Construction of a mosaic from an underwater video with guaranteed data associations

M. Laranjeira, <u>L. Jaulin</u>, S. Tauvry, and C. Aubry Journée MRIS 2016 à l'ENSTA-Paris

Loop detection problem Brouwer fixed point theorem Interval analysis Test-case A video of the presention is available at

http://youtu.be/sPKOBunlBEM

Loop detection problem Brouwer fixed point theorem Interval analysis Test-case

Objective: Perform a localization in an unknown environment without building a map.

Loop detection problem

Loop detection problem Brouwer fixed point theorem Interval analysis Test-case

Example. We are driving a car in the desert. We measure the speed of the car and its orientation. We have no GPS, no camera. **Problem**. Count the number of loops we made.

Loop detection problem Brouwer fixed point theorem Interval analysis

Robot: We consider a state equation

$$\begin{cases} \dot{x} = f(x,u) \\ y = g(x) \end{cases}$$

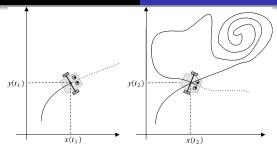
u: proprioceptive sensors

y: exteroceptive sensors

Problem: detect loops with proprioceptive (reliable) and exteroceptive (unreliable) sensors.

Loop detection problem Brouwer fixed point theorem Interval analysis Test-case

t-plane

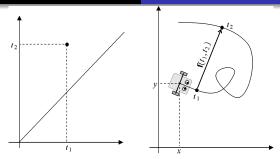


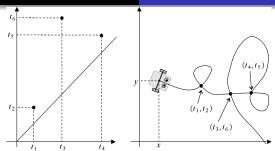
Define the shift function

$$f(t_1,t_2)=\int_{t_1}^{t_2}\mathbf{v}(\tau)\,d\tau.$$

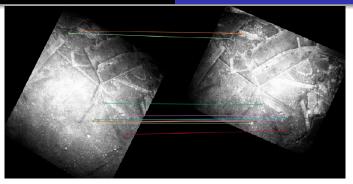
The loop set is

$$\mathbb{T} = \left\{ (t_1, t_2) \in [0, t_{\mathsf{max}}]^2 \mid \mathsf{f}(t_1, t_2) = \mathbf{0}, t_2 > t_1 \right\}$$





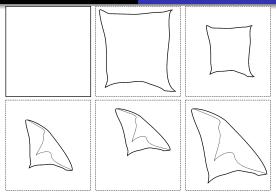
Reliablility in perception



Are you sure we made a loop?

Brouwer fixed point theorem

Brouwer fixed point theorem (1909). Any continuous function \mathbf{n} from bounded convex subset of \mathbb{R}^n to itself has a fixed point; i.e., a point such that $\mathbf{n}(\mathbf{x}) = \mathbf{x}$.



Distortion; narrowing; folding; shifting; enlargement : at least one point has not moved

Example. If

$$\mathbf{n}(t_1,t_2) = \begin{pmatrix} \cos(t_1 - t_2^2) \\ \sin(t_1 t_2) \end{pmatrix}$$

Since

$$\mathsf{n}([-1,1],[-1,1]) \subset [-1,1] \times [-1,1]$$

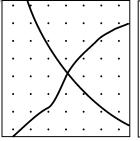
we conclude

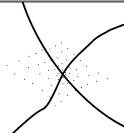
$$\exists (t_1, t_2) \in [-1, 1]^2 \mid \mathsf{n}(t_1, t_2) = (t_1, t_2).$$

If we have a function \mathbf{n} such that

$$n\left(x\right) \ =x\Rightarrow f\left(x\right) =0,$$

then using Brouwer theorem we can detect loops.





Interval analysis

Problem. Given $f: \mathbb{R}^n \to \mathbb{R}$ and a box $[x] \subset \mathbb{R}^n$, prove that

$$\forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \geq 0.$$

Example. Is the function

$$f(\mathbf{x}) = x_1 x_2 - (x_1 + x_2) \cos x_2 + \sin x_1 \cdot \sin x_2 + 2$$

always positive for $x_1, x_2 \in [-1, 1]$?

Interval arithmetic

$$[-1,3] + [2,5] = [1,8]$$

$$[-1,3] \cdot [2,5] = [-5,15]$$

$$\sin([0,2]) = [0,1]$$

The interval extension of

$$f(x_1, x_2) = x_1 \cdot x_2 - (x_1 + x_2) \cdot \cos x_2 + \sin x_1 \cdot \sin x_2 + 2$$

is

$$[f]([x_1],[x_2]) = [x_1] \cdot [x_2] - ([x_1] + [x_2]) \cdot \cos[x_2] + \sin[x_1] \cdot \sin[x_2] + 2.$$

Theorem (Moore, 1970)

$$[f]([\mathbf{x}]) \subset \mathbb{R}^+ \Rightarrow \forall \mathbf{x} \in [\mathbf{x}], f(\mathbf{x}) \geq 0$$

Theorem (Moore-Brouwer)

For $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$, we have

$$[f]([x]) \subset [x] \Rightarrow \exists x \in [x], f(x) = x.$$

Bracketting sets

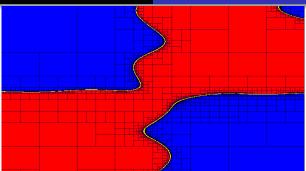
Subsets $\mathbb{X} \subset \mathbb{R}^n$ can be bracketed by subpavings :

$$\mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+$$
.

which can be obtained using interval calculus

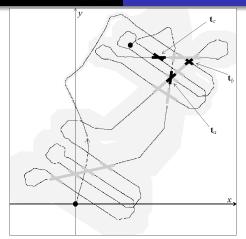
Example.

$$\mathbb{X} = \{ \mathbf{x} \mid x_1 x_2 - (x_1 + x_2) \cos x_2 + \sin x_1 \cdot \sin x_2 + 2 \ge 0 \}.$$



Test-case

Redermor, DGA-TN



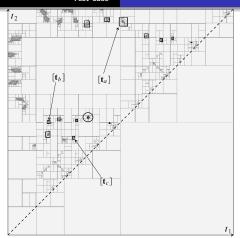
Loop set defined as inequalities

The robot knows a box $[\mathbf{v}](t)$ for $\mathbf{v}(t)$. We have

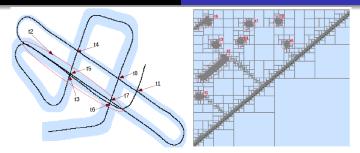
$$\mathbb{T} = \left\{ (t_1, t_2) \in [0, t_\mathsf{max}]^2 \mid \exists \mathsf{v} \in [\mathsf{v}], \int_{t_1}^{t_2} \mathsf{v}(au) d au = \mathbf{0}, t_1 < t_2
ight\}$$

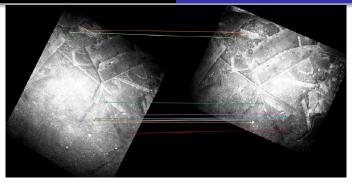
Thus ${\mathbb T}$ is defined by

$$\mathsf{h}(t_1,t_2) = \left(egin{array}{c} \int_{t_1}^{t_2} \mathsf{v}^-(au) d au \ - \int_{t_1}^{t_2} \mathsf{v}^+(au) d au \ t_1 - t_2 \end{array}
ight) < 0.$$

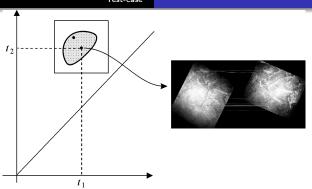


Mosaic

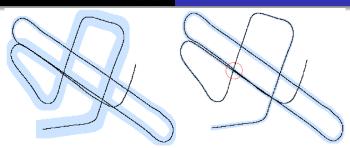




Compatible or incompatible ?

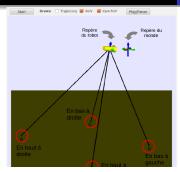


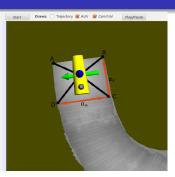
Contract the tube



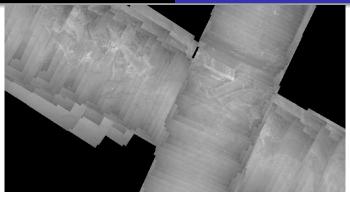
Projection

Loop detection problem Brouwer fixed point theorem Interval analysis Test-case

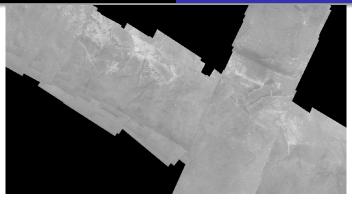




Illumination equalization



Before illumination equalization



After illumination equalization

https://youtu.be/5MwRN8Yd61c

References.

M. Laranjeira, L. Jaulin and S. Tauvry, (2016) Underwater Mosaics Using Navigation Data and Feature Extraction. Reliable Computing, Vol. 22, pp. 116-137.

C. Aubry, R. Desmare and L. Jaulin (2013). Loop detection of mobile robots using interval analysis. Automatica. vol. 49, Issue 1. pp 463-470