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Abstract. Modern control-command systems often include controllers
that perform nonlinear computations to control a physical system, which
can typically be described by an hybrid automaton containing high-
dimensional systems of nonlinear differential equations. To prove safety of
such systems, one must compute all the reachable sets from a given initial
position, which might be uncertain (its value is not precisely known). On
linear hybrid systems, efficient and precise techniques exist, but they fail
to handle nonlinear flows or jump conditions. In this article, we present
a new tool name HySon which computes the flowpipes of both linear and
nonlinear hybrid systems using guaranteed generalization of classical effi-
cient numerical simulation methods, including with variable integration
step-size. In particular, we present an algorithm for detecting discrete
events based on guaranteed interpolation polynomials that turns out to
be both precise and efficient. Illustrations of the techniques developed in
this article are given on representative examples.

1 Introduction

Modern control-command software for industrial systems are becoming more
and more complex to design. On the one side, the description of the physical
system that must be controlled, a power plant for instance, is frequently done
using partial differential equations or nonlinear ordinary differential equations,
whose number can grow very fast when one tries to have a precise model. On
the other side, the complexity of the controller also increases when one wants
it to be precise and efficient. In particular, adaptive controllers (which embed
information on the plant dynamics) are more and more used: for such systems,
the controller may need to compute approximations of the plant evolution using
a look-up table or a simple approximation scheme as in [6]. As an extreme
example, consider a controller for an air conditioning device in a car. In order
to correctly and pleasantly regulate the temperature in the car, the controller
takes information from the temperature of the engine but also from the outside
temperature and the sunshine on the car. Based on these data, it acts on a
cooling device, which is usually made of a hot and a cold fluid circuit, and is
thus described using usual equations in fluid dynamics, which are given by high
dimensional nonlinear differential equations.

In an industrial context, the design of such control-command systems is gen-
erally validated by performing numerical simulations of a high level description
of the system using a Simulink like formalism. Usually, some input scenarios are
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defined and numerical simulation tools are used to observe the reaction of the
system to these inputs and check that they are in accordance with the speci-
fications. This methodology is widespread, because the methods for numerical
simulation used nowadays are very powerful and efficient to approximate the
behavior of complex dynamical systems, and scale very well w.r.t. to both com-
plexity and dimension. Simulation algorithms are mainly based on two parts:
algorithms to compute approximations of the continuous evolutions of the sys-
tem [26], and algorithms to compute switching times [28]. Matlab/Simulink is
the de facto standard for the modeling and simulation of hybrid systems; we re-
call its basics principles in Section 2.2, and refer the reader to [2] for a complete
formalization of its numerical engine.

The main drawback of simulation is that it cannot give strong guarantees
on the behavior of a system, since it merely produces approximations of it for
a finite subset of the possible inputs. To overcome this problem, verification
techniques have been proposed on slightly different models of hybrid systems.
The most popular and used technique is bounded model checking of hybrid au-
tomata [18,19,14,13] that computes over-approximations of the set of reachable
states of a hybrid system over a finite horizon. To apply such techniques on
Simulink industrial systems, one must first translate it into the hybrid automata
formalism (for example using techniques from [1]), and then apply some sim-
plifications and linearizations to the model in order to obtain a linear hybrid
automaton for which the good techniques exist [14]. This process of lineariza-
tion can be performed automatically [7], but increase largely the number of
discrete states (exponentially w.r.t. dimension), so that we believe that it is not
applicable for large and highly nonlinear systems with stiff dynamics.

Contribution. In this article, we propose a new method to compute bounded
horizon over-approximations of the trajectories of hybrid systems. This method
improves our previous work [3] as it modifies numerical simulation algorithms
to make them compute guaranteed bounds of the trajectories. Our algorithm
is general enough to handle both nonlinear continuous dynamics and nonlin-
ear jump conditions (also named zero-crossing events in Simulink). In short,
our algorithm relies on two guaranteed methods: the continuous evolution is
over-approximated using guaranteed integration of differential equations, using
a generalization of [4], and the discrete jumps are solved using a new method
(presented in Section 3.3) that can be seen as a guaranteed version of the zero-
crossing algorithm of Simulink.

Related work. We already mentioned the work on reachability analysis in hybrid
automata, either for the linear case [22,14], or in the nonlinear case where a hy-
bridization is used to construct an over-approximated linear automata [7]. Our
approach is quite different as the algorithms we propose do not suppose anything
about the differential equations and the jump conditions except their continu-
ity w.r.t. state space variables. Previous works also used guaranteed numerical
methods for reachability analysis of hybrid systems [20,9]. These methods mainly
use intervals as representation of sets, such as in the library vnode [24], to com-
pute guaranteed bounds on the continuous trajectories, and interval methods or
a sat solver to safely over-approximate the discrete jumps. Our method uses a
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more expressive domain for representing sets (affine forms [16,3]) and polyno-
mial interpolation for discrete jumps, which offers an efficient bisection method.
Finally, the work closest to our is [27], in which a flowpipe for nonlinear hybrid
systems is computed using a Taylor model to enclose the continuous behavior,
and the discrete jumps are handled by doing the intersection of elements of the
Taylor model and polyhedric guards. Compared to our approach, this work only
allows for polynomial dynamics and polyhedral guards, while we have no such
restrictions (as exemplified in Section 5). Beside, as will be clear from our bench-
marks, the use of affine forms and numerical methods is generally more efficient
than Taylor models.

Outline of the paper. The rest of this article is organized as follows. In Section 2,
we present our formalism for hybrid systems and recall traditional method for
their numerical simulation. Then, in Section 3, we explain how we could turn
these methods into guaranteed methods that compute enclosures rather than
approximations. In Section 4, we present our main algorithm for computing safe
bounds on the trajectories of hybrid systems, and Section 5 presents some bench-
marks that include both nonlinear dynamics and nonlinear jump conditions.

2 Preliminaries

2.1 Hybrid Automata
In this article, in order to facilitate the understanding of our method, we consider
hybrid systems described as hybrid automata (ha). However, our tool HySon
uses a slightly different representation as in our previous work [2,3]. This state-
space representation, comparable to the one used in [15], can encode both ha
and Simulink models, as shown in [2]. We denote by IR the set of real numbers,
and by IB the set of booleans (containing two elements, > meaning true and ⊥
meaning false). Given a function x : IR → IRn, we denote by x−(t) its left-limit.
Definition 1 (Hybrid automaton, [18]). An n-dimensional hybrid automa-
ton H = (L,F,E,G,R) is a tuple such that L is a finite set of locations, the
function F : L → (IR × IRn → IRn) associates a flow equation to each location,
E ⊆ L × L is a finite set of edges, G : E → (IRn → IB) maps edges to guards and
R : E → (IR × IRn → IRn) maps edges to reset maps.
Notice that to simplify the presentation of our approach, we consider ha without
invariants in each location, we will discuss this point in the conclusion. Besides,
we assume that a transition e = (l, l′) is taken as soon as G(e) is true.
Example 1. We consider a modification of the classical bouncing-ball system that
we call the windy ball: the ball is falling but there is in addition an horizontal
wind which varies with time. So, the dynamics of the horizontal position x and
height y of the ball are given by

ẋ(t) = 10(1 + 1.5 sin(10t)) ẏ(t) = vy(t) v̇y(t) = −g

The ha thus has only one location l such that F (l) is the above flow. There is also
one edge e = (l, l) for when the ball bounces on the floor, with a guard G(e) = y ≤ 0
and a reset R(e) = (x, y, vy) 7→ (x, y,−0.8vy).



4 O. Bouissou, A. Chapoutot, and S. Mimram

The operational semantics [18] of an ha is a transition system with two kinds
of transitions for the time elapse and the discrete jumps. From this operational
semantics we can define the trajectories of the ha, as in [15].

Definition 2 (Trajectory of an hybrid automaton). Suppose fixed an ha
H = (L,F,E,G,R). A state of H is a couple (x, l) with x ∈ IRn and l ∈ L. A trajectory
of H, on the time interval [t0, tf ], starting from an initial state (x0, l0), is a pair
of functions (x, l) with x : [t0, tf ] → IRn and l : [t0, tf ] → L, such that there exists
time instants t0 ≤ t1 ≤ . . . ≤ tn = tf satisfying, for every index i,

1. x is continuous and l is constant on [ti, ti+1[,
2. x(0) = x0, l(0) = l0,
3. ∀t ∈ [ti, ti+1[, ẋ(t) = F (l(t))(t, x(t)),
4. ∀t ∈]ti, ti+1[, ∀e = (l(t), l′) ∈ E, G(e)(x(t)) = ⊥,
5. G(e)(x−(ti)) = > with e = (l−(ti), l(ti)) and x(ti) = R(e)(ti, x−(ti)).

In the above definition, the equations constraint the function x so that it con-
forms to the flow and jump conditions of H. Equation 2 ensures that x satisfies
the initial conditions, Eq. 3 specifies that the dynamics of x(t) is the flow at
location l(t), Eq. 4 and 5 ensure that the ti are the instants where jumping
conditions occur and that x evolves as described by reset maps when the cor-
responding guard is satisfied. Notice that we do not consider Zeno phenomena
here as we assume that there are finitely many jumps between t0 and tf . Also,
we do not discuss conditions ensuring existence and unicity of trajectories as
this is beyond the scope of this paper [17], but implicitly suppose that these are
granted. We suppose fixed initial and terminal simulation times t0 and tf . Given
an ha H and an initial state (x0, l0), we denote by ReachH(x0, l0) the continuous
trajectory on [t0, tf ] as defined above, and given X0 ⊆ IRn and L0 ⊆ L, we define
ReachH(S0, L0) =

⋃
x0∈X0,l0∈L0

ReachH(x0, l0).
Computing the set ReachH(X0, L0) for an ha H is sufficient in order to decide

the reachability of some region in the state space, and thus often to prove its
safety (for bounded time). As trajectories are in general not computable, over-
approximations must be performed: this is the goal of our algorithm presented in
Sections 3 and 4. In Section 2.2, we present numerical algorithms, used for exam-
ple by Simulink, that allow to compute approximations of the set ReachH(x0, l0)
for some initial state (x0, l0) ∈ IRn ×L. In Section 3 we present how we can adapt
these methods in order to be safe w.r.t. the exact trajectories of H.

2.2 Numerical Simulation

Numerical simulation aims at producing discrete approximations of the trajec-
tories of an hybrid system H on the time interval [t0, tf ]. We described in details
in [2] how the simulation engine of Simulink operates, and briefly adapt here
this simulation engine to ha.

Suppose that H is an ha, (x0, l0) an initial state, and (x(t), l(t)) a trajectory
of H starting from (x0, l0). A numerical simulation algorithm computes a se-
quence (tk, xk, lk)k∈[0,N ] of time instants, variables values and locations such that
∀k ∈ [0, N ], xk ≈ x(tk). Most of the difficulty lies in approximating the discrete
jumps (instants where a guard becomes true), which are called zero-crossings
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in the numerical simulation community. In order to compute (tk, xk, lk), the
following simulation loop is used, where hk is the simulation step-size (that
can be modified to a smaller value in order to maintain a good precision):
1: repeat
2: xk+1 ← SolveODE(F (l(tk), xk, hk) .Solver step 1
3: (xk+1, lk+1) ← SolveZC(xk, xk+1) .Solver step 2
4: compute hk+1
5: k ← k + 1
6: until tk ≥ tf
In this simulation loop, the solver first makes a continuous transition between
instants tk and tk+hk under the assumption that no jump occurs (solver step 1),
and then it verifies this assumption (solver step 2). If it turns out that there was
a jump between tk and tk + hk, the solver approximates as precisely as possible
the time t ∈ [tk, tk +hk] at which this jump occurred. We briefly detail both steps
in the rest of this section.

Solver step 1. The continuous evolution of x between tk and tk + hk is described
by ẋ(t) = F (l(tk))

(
t, x(t)

)
and x(tk) = xk. So, we want to compute an approximation

of the solution at tk + hk of the initial value problem (ivp), with f = F (l(tk)):

ẋ(t) = f(t, x(t)) x(tk) = xk (1)

(we assume classical hypotheses on f ensuring existence and uniqueness of a
solution of ivp). Usually, precise simulation algorithms often rely on a variable
step solver, for which (hk) is not constant. The simplest is probably the Bogacki-
Shampine method [26], also named ode23. It computes xk+1 by

k1 = f(tk, xk) k2 = f(tk +
hk

2
, xk +

hk

2
k1) k3 = f(tk +

3hk
4
, xk +

3hk
4
k2) (2a)

xk+1 = xk +
hk

9
(2k1 + 3k2 + 4k3) (2b)

k4 = f(tk + hk, xk+1) zk+1 = xk +
hk

24
(7k1 + 6k2 + 8k3 + 3k4) (2c)

The value zk+1 defined in (2c) is a third order approximation of x(tk+hk), whereas
xk+1 is a second order approximation of this value, and is used to estimate the
error err = |xk+1 − zk+1|. This error is compared to a given tolerance tol and the
step-size is changed accordingly: if the error is smaller then the step is validated
and the step-size increased in order to speed up computations (in ode23, next
step-size is computed with hk+1 = hk

3
√

tol/err), if the error is greater then the step
is rejected and the computation is tried again with the smaller step-size hk/2.
We refer to [17, p. 167] for a complete description on such numerical methods.

Solver step 2. Once xk and xk+1 computed, the solver checks if there were a jump
in the time interval [tk, tk+1]. In order to do so, it tests for each edge e starting
from lk whether G(e)(xk) is false and G(e)(xk+1) is true. If there is no such edge,
then it is considered that no jump occurred, we set lk+1 = lk and continue the
simulation. Notice this technique does not guarantee the detection of all events
occurring between [tk, tk+1] as explained in [28] or [11].
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If the solver finds such an edge, this means that there was a jump on [tk, tk+1]
and we must approximate the first time instant ξ ∈ [tk, tk+hk] such that G(e)(x(ξ))
is true. To do so, the solver encloses ξ in an interval [tl, tr] starting with tl = tk
and tr = tk+hk, and reduces this interval until the time precision |tl−tr| is smaller
than some parameter. To reduce the width of the interval, the solver first makes
a guess for ξ using a linear extrapolation and then computes an approximation of
x(ξ) using a polynomial interpolation of x on [tk, tk+hk]. Depending on G(e)(x(ξ)),
it then sets tl = ξ or tr = ξ and starts over. In the case of Hermite interpolation
(which is the method used together with the ode23 solver), the polynomial
interpolation is given, for t ∈ [tk, tk + hk], by

x(t) ≈ (2τ3 − 3τ2 + 1)xk + (τ3 − 2τ2 + τ)hkẋk + (−2τ3 + 3τ2)xk+1 + (τ3 − τ2)hkẋk+1 (3)

where τ = (t − tk)/hk, and ẋk, ẋk+1 are approximations of the derivative of x at
tk, tk+1. For more details on zero-crossing algorithms, we refer to [2,28].

Example 2. Consider the windy ball again (Example 1). The red curve below is
the result of the simulation for t ∈ [0, 13] using Simulink. In blue is the flowpipe
computed by HySon whose computation is going to be described in next sections.

y

z

3 Guaranteed Simulation Methods

The elaboration of our algorithm consisted essentially in adapting simulation
algorithms such as the one described in Section 2 in order to (i) compute with
sets of values instead of values, and (ii) ensure that the resulting algorithm is
guaranteed in the sense that the set x̂k of values computed for x at instant tk
always contains the value of the mathematical solution at instant tk. This means
that we have to take in account numerical errors due to the integration method
and the use of floats (see Section 3), and design an algorithm computing an
over-approximation of jump times (Section 4). In this section, we first briefly
present our encoding of sets using affine arithmetic (Section 3.1) and show how
explicit Runge-Kutta like numerical integration methods (Section 3.2) and the
polynomial interpolation (Section 3.3) can be turned into guaranteed algorithms.

3.1 Computing with Sets

The simplest and most common way to represent and manipulate sets of values
is interval arithmetic [23]. Nevertheless, this representation usually produces too
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much over-approximated results, because it cannot take dependencies between
variables in account: for instance, if x = [0, 1], then x − x = [−1, 1] 6= 0. More
generally, it can be shown for most integration schemes that the width of the
result can only grow if we interpret sets of values as intervals.

To avoid this problem we use an improvement over interval arithmetic named
affine arithmetic [12] which can track linear correlations between program vari-
ables. A set of values in this domain is represented by an affine form x̂ (also called
a zonotope), which is a formal expression of the form x̂ = α0 +

∑n

i=1 αiεi where
the coefficients αi are real numbers, α0 being called the center of the affine form,
and the εi are formal variables ranging over the interval [−1, 1]. Obviously, an
interval a = [a1, a2] can be seen as the affine form x̂ = α0 +α1ε with α0 = (a1 +a2)/2
and α1 = (a2 − a1)/2. Moreover, affine forms encode linear dependencies between
variables: if x ∈ [a1, a2] and y is such that y = 2x, then x will be represented by
the affine form x̂ above and y will be represented as ŷ = 2α0 + 2α1ε.

Usual operations on real numbers extend to affine arithmetic in the expected
way. For instance, if x̂ = α0 +

∑n

i=1 αiεi and ŷ = β0 +
∑n

i=1 βiεi, then with a, b, c ∈ IR
we have ax̂+bŷ+c = (aα0 +bβ0 +c)+

∑n

i=1(aαi+bβi)εi. However, unlike the addition,
most operations create new noise symbols. Multiplication for example is defined
by x̂× ŷ = α0α1 +

∑n

i=1(αiβ0 + α0βi)εi + νεn+1, where ν =
(∑n

i=1 |αi|
)
×
(∑n

i=1 |βi|
)

over-approximates the error between the linear approximation of multiplication
and multiplication itself. Other operations, like sin, exp, are evaluated using their
Taylor expansions. The set-based evaluation of an expression only consists in
interpreting all the mathematical operators (such as + or sin) by their counterpart
in affine arithmetic. We will denote by Aff(e) the evaluation of the expression e

using affine arithmetic, see [3] for practical implementation details.

3.2 Guaranteed Numerical Integration

Recall from Section 2 that a numerical integration method computes a sequence
of approximations (tn, xn) of the solution x(t;x0) of the ivp defined in (1) such
that xn ≈ x(tn;x0). Every numerical method member of the Runge-Kutta family
follows the condition order [17, Chap. II.2, Thm. 2.13]. This condition states
that a method is of order p if and only if the p + 1 first coefficients of the Tay-
lor expansion of the true solution and the Taylor expansion of the numerical
method are equal. The truncation error measures the distance between the true
solution and the numerical solution and it is defined by x(tn;x0)− xn. Using the
condition order, it can be shown that this truncation error is proportional to the
Lagrange remainders. We now briefly recall our approach to make any explicit
Runge-Kutta method guaranteed, which is based on this observation, see [5] for
a detailed presentation.

The general form of an explicit s-stage Runge-Kutta formula (using s evalu-
ations of f) is

xn+1 = xn + h

s∑
i=1

biki with ki = f

(
tn + cih, xn + h

i−1∑
j=1

aijkj

)
for 1 ≤ i ≤ s. The coefficients ci, aij and bi are usually summarized in a Butcher
table (see [17]) which fully characterizes a Runge-Kutta method. We denote by
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φ(t) = xn + ht
∑s

i=1 biki(t), where ki(t) is defined as previously with h replaced by
ht = t− tn. Hence the truncation error is defined by

x(tn;x0)− xn =
hp+1
n

(p+ 1)!

(
f (p) (ξ, x(ξ))−

dp+1φ

dtp+1 (η)
)

(4)

for some ξ ∈]tk, tk+1[ and η ∈]tn, tn+1[. In (4), f (p) stands for the p-th derivative of
function f w.r.t. time t, and hn = tn+1 − tn is the step size. In (4), the Lagrange
remainder of the exact solution is f (p) (ξ, x(ξ;x0)) and the Lagrange remainder of
the numerical solution is dp+1φ

dtp+1 (η).
The challenge to make Runge-Kutta integration schemes safe w.r.t. the exact

solution of ivp amounts to bounding the result of (4). The remainder dp+1φ
dtp+1 (η)

is straightforward to bound because the function φ only depends on the value of
the step size h, and so does its (p+ 1)-th derivative:

dp+1φ

dtp+1 (η) ∈ Aff
(

dp+1φ

dtp+1 ([tn, tn+1])
)

(5)

However, the expression f (p) (ξ, x(ξ;x0)) is not so easy to bound as it requires
to evaluate f for a particular value of the ivp solution x(ξ;x0) at a unknown time
ξ ∈]tn, tn+1[. The solution we used is similar to the one found in [24,4]: we first
compute an a priori enclosure of the ivp on the interval [tn, tn+1]. To do so, we
use the Banach fixed-point theorem on the Picard-Lindelöf operator P , defined
by P (x, tn, xn) = t 7→ xn +

∫ t
tn
f(s, x(s))ds. Notice that this operator is the integral

form of (1), so a fixpoint of this operator is also a solution of (1).
Now, to get an a priori enclosure of the solution over [tn, tn+1], we prove

that the operator P (which is an operator on functions) is contracting and
use Banach theorem to deduce that it has a fixpoint. To find the enclosure ẑ

on the solution, we thus iteratively solve using affine arithmetic the equation
P (ẑ, tn, xn)([tn, tn+1]) ⊆ ẑ. Then, we know that the set of functions [tn, tn+1] → ẑ

contains the solution of the ivp, so ẑ can be used an enclosure of the solution of
ivp over the time interval [tn, tn+1]. We can hence bound the Lagrange remainder
of the true solution with ẑ such that

f (p) (ξ, x(ξ;x0)) ∈ Aff
(
f (p) ([tn, tn+1], ẑ)

)
(6)

Finally, using (5) and (6) we can prove Theorem 1 and thus bound the
distance between the approximations point of any explicit Runge-Kutta method
and any solution of the ivp.

Theorem 1. Suppose that Φ is a numerical integration scheme and ΦAff is the
evaluation of Φ using affine arithmetic. Given a set S0 ⊆ IRn of initial states, and
an affine form x̂0 such that S0 ⊆ x̂0, let (tn, x̂n) be a sequence of time instants
and affine forms defined by x̂n+1 = x̂′n+1 + ên+1 where (tn+1, x̂′n+1) = ΦAff(tn, x̂n)
and ên+1 is the truncation error as defined by (4) and is evaluated using (5)
and (6). Then, for any x ∈ S0 and n ∈ IN we have x(tn;x) ∈ x̂n.
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3.3 Guaranteed Polynomial Interpolation

From two (guaranteed) solutions xn, xn+1 at times tn, tn+1 of an ivp, one would
like to deduce by interpolation all the solutions x(t) with t ∈ [tn, tn+1]. This ques-
tion has motivated a series of work on polynomial approximations of solutions,
a.k.a. continuous extension, see [17, Chap. 6]. We briefly recall the polynomial in-
terpolation method based on Hermite-Birkhoff which is the main method used for
continuous extension. Furthermore, we present a new extension of this method
allowing us to compute a guaranteed polynomial interpolation using the result
of the Picard-Lindelöf operator.

Suppose given a sequence (ti, x(k)
i ) of n + 1 computed values of the solution

of an ivp and its derivative at instants ti, with 0 ≤ i ≤ n and k = 0, 1. Remark
that these values are those produced by numerical integration methods. The
goal of Hermite-Birkhoff polynomial interpolation is to build a polynomial func-
tion p(t) =

∑n

i=0

(
xiAi(t) + x

(1)
i Bi(t)

)
of degree N = 2n + 1 from these values such

that Ai(t) =
(
1− 2(t− ti)`′i(ti)

)
`2i (t), Bi(t) = (t − ti)`2i (t), `i(t) =

∏n

j=0,j 6=i
t−tj
ti−tj

, and
`′i(ti) =

∑n

k=0,k 6=i
1

ti−tk
: the functions `i(t) are the Lagrange polynomials and this

interpolation generalizes the Lagrange interpolation. Under the assumption that
all the ti are distinct, we know that the polynomial interpolation is unique. For
instance, Eq. (3) is associated to the Hermite-Birkhoff polynomial with n = 1.
We know that interpolation error x(t;x0)−p(t) is defined by x(N+1)(ξ)

(N+1)!
∏n

i=0(t− ti)2

with ξ ∈ [t0, tn], which can be reformulated as

x(t;x0)− p(t) =
f (N)(ξ, x(ξ))

(N + 1)!

n∏
i=0

(t− ti)2 with ξ ∈ [tk, tk+1]

In consequence, to guarantee the polynomial interpolation, it is enough to know
an enclosure of the solution x(t) of ivp on the interval [tk, tk+1]. And fortunately,
we can reuse the result of the Picard-Lindelöf operator in that context. In next
section, this guaranteed polynomial interpolation will be used to approximate
the solution of an ivp in order to compute jump times.

Theorem 2. Let pAff(t) be the interpolation polynomial based on n+1 guaranteed
solutions x̂i of an ivp (1) and n+ 1 evaluations x̂(1)

i of f with affine arithmetic,
and let ẑ be the result of the Picard-Lindelöf operator. We have,

∀t ∈ [tk, tk+1], x(t) ∈ Aff

(
pAff(t) +

f (N)([tk, tk+1], ẑ)
(N + 1)!

n∏
i=0

(t− ti)2

)

4 Reachability Algorithm

We present in this section our main algorithm to compute an over-approximation
of the set of reachable states of linear or nonlinear hybrid systems (Algorithm 1),
which is based on the guaranteed numerical methods presented in Section 3. In
a nutshell, it works as follows. It produces a sequence of values (t̂n, x̂hn, x̂n, ln) such
that ln is the current location, t̂n is a time interval, x̂n is an over-approximation of
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Algorithm 1 Guaranteed simulation algorithm
Require: H = (L,F,E,G,R), a, hybrid automaton
Require: x̂0, l0, h0, tf .Initial state, step-size and final time
1: n ← 0
2: t̂n ← 0
3: while inf(t̂n) ≤ tf do
4: (x̂n+1, x̂hn) ← GSolveODE(F (ln), x̂n, hn)
5: (x̂n+1, t̂n+1, ln+1) ← GSolveZC(ln, x̂n, x̂n+1, x̂hn, t̂n, hn)
6: n ← n+ 1
7: end while

x(t) for every t ∈ t̂n, and x̂hn is an over-approximation of x(t) for every t ∈ [t̂n, t̂n+1],
i.e. an over-approximation of the trajectory between two discrete instants (here
[t̂n, t̂n+1] designates the convex hull of the union of the two affine forms t̂n and
t̂n+1). Our method uses the guaranteed ode solver described in Section 3.2 to
compute x̂n+1 and x̂hn, and the guaranteed polynomial interpolation of Section 3.3
to precisely and safely enclose the potential jumping times between tn and tn+1,
and thus refine tn+1 and x̂n+1.

Trivalent Logic. First, notice that since we are working with sets of values,
the evaluation of a boolean condition, such as x ≥ 0, is not necessarily false or
true, but can also be false for some elements and true for some other elements
in the set x̂ (for instance when x̂ = [−1, 1] in the preceding example). In order to
take this in account, boolean conditions are evaluated in the domain of trivalent
logic instead of usual booleans IB. This logic is the natural extension of boolean
algebra to the three following values: ⊥ (false), > (true) and ⊥> (unknown). We
denote this set by IB∗. Notice that a function g : IRn → IB naturally extends
to a function Aff(g) : P(IRn) → IB∗ using affine arithmetic and trivalent logic. In
particular, the guards of the discrete jumps will be evaluated in IB∗, which brings
subtleties in the zero-crossing detection algorithm (when such a guard evaluates
to ⊥>), as we will see in next section. In the following, we shall write g for Aff(g)
when it is clear from the context.

Main Algorithm. Let H be an ha as defined in Definition 1. Our method
computes a sequence of values (t̂n, x̂n, x̂hn, ln) such that ln is the current mode of
the ha, tn is a time interval and x̂n and x̂hn are affine forms such that we have

∀t ∈ t̂n x(t) ∈ x̂n ∀t ∈ [t̂n, t̂n+1], x(t) ∈ x̂hn

for all trajectories of H. To compute this sequence, we start from t̂0 = 0 and iterate
until the lower bound of t̂n (denoted inf(t̂n)) is lower than tf . The guaranteed sim-
ulation loop is given in Algorithm 1, where GSolveODE is the guaranteed solver of
ode presented in Section 3.2 and GSolveZC is the procedure described below. No-
tice that the function GSolveODE outputs both x̂n+1, the tight over-approximation
of x at t̂n + hn, and x̂hn, the result of Picard iteration (see Section 3.2) since we
reuse it in GSolveZC.

Detecting Jumps. We now present our algorithm (GSolveZC) for detecting and
handling discrete jumps. Let H = (L,F,E,G,R) be an ha, and let ln, x̂n, x̂n+1 and
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Case a

x

t
tn tn+1

Case b

x

t
tn tn+1

Case c

x

t
tn

tn+1

Fig. 1. Three cases for discrete transitions. Exact trajectories are depicted in dark gray,
the over-approximated flow pipes in light gray.

x̂hn be the states computed with GSolveODE. Let us denote l•n the set of all transi-
tions originating from ln, i.e. l•n = {e ∈ E | ∃l ∈ L, e = (ln, l)}. A transition e ∈ l•n was
surely activated between tn and tn + hn if G(e)(x̂n) = ⊥ and G(e)(x̂n+1) = >. The
transition e was maybe activated if if G(e)(x̂n) = ⊥ and G(e)(x̂n+1) =⊥>. Note that
in both cases we have G(e)(x̂hn) =⊥>. In this section, we present our algorithm in
the simple (but most common) case where we have only one transition activated
at a given time, and where we are not in the situation of G(e)(x̂n) = G(e)(x̂n+1) = ⊥
with G(e)(x̂hn) =⊥>; we discuss these two cases later.

The function GSolveZC is described in Algorithm 2 and runs as follows. First,
if for all edges e ∈ l•n, G(e)(x̂hn) = ⊥, then no transition was activated between tn

and tn+1, and we do nothing (lines 2–4). Otherwise, if there is e ∈ l•n that may
have been activated, then we make sure that we have G(e)(x̂n+) = >, i.e. that the
event really occurred between t̂n and t̂n+1 (this is the case (c) in Figure 1, other
cases are handled as “special cases” below), which is achieved by continuing the
guaranteed integration of F (ln) until we have G(e)(x̂n+1). This is the role of the
while loop (lines 6–10), in which we also compute the hull of all Picard over-
approximations computed during this process. Then, we are sure that e occurred
between x̂n and x̂n+1. We then reduce the time interval [t̂n, t̂n+1] in order to
precisely enclose the time t̂zc at which the condition G(e) became true (line 11).
To do so, we use the guaranteed polynomial extrapolation p of Section 3.3 to
approximate the value of x between t̂n and t̂n+1 without having to call GSolveODE,
and use a bisection algorithm to find the lower and upper limits of t̂zc.

To get the lower limit (the upper limit is obtained similarly), the bisection
algorithm perform as follows. We start with a working list containing [t̂n, t̂n+1],
the convex hull of both time stamps. Then, we pick the first element t̂ of the
working list and evaluate p on it. If p(t̂) =⊥> and the width of t̂ is larger than the
desired precision, we split t̂ into t̂1 and t̂2 and add them to the working list. If
the width t̂ is smaller than the precision, we return t̂. If p(t̂) = ⊥, we discard t̂ and
continue with the rest of the working list. Note that we cannot have p(t̂) = >. The
method to find the upper limit is the same, except that we discard t̂ if p(t̂) = >.
Finally, once we have t̂zc, we use the guaranteed polynomial again to compute
the zero-crossing state x̂zc = p(t̂zc) and set x̂n+1 = R(e)(x̂zc), i.e. we apply the reset
map.

Notice that our algorithm needs to maintain the invariant G(e)(x̂n) = ⊥ for all
e ∈ l•n. This imposes that we sometimes have a particular formulation for zero-
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Algorithm 2 Guaranteed Zero-crossing algorithm
Require: H = (L,F,E,G,R), a hybrid automaton
1: function GSolveZC(x̂n, x̂n+1, x̂hn, tn, hn, ln)
2: if ∀e ∈ l•n, G(e)(x̂hn) = ⊥ then
3: return x̂n+1, ln, tn + hn .No jumps
4: end if
5: Let e = (ln, ln+1) ∈ l•n be such that G(e)(x̂hn) =⊥>
6: while G(e)(x̂n+1) 6= > do
7: (x̂n+1, x̂h) ← GSolveODE(F (ln), x̂n+1, hn)
8: xhn ← xhn ∪ xh
9: hn ← hn + hn
10: end while .Now G(e)(x̂n) = ⊥ and G(e)(x̂n+1) = >
11: tzc ← tightInterval(x̂n, x̂n+1, tn, tn+1)
12: xzc ← GPolyODE(x̂n, x̂n+1, x̂hn, tzc)
13: return (R(e)(x̂zc), ln+1, tzc)
14: end function

crossing conditions. For instance, the guard and reset functions of the windy ball
of example 1 should be reformulated as G(e) = x < 0 and R(e)(x, y, v) = (x, 0,−0.8v).
Under this new formulation, just after the zero-crossing action has been per-
formed, we have x = 0 and therefore the zero-crossing condition x < 0 is not
true. Otherwise, with the first formulation, the simulation will fail at first zero-
crossing. The transformation is performed automatically for usual conditions in
HySon. Note also that it may be the case that there exist e′ ∈ l•n+1 such that
G(e′)(x̂n+1) 6= ⊥, i.e. a transition starting from ln+1 may be activated by x̂n+1.
In this case, we execute the transition immediately after e, and continue until
we arrive in a location l such that no transition starting from l is activated. We
assume that such l exists, which is true if the ha H does not have Zeno behavior.

Special Cases. If there is more than one transition activated during the step
from tk to tk+1, we first reject the step and continue with a reduced step-size. This
way, we shall eventually reach a step-size where only one condition is activated
and not the other. If we cannot separate both transitions before reaching a
minimal step-size, we use our previous algorithm on both transitions separately,
apply both reset maps and then we follow both possible trajectories, i.e. we have
a disjunctive analysis when we are not sure of the location.

Finally, we shall discuss the case when the state at times tk and tk+1 do not
verify the guard of a transition e but the hull computed by Picard iteration does
(see Figure 1, cases a and b). Then, either the trajectories between tk and tk+1
cross twice the guard boundary and we missed a zero-crossing, (case a) or it is
the over-approximation due to Picard iteration which makes the guard validated
(case b). We use again our bisection algorithm to distinguish between these two
cases and perform a disjunctive analysis if we cannot differentiate between them.

5 Experimentation

We implemented our method in a tool named HySon. It is written in OCaml and
takes as input a representation of a hybrid system either using a set of equations
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Fig. 2. Over-approximation of the trajectories of the Brusselator (left) and Car (right)
systems. The blue sets are the over-approximations for all t (given by Picard iteration)
and the red sets are the tight enclosures at the discretization time stamps.

similar to the ones defined in [2] or a Simulink model (for now without stateflow
support). We first present the output of HySon on some continuous or hybrid
systems, and then we compare the performances of HySon with other tools.

5.1 Continuous Systems
Brusselator. We consider the following system, also used in [27]:

ẋ = 1 + x2y − 2.5x ẏ = 1.5x− x2y x(0) ∈ [0.9, 1] y(0) ∈ [0, 0.1]

HySon computes the flowpipe up to t = 15 in 14.3s, see Figure 2, left.

Car. We consider the initial value problem given by:

ẋ = v cos(0.2t) cos(θ) ẏ = v cos(0.2t) sin(θ)

θ̇ = v sin(0.2t)/5

x(0) = 0 y(0) = 0

θ(0) = [0, 0.1]

HySon computes the flowpipe up to t = 30 in 55.9s, see Figure 2, right.

5.2 Hybrid Systems
We now present two hybrid systems: a ball bouncing on a sinusoidal floor and a
non-linear system with a polynomial jump condition.

Ball bouncing on a sinusoidal floor. A ball is falling on a sinusoidal floor, and
we consider a dynamics with non-linear wind friction for the ball. The dynamics
of the system is given by

v̇x = 0 ẋ = vx v̇y = −g + kv2
y ẏ = vy

starting from the initial conditions x(0) = 1.6, vx(0) = 0, y(0) = 5 and vy(0) = −5.
The bouncing of the ball is given by the transition: vx = e(vd − vx)

vy = e(vd cos(x)− vy)
y = sin(x)

 when y < sin(x)
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with vd = (vx + vy cos(x))/(1 + cos(x)2), where g = 9.8, k = 0.3 and e = 0.8. Note that
the exact dynamics of this system is almost chaotic. HySon is able to compute
flow-pipe for this system, as shown on the following figure.

x

y

Wolfgram. We study the following system, with a = 2:

ẋ(t) =

{
t2 + 2x if (x+ 3/20)2 + (t+ 1/20)2 < 1
2t2 + 3x2 − a otherwise

x(0) ∈ [0.3, 0.31]

The dynamics of the system is relatively simple, however the jump condition is
a polynomial and is thus not well suited for classical intersection techniques as
in [27,14]. Our bisection algorithm for computing the zero-crossing time encloses
precisely the jumping time. To precisely enclose the value of x, we insert a reset
in the discrete transition and set x =

√
1− (t+ 1/20)2 − 3/20. This transformation

allows us to obtain a tight enclosure of x as well. Note however that we performed
this transformation manually for now except for polynomial guard, our future
work will include the automatization of this task for more expressions.

5.3 Comparison with other Tools

We now compare the performance of HySon with other tools for reachability
analysis of non-linear hybrid systems: Flow∗ as in [27] and HydLogic [21]. We
downloaded both tools from the web and run them on various examples included
in the Flow∗ distribution (we could not compile HydLogic). We run HySon on
the same examples and present the execution time for both in Table 1. We see
that HySon outperforms Flow∗ on all these examples, whether they are purely
continuous systems (VanDerPol, Brusselator or Lorenz) or hybrid systems (Wa-
tertank). Note that for the Lorenz system, we set a fixed step-size of 0.02 to
achieve a good precision, which explains the large computation time. For all
other examples, we used a variable step-size and an order 3 for the Taylor mod-
els used in Flow∗. Let us remark however that some examples work well on
Flow∗ but not in HySon, especially the examples with many transitions that
may happen simultaneously. We also want to point out that our tool performs
well on linear examples. We compared it with SpaceEx [14] on simple examples
where HySon and SpaceEx produced very similar results in terms of precision
and computation time (Appendix B).
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Table 1. Experimental results. LOC is the number of locations, VAR the number of
variables and T the final time of simulation. TT is the computation time, in seconds.

Benchmark LOC VAR T TT (HySon) TT (Flow∗)
Brusselator 1 2 15 14.3 49.97
Van-der-Pol 1 2 6 16.2 49.17

Lorenz 1 3 1 13.32 119.94
WaterTank 2 5 30 4.35 316.72
Hybrid3D 2 3 2.0 26.65 237.4
Pendulum 1 2 3.8 26.75 N/A

Diode oscillator [13] 3 2 20 29.56 42.65

6 Conclusion

We presented a new approach to compute the flowpipes of nonlinear hybrid sys-
tems using guaranteed version of numerical methods. Our method is based on
guaranteed explicit Runge-Kutta integration methods and on a new guaranteed
polynomial interpolation based on the well-known Hermite-Birkoff method. This
interpolation is cheap and precise to over-approximate continuous state values.
Using both methods, we can precisely compute flowpipes of nonlinear hybrid
systems, with a few number of restrictions on the nature of flows and jumps.
Remark that with guaranteed polynomial interpolation, we can accurately and
soundly handle nonlinear jumps in hybrid systems without using an intersec-
tion operator which is usually costly to define. Note also that we can handle in
the same manner invariants in hybrid automaton using our algorithm for zero-
crossing events. More precisely, we would add a new step in the simulation loop
to check that the invariant is fulfilled at each integration step. Finally, the exper-
iments showed that our approach is efficient and precise on a set of representative
case studies: we showed that our approach outperforms existing techniques on
the flowpipe computation of nonlinear systems.

As future work, we plan to handle multiple zero-crossing events involving
trajectories associated to different system behaviors. As a result, to keep the
flowpipe computation sharp we must handle disjunctive futures efficiently. We
also want to extend our parser of Simulink models, presented in [3], to handle
Stateflow and thus apply our tool on more realistic examples.
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A Other examples

Because of space constraints, we did not include the description of some examples
in the article, they can be found below.

A.1 The Bouncing Pendulum

This hybrid system describes pendulum attached to a rope of length l = 1.2
falling under a gravity of g = 9.81. The angle θ of the pendulum (w.r.t. vertical)
is described by the flow equation

θ̈ = −
g

l
sin(θ) θ(0) = [1, 1.05]

The pendulum bounces on a wall when θ = −0.5, in which case the reset condition
is θ̇ = −θ̇. The guaranteed simulation of the system produces:

t

θ

As illustration, we give here the description of the system given as input to
HySon:
set duration = 3.8;
set dt = 0.05;
set max_dt = 0.1;
set scope_xy = true;

init theta = [1.,1.05];
init dtheta = 0.;
init t = 0;

l = 1.2;
g = 9.81;
theta’ = dtheta;
dtheta’ = -g/l*sin(theta);
t’ = 1;

on sin(theta) <= -0.5 do { print("Bouncing!\n"); dtheta = -dtheta };

output(t,theta);

Notice that the dynamics of the system is nonlinear (because of the presence
sin(θ) in the flow equation) and the guard is also non linear, which makes that it
cannot be simulated with Flow∗.
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A.2 Wolfgram

The simulation produced on the Wolfgram example is

t

x
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B Comparison with SpaceEx

Since the main novelty of HySon is to handle efficiently non-linear systems, we
did not detail experiments on linear ones. However, performances are comparable
with the state-of-the-art guaranteed simulators dedicated to linear systems. As
illustration, we compare here HySon with SpaceEx [14] on two examples.

B.1 Bouncing Ball

The above figure shows the flowpipe computed by SpaceEx (in gray) and by
HySon (blue polygons) for the classical bouncing-ball example, up to tf = 20.
The computation times were 1.031s for HySon and 1.15s for SpaceEx (we used
the support-function representation of sets using 50 directions). Notice that the
flowpipe computed by HySon is within the flowpipe of SpaceEx; we could get a
more precise results with SpaceEx by increasing the number of directions, but
at the cost of higher computation times (8.65s for 200 directions for example).

B.2 Thermostat

The above figure shows the flowpipe computed by SpaceEx (in gray) and by
HySon (blue sets) for the classical thermostat example, up to tf = 15. The
computation times were 0.89s for HySon and 0.91s for SpaceEx (we used the
support-function representation of sets using 50 directions). Notice that both
flowpipes are almost identical.
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