + [CT](X)(X = 2))
= ([1,1],0,0) + 2 x (0,0, [1,1]) + (0,[1,1],0) x V.
= ([1,1),[1,1] X Ve, 2 x [1,1])
= (1,1, Ve, [z, 2])

As seen in Example 3, interval slopes represent relations between the inputs
and the outputs of a function. Hence by computing interval slopes, we build
step by step the set of variables related to arithmetic expressions in programs.
In static analysis, we can use this interval expansion to track the influence of
the inputs of a program on its outputs. Hence, the choice of the set Vird of
independent variables is given by the set of the input variables of the program
to analyse. Moreover, we can add in V" all the other variables which may
influence output.

3 Floating-Point Slopes

We present in this section our new abstract domain FPS. In Section 3.1, we
adapt the computation rules of interval slopes to take into account floating-point
arithmetic. Next in Section 3.2, we define an abstract semantics of arithmetic
expressions over FPS values taking into account the behaviors of floating-point
arithmetic. And in Section 3.3, we define the lattice structure of the FPS domain.

3.1 Floating-Point Version of Interval Slopes

The definition of interval slope expansion in Section 2.2 manipulates real num-
bers. In case of floating-point numbers, we have to take into account the round-off
function and the rounding-errors.

We show in Proposition 1 that the range of a non-linear function f of floating-
point numbers can be soundly over-approximated by a floating-point slope. The
function f must respect the correct rounding, i.e. the property of Equation (2)
holds. In other words, the result of an operation over set of floating-point num-
bers is over-approximated by the result of the same operation over floating-point
slopes by adding a small quantity depending on the relative rounding error unit
1 and the absolute error o.

Remark 2. As the floating-point version of slopes is based on p and o, we can
represent the floating-point behaviors depending of the hardware. For example
extended precision” is represented using the values p = 27 and ¢ = 2716446,

" In some hardware, e.g. Intel x87, floating-point numbers may be encoded with 80
bits in registers, i.e. the significand is 64 bits long.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 9

Furthermore following [2], we can compute the result of a double rounding® with
p= (21 +2)27% and o = (2! 4 1)271086,

Proposition 1. Let f : D C IR™ — IR be an arithmetic operation of the form
g o h with g and h two variables and o € {+,—, x,+} or NE i.e. T respects the

correct rounding. For oll X C D and z € D, we have:

A(F(X)) € F(2) (1 + (=, pl) + [= 3, 2] + FEIOX = 2) (1 + [,) -

Proof.
1(f(X)) = {f(x)(1 +) + & : @ € X} by Eq. (2)
CIX)+f(X){ex:x € X} + {6z : x € X}
((z +[F]()(sz))+{§z:m€X} by Eq. (4)

)

+ (f(z) + X)(X - 2)){ex : x € X}
)(1—|—{5$ mEX})—i—{ax z € X}
+[Fz]()X —2)(1+ {ec s x € X})

Cf(2) (1 + [~) + [—% %] lez| < 1 by Eq. (2)
+) (X)(X — 2) (1 + [~ 1) el < 5o by Fa. (2)

0O

Proposition 1 shows that we can compute the floating-point range of a func-
tion f, respecting the correct rounding, using interval slopes expansion. That is
a set of floating-point values can is represented by a pair:

(1 @+) + =5, 7] FIUE) L+)

The first element is a small interval rounding to the nearest around f(z) for
which we have to take into account the possible rounding errors. The second
element is the interval slopes which have to take account of relative errors. Note
that this adaptation adds a very little overhead of computations in regards to
the definition of interval slopes by Krawczyk and Neumaier.

3.2 Semantics of Arithmetic Operations

In this section, we define the abstract semantics of arithmetic operations over
elements of floating-point slopes domain in order to mimic the behaviors of the
floating-point arithmetic. We denote by I the set of intervals and by S = I x V™
the set of slopes. An element s of S is represented by a pair (M, S) where M is
a floating-point interval and S is a vector of floating-point intervals. We denote
by (I,Cy, Ly, Ty, Ur, M) the lattice of intervals. First we define some auxiliary
functions before presenting the semantics of arithmetic expressions over FPS.

8 It may happen on hardware using extended precision. Results of computations are
rounded in registers and then with a less precision in memory.

10 Alexandre Chapoutot

The function ¢ defined in Equation (5) computes the interval value associ-
ated to a floating-point slopes (M, S). We assume that the values of independent
variables are kept in a separate interval vector Vyna. The notation mid(Vyina)
stands for the component-wise application of the function mid on all the com-
ponents of the vector Vy,na. Note that - represents the scalar product.

(M, 8)) =M+ S - (Vyina — mid(Vyina)) (5)

The function & defined in Equation (6) transforms an interval value [a, b]* asso-
ciated to the /th independent variable into a floating-point slope.

K ([a,b}f) = (mid([a, b)), mid([a, b))}, &¢) (6)

This function is used in two cases: i) To initialize all the independent variables
at the beginning of an analysis. i) In the meet operation, see Section 3.3.

We can detect overflows and generations of zero by using the function @
defined in Equation (7). We have two kinds or rules: the total rule when we are
certain that a zero or an overflow occur and the partial rule when a part of the
set described by a floating-point slope generates a zero or an overflow. With the
function ¢ we can determine for an element (M,S) € S if (M, S) represents an
overflow or a zero. Hence we represent the finite precision of the floating-point
arithmetic. We denote by p,, and by m., the interval vectors with all their
components equal to [+o0o, +00] and [—o0, —oo] respectively. We recall that o is
the smallest denormalized and X is the largest floating-point numbers.

(0,0) if «(M,S) Cr [~%, 5]
(M, 0 Uy S) if o((M,S) M] — %, 5[# L
andM:{O M L] =351
[0,0] Ty M otherwise
(400, Po) if o(M,S) Gy |X, 400]
(M,p, Uy S) if o(M,S) My | ¥, +00] # Ly
(M, S) = and N — 400 if M Cp | X, 4o00] (7)

[+00,4+00] i M otherwise
(—o0, mes) if o(M, S) Cy [—o0, =X
(M, mo Uy S) if (M, S) My [—o0, = X[# Ly
—00 iftM Cp [—oo,—X]

[-00, —00] Th M otherwise

and M =

(M, S) otherwise

Equation (7) is an adaptation to deal with FPS values of the rule defined in Equa-
tion (1). Furthermore, the abstract values (4+00, pso) and (—o0, my,) represent
the special floating-point values +00 and —oo respectively. As in floating-point
arithmetic, the values (+00, poo) and (—oo, m,) are absorbent.

An interesting feature of interval slopes is that we can mimic the absorption
phenomena by setting to zero the interval slope of the absorbed operand. We
define the function p for this purpose. Indeed, an abstract value (M, S) already
supports partial absorption as M is computed with a rounding to the nearest
but S have to be reduced to represent the absence of the influence of a particular

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 11

independent variable. The reduction of an abstract value g = (Mg, S,) in regards
to the abstract value h = (M, Sp,), which is denoted by p(g | h), is defined in
Equation (8).

(070) if L(M.LN Sg) Lo [N? /’L] X L(Mha Sh)
(Mg,O UH Sg) if L(l\/[g7 Sg) My [p,, ,u] X L(M}“Sh) 75 15
plg | h)= and N, — 0 if Mg Cr [w, p] x ¢(Mn, Sh)

[0,0] Ty My otherwise
(Mg, Sy) otherwise

(8)
Equation (8) models the absorption phenomena by explicitly setting to zero the
values of a slope. As mentioned in Section 2.2, a slope shows which variables
influence the computation of an arithmetic expression. An absorption phenom-
ena induces that an operand does not influence the result of an addition or a
subtraction any more.

Using the functions @, p and ¢, we 1nduct1ve1y define on the structure of arith-
metic expressions the abstract semantics [.]]S of floating-point slopes in Figure 2.
We denote by envf an abstract environment which associates to each program
variable a floating-point slope. For each arithmetic operation, we component-
wisely combine the elements of the abstract operands [[g]]g (env?) = (M,,S,) and

[[h]]é (env?) = (My, Sy). The element M is obtained using the interval arithmetic
with rounding to the nearest. The element S is computed using the definition of
the slope arithmetic defined in Table 1. Note that we also define the semantics of
the square root operation. We take into account of the possible rounding errors
in the result (M, S) following Proposition 1. In case of addition and subtrac-
tion, according to the Equation (2), we do not consider absolute error § which
is always zero. Moreover, in case of addition or subtraction, we handle the ab-
sorption phenomena using the function p, defined in Equation (8). Finally, we
check if a zero or an overflow is generated by applying the function @ defined in

Equation (7). Note that +/[a,b] = [\/a, V] if a > 0.

Remark 3. The functions @ and p make the arithmetic operations on floating-
point slopes non associative and non distributive as in floating-point arithmetic.

3.3 Lattice Structure

In this section, we define the lattice structure of the set of floating-point slopes.
In particular, this structure is based on the complete lattice of intervals. We

recall that S =1 x V"™ the set of slopes and an element s of S is a pair (M, S).

We define a partial order, the join and the meet operations between elements
of S. All these operations are defined as a component-wise application of the
associated operations of the interval domain except the meet operation which
needs extra care. We denote by Cj the component-wise application of the interval
order. We can define a partial order Cs between elements of S with:

V(Mgvsg)a(thsh) € §, (Mgasg) Cs (Miush) < My Cp Mp A Sy ;]I Sy, . (9)

12 Alexandre Chapoutot

o + Y (0%) = @ (S, £ N0)(1+ [~), (8, £80) L+ [—p, 1))
with (My,8,) = plg | h) and (Nn,84) = p(h | g)
[g x hl% (0") = & (M, (Sg x ¢(Mn,Sn) + Mg x Sp) (1 + [—u, 1))
with M= (Mg x Mp)(1 + [—p, u]) + [% %]
S¢ — Shag?
HZWM%=¢<M7MWJ;;G+%me
. My o o
with M = 522 (14 [~) + 5. 5]
0 € L(Mh, Sh) and 0 ¢ Mh

t ooty — Sg _
AR = (M’ (wnm m) (+l ’“"“D>
with M= (VM) (1 + [~ n]) + [~ 2,],
Mg Mp [—00,0] = Ly and ¢«(Mg, Sy) M [—00,0] = L1

Fig. 2. Abstract semantics of arithmetic expressions on floating-point slopes

The join operation Ls over floating-point slopes is defined in Equation (10).
We denote by U the component-wise application of the operation L.

V(Mg, Sg), (Mp,Sr) €S, (Mg, Sg) Us (Mh,Sh) = (NI7 S)
with M = Mg LM, and S = Sg IJH Su (10)

There is no direct way to define the greatest lower bound of two elements
of S. Indeed, two abstract values may represents the same concrete value but
without being comparable. The meet operation Mg over floating-point slopes is
defined in Equation (11). It based on the interval My but it requires conversions
into interval values. In consequence, in this case we consider that the result of
the meet operation introduces a new independent variable at index £. We denote
by 1 the strict comparison of intervals and by Lg the least element of S.

V(Mg, Sg), (1\/[;17 Sh) €S, (Mg, Sg) Mg (Mh,Sh) =

1s if L(Mg,sg) MM L(Mh,sh) =1
(Mg7sg) if L(Mgvsg) Cr L(Mhdsh) (11)
(Mh,Sh) if L(Mh,sh) Cr L(Mg,sg)

#(e(Mn, Sn) T t(Mg, Sy)) otherwise

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 13

Note on the Widening Operator. In order to enforce the convergence of the
fixpoint computation, we can define a widening operation Vg over floating-point
slopes values. An advantage of our domain is that we can straightforwardly use
the widening operations defined for the interval domain denoted by Vj. We define
the operator Vg in Equation (12) using the widening operator between intervals.
The notation Vj represents the component-wise application of Vy between the
components of the interval slopes vector.

V(Mgvsg)a(thsh) S Sv (Mmsg)vS(Mh:Sh) = (M,S)
with M =M, Vi M, and S=8,ViS, (12)

4 Analysis of Floating-Point Programs

The goal of the static analysis of floating-point programs using the floating-
point slopes domain is to give for each control point and for each variable an
over-approximation given by FPS of the reachable set of floating-point numbers.
An abstract environment env? associates to each variable v € V a value of S.
The set V is composed by the sets V"4 and V4P of independent and dependent
variables.

The semantics of an assignment [v := eﬂﬁ in the abstract environment env?
is the update of the value associated to v with the result of the evaluation of
the arithmetic expression e using the arithmetic operations over FPS given in
Figure 2. As the FPS domain is related to the interval domain we can straight-
forwardly use the semantics of tests given in [15] to refine the value of variables.
Note that the semantics of tests is related to the meet operation defined in
Equation (11) which may conserve some relations between variables.

We define in Equation (13) the concretization function ys between the com-
plete lattice (p(V — F), C) and the lattice of (V — S, Cg) with Cg the point-wise
lifting comparison.

Ys(v—= (M,8)) ={v—iel:((M,S)) =1} (13)

Using the ~ function we can state with Theorem 1 the soundness of the floating-
point analysis using FPS domain in regards to the concrete floating-point seman-
tics. The later is based on the concrete semantics of floating-point expressions
[e]l, see [24] for its definition.

Theorem 1. If the set of concrete environments env is contained in the ab-
stract environment env® then we have for all instruction i representing either an
assignment or a test:

[il(env) € s ([i]F (ensf))

5 Case Studies

In this section, we present experimental results of the static analysis of numeri-
cal programs using our floating-point slope domain. We based our examples on

14 Alexandre Chapoutot

Matlab/Simulink models which are block-diagrams. We present as examples a
second order linear filter and the computation of a square root with a Newton
method.

We first give a quick view of Matlab/Simulink models. In a block-diagram,
each node represents an operation and each wire represents a value evolving
during time. We consider a few operations such that arithmetic operations, gain
operation that is multiplication by a constant, conditional statement (called
switch® in Simulink), and unit delay block represented by % which acts as a
memory. We can hence write discrete-time models thanks to finite difference
equations, see [3] for further details.

The semantics of Simulink models is based on finite-time execution. In other
words, a Simulink model is implicitly embedded in a simulation loop modelling
the temporal evolution starting from ¢t = 0 to a given final time tenq. The body
of this loop follows three steps: i) evaluating the inputs, #) computing the out-
puts, i) updating the state variables i.e. values of the unit delay blocks. The
static analysis of Simulink models transforms the simulation loop into a fixpoint
computation. In its simple form see [3] for further details, we add an extra time
instant to collect all the behaviors from t¢nq to t = +00.

Linear Filter. We applied the floating-point slope domain on a second order
linear filter. It is defined by the following recurrence equation:

Yn = Tn + 0~7xn71 + Tn—2 + 1-21}7171 - O~7yn72 .

The block-diagrams of this filter is given in Figure 3(a). We consider a simulation
time of 25 seconds that is we unfold the simulation loop 25 times before making
unions. The input belongs into the interval [0.71,1.35]. The output of the filter is
given in Figure 3(b). We consider, in this example, that V"4 contains the input
and the four unit delay blocks that is there are five independent variables. The
gray area represents all the possible trajectories of the output corresponding of
the set of inputs. Hence we can bound the output by the interval [0.7099, 9.8269).

Newton Method. We applied our domain on a Newton algorithm which com-
putes the square root. The square root of a number a is computed using the
iterative sequence defined by:
Tn a
Tnitl = 7 + m .

We want to compute x5 that is we consider the result of the Newton method after
five iterations. The Simulink model is given in Figure 4(a) and in Figure 4(b),
we give the model associated to one iteration of the algorithm. In this case, the
set V" is only made of one element.

For the interval input [4,8] with the initial value equals to 2, we have the
result [1.8547,3.0442].

9 This operation is equivalent to the conditional expression: if pe(eo) then e else ea.
The predicate p. compares ep and a given constant ¢ with a comparison operation
among {§7 >7 :}

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 15

Int

z z
Gain1 Unit Delay2 Unit Delay3

(a) Simulink model (b) Temporal evolution of the output

Fig. 3. Second order linear filter

Subsystem4

Subsystem3
Subsystem2

Subsystem1
Subsystem Gain

(a) Main model (b) Content of a subsystem

Fig. 4. Simulink model of the square root computation

6 Related Work

Numerical domains have been intensively studied. A large part of numerical
domains concern the polyhedral representation of sets. For example, we have
the domain of polyhedron [10] and the variants [31, 25, 30, 29, 8,22, 21,6, 7]. We
also have the numerical domains based on affine relations between variables
[19,12] or the domain of linear congruences [16]. In general, all these domains
are based on arithmetic with "good” properties such that rational numbers or
real numbers. A notable exception is the floating-point versions of the octagon
domain [24] and of the domain of polyhedron [5]. These domains give a sound
over-approximation of the floating-point behaviors but they are not empowered
to model the behaviors of floating-point arithmetic as we do.

Our FPS domain is more general than numerical abstract domains made for
a special purpose. For example, we have the domain for linear filters [11] or for
the numerical precision [14] which provide excellent results. Nevertheless as we
showed in Section 5, we can apply this domain in various situations without
losing too much precision.

7 Conclusion

We have presented a new partially relational abstract numerical domain called
FPS dedicated to floating-point variables. It is based on Krawczyk and Neu-

16 Alexandre Chapoutot

maier’s work [20] on interval expansion of rational function using interval slopes.
This domain is able to mimic the behaviors of the floating-point arithmetic such
that the absorption phenomena. We have also presented experimental results
showing the practical use of this domain in various contexts.

We want to pursue the work on the FPS domain by refining the the meet
operation in order to keep relations between variables. Moreover we would like
to model more closely the behaviors of floating point arithmetic, for example by
taking into account the hardware instructions [26, Sect. 3.

As an other future work, we want to apply FPS domain for the analyses of
the numerical precision by combining the FPS domain and domains defined in
[23,4]. An interesting direction should be to make an analysis of the numerical
precision by comparing results of the FPS domain and results coming from the
other numerical domain which bound the exact mathematical behaviors such
that [5]. We can hence avoid to manipulate complex abstract values to represent
rounding errors such as in [23,14, 4].

Acknowledgements. The author deeply thanks O. Bouissou, S. Graillat, T. Hi-
laire, D. Massé and M. Martel for their useful comments on the earlier versions of
this paper. He is also very grateful to anonymous referees who helped improving
this work.

References

1. Bischof, C.H., Hovland, P.D., Norris, B.: Implementation of automatic differentia-
tion tools. In: Partial Evaluation and Semantics-Based Program Manipulation. pp.
98-107. ACM (2002)

2. Boldo, S., Nguyen, T.: Hardware-independant proofs of numerical programs. In:
NASA Formal Methods Symposium (2010)

3. Chapoutot, A., Martel, M.: Abstract simulation: a static analysis of Simulink mod-
els. In: International Conference on Embedded Systems and Software. pp. 83-92.
IEEE Press (2009)

4. Chapoutot, A., Martel, M.: Automatic differentiation and Taylor forms in static
analysis of numerical programs. Technique et Science Informatiques 28(4), 503-531
(2009), in French

5. Chen, L., Miné, A., Patrick, C.: A sound floating-point polyhedra abstract domain.
In: Asian Symposium on Programming Languages and Systems. LNCS, vol. 5356,
pp. 3-18. Springer (2008)

6. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: an abstract domain
to infer interval linear relationships. In: Static Analysis Symposium. LNCS, vol.
5673, pp. 309-325. Springer (2009)

7. Chen, L., Miné, A., Wang, J., Cousot, P.: An abstract domain to discover interval
linear equalities. In: Verification, Model Checking, and Abstract Interpretation.
LNCS, vol. 5944, pp. 112-128. Springer (2010)

8. Clarisé, R., Cortadella, J.: The Octahedron abstract domain. Science Computer
Programming 64(1), 115-139 (2007)

9. Cousot, P., Cousot, R.: Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages. pp. 238-252. ACM (1977)

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages. pp. 84-97. ACM (1978)
Férét, J.: Static analysis of digital filter. In: European Symposium on Program-
ming. LNCS, vol. 2986, pp. 33-48. Springer (2004)

Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylorl+.
In: Computer Aided Verification. pp. 627-633 (2009)

Goubault, E.: Static analyses of floating-point operations. In: Static Analysis Sym-
posium. LNCS, vol. 2126, pp. 234-259. Springer (2001)

Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Static Analysis
Symposium. LNCS, vol. 4134, pp. 18-34. Springer (2006)

Granger, P.: Improving the results of static analyses programs by local decreas-
ing iteration. In: Foundations of Software Technology and Theoretical Computer
Science. LNCS, vol. 652, pp. 68-79. Springer (1992)

Granger, P.: Static analysis of linear congruence equalities among variables of a
program. In: TAPSOFT Vol.1. LNCS, vol. 493, pp. 169-192. Springer (1991)
Higham, N.: Accuracy and stability of numerical algorithms. Society for Industrial
and Applied Mathematics, 2nd edn. (2002)

IEEE Task P754: IEEE 754-2008, Standard for Floating-Point Arithmetic. Insti-
tute of Electrical, and Electronic Engineers (2008)

Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,
133-151 (1976)

Krawczyk, R., Neumaier, A.: Interval slopes for rational functions and associated
centered forms. STAM Journal on Numerical Analysis 22(3), 604-616 (1985)
Laviron, V., Logozzo, F.: Subpolyhedra: a (more) scalable approach to infer linear
inequalities. In: Verification, Model Checking, and Abstract Interpretation. LNCS,
vol. 5403, pp. 229-244 (2009)

Logozzo, F., Fahndrich, M.: Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. In: Symposium on Applied Computing.
pp. 184-188. ACM (2008)

Martel, M.: Semantics of roundoff error propagation in finite precision computa-
tions. Higher Order and Symbolic Computation 19(1), 7-30 (2004)

Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: European Symposium on Programming. LNCS, vol. 2986, pp. 3—17.
Springer (2004)

Miné, A.: The Octagon abstract domain. Journal of Higher-Order and Symbolic
Computation 19(1), 31-100 (2006)

Monniaux, D.: Compositional analysis of floating-point linear numerical filters. In:
Computer-Aided Verification. LNCS, vol. 3576, pp. 199-212. Springer (2005)
Moore, R.: Interval analysis. Prentice Hall (1966)

Muller, J.M., Brisebarre, N., De Dinechin, F., Jeannerod, C.P., Lefevre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of floating-point arith-
metic. Birkhauser Boston (2009)

Péron, M., Halbwachs, N.: An abstract domain extending difference-bound ma-
trices with disequality constraints. In: Verification, Model Checking and Abstract
Interpretation. LNCS, vol. 4349, pp. 268-282. Springer (2007)

Sankaranarayanan, S., Colon, M., Sipma, H., Manna, Z.: Efficient strongly rela-
tional polyhedral analysis. In: Verification, Model Checking, and Abstract Inter-
pretation. LNCS, vol. 3855, pp. 111-125. Springer Verlag (2006)

Simon, A., King, A., Howe, J.: Two variables per linear inequality as an abstract
domain. In: Logic Based Program Synthesis and Transformation. LNCS, vol. 2664,
pp. 71-89 (2003)

