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Motivation

Motivation

models specifications
Mod = Spec
model checking

Not so easy. ..
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Motivation
Motivation

models specifications
Mod = Spec
model checking

Not so easy. ..

Incremental certification / Compositional verification
@ bottom-up and top-down
Wish list:
Mod |= Spec; & Spec; < Spec, = Mod = Spec,
Mod |= Spec; & Mod |= Spec, = Mod = Spec; A Spec,
Mod; [= Spec; & Mod; |= Spec, = Mod;||Mod> |= Spec, ||Spec,
Mod; [= Spec; & Mods |= Spec/Spec; = Mod;||Mod; [= Spec

(]
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Motivation

Compositional Verification

(*]

Mod = Spec; & Spec; < Spec, = Mod |= Spec,
o incrementality

Mod = Spec; & Mod = Spec, = Mod |= Spec; A Spec,
e conjunction

Mod; = Spec; & Mod; = Spec, = Mod;||Mod; = Spec; ||Spec,
o compositionality

Mod; = Spec; & Mod; |= Spec/Spec; = Mod;||Mod> = Spec
o quotient

(4]

(]

(]

Not so easy — but easier than model checking?
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Motivation

Compositional Verification

(*]

Mod = Spec; & Spec; < Spec, = Mod |= Spec,
o incrementality

Mod = Spec; & Mod = Spec, = Mod |= Spec; A Spec,
e conjunction

Mod; = Spec; & Mod; = Spec, = Mod;||Mod; = Spec; ||Spec,
o compositionality

Mod; = Spec; & Mod; |= Spec/Spec; = Mod;||Mod> = Spec
o quotient

(4]

(]

(]

Not so easy — but easier than model checking?

“Holy Grail"?
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Acceptance Automata

© Motivation
© Acceptance Automata
o Specification Theories for Real Time, Probabilities, etc.

@ Conclusion
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Acceptance Automata

Acceptance Automata

Let X be a finite alphabet.

Definition

A (nondeterministic) acceptance automaton (AA) is a structure
A = (S,5% Tran), with S D SO finite sets of states and initial states and
Tran: S — 227 an assignment of transition constraints.

o standard labeled transition system (LTS): Tran : § — 2%%5
(coalgebraic view)

(for AA:) Tran(s) = {My, My, ...}: provide My or My or ...
a disjunctive choice of conjunctive constraints

J.-B. Raclet 2008 (but deterministic)

note multiple initial states

e 6 o6 o

Uli Fahrenberg Behavioral Specification Theories 7



Acceptance Automata
Refinement

Definition

Let A; = (S1,S?, Trang) and Ay = (S5, S9, Tran,) be AA.
A relation R C S; x S5 is a modal refinement if:
O VsPeSY: 39 €Sy (V.9 erR (init)
Q Y(s1,5) € R:VM; € Trani(s1) : IM, € Trany(sy) : (tran)
0 V(a, t1) € My :3(a,tr) € My : (t1,t2) €R
0 VY(a,tp) € My:3(a,t1) € My : (t1,t2) €ER
Write A; < A5 if there exists such a modal refinement.

o for any constraint choice M there is a bisimilar choice M,
o A; has fewer choices than A,
@ no more choices = only one M € Tran(s) = LTS
o formally: an embedding x : LTS — AA
such that x(£1) < x(£2) iff £1 and L, are bisimilar
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Acceptance Automata

A Step Back

Let Mod be a set of models with an equivalence ~.

A (behavioral) specification theory for (Mod, ~) consists of

@ a set Spec,
@ a preorder < C Spec x Spec, and
@ a mapping x : Mod — Spec,
such that VM1, My € Mod : M1 ~ My <= x(M1) < x(M>).

o write M =S for x(M) < S

e x(M): characteristic formula for M: M’ E x(M) <= M’ ~ M

e incrementality: M ES1 &S5 <S8 = MES,

@ acceptance automata = disjunctive modal transition systems =
Hennessy-Milner logic with maximal fixed points

o safety properties
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Acceptance Automata
Logical Operations

Let Ay = (51, S0, Trany) and Az = (S, S9, Trany) be AA.
Disjunction: A; V Ay = (51 U S, S9 U S9, Tran; U Trany)
Conjunction: define 7; : 2LXSIXSy _y OEXSi by
7T1(/VI) :{(3,51) | ds, € 55 (a, 51,52) S M}
7T2(M) :{(3,52) | ds; € 51 : (a, 51,52) S M}
Let A; A Ay = (51 x S, 5D x S9, Tran) with
Tran((s1,%)) ={M C X x5 xS |
7T1(M) S Tranl(sl),ﬂz(M) S TranQ(SQ)}

Theorem (for all LTS £ and AA Aj;, Ay)

E':.Al\/.Az <— E):Al Or[,):.Az
LEANA < LEA & LE A
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Acceptance Automata

Another Step Back

Let Mod be a set of models with an equivalence ~.

Definition (ad hoc)

A specification theory (Spec, <, x) for (Mod, ~) is nice if

(Spec, <) forms a bounded distributive lattice up to <N >.

o L 4 U U

have least upper bound Vv and greatest lower bound A
bottom specification ff (VM € Mod : M - ff)

top specification tt (VM € Mod : M [= tt)

double distributivity

everything up to modal equivalence ==<N>

holds for acceptance automata, disjunctive modal transition systems,
and Hennessy-Milner logic with maximal fixed points
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Acceptance Automata
Structural Operations: Composition

Let Ay = (51,50, Trany) and Az = (S, S9, Trany) be AA.
For M1 € X x 51 and Mr € X~ x S5, define

M ||Mz = {(a, (t1, t2)) | (a,t1) € M1, (a, t2) € Mp}
Let A1|lA2 = (51 x S, 59 x SO, Tran) with
Tran((s1,52)) = {M1||M2 | My € Trani(s1), M2 € Trany(s2)}

(assumes CSP synchronization, but can be generalized)

Theorem (independent implementability)

For all AA A;, Ay, Az, Ay:
A1 S A3 & Ay < Ay = Ap]| Az < Azl Ag
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Acceptance Automata

Structural Operations: Quotient

Let Ay = (51, S0, Trany) and Az = (S, S9, Trany) be AA.
Define A1 /A = (S, S°, Tran):

0 §=2%1x
o write 9 = {s3,..., 59"} and let

SO = {{(s0. ) | g € {L.....p}} | Vg : 57 € S}
o Tran =
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Acceptance Automata
Structural Operations: Quotient

Let Ay = (51, S0, Trany) and Az = (S, S9, Trany) be AA.
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Acceptance Automata
Structural Operations: Quotient

Let Ay = (51, S0, Trany) and Az = (S, S9, Trany) be AA.
Define A1 /A = (S, S°, Tran):

0 §=2%1x
o write 9 = {s3,..., 59"} and let

SO = {{(s0. ) | g € {L.....p}} | Vg : 57 € S}
o Tran =

For all AA Al, .Az, A3:

Ai||Ax < A3 <= Ar < A3/ A

@ up to =, / is the adjoint (or residual) of ||
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Acceptance Automata
A Step Back, Again

Let Mod be a set of models with an equivalence ~.

Definition (slightly ad hoc)

A complete specification theory for (Mod, ~) is (Spec, <, ||, x) such that
(Spec, <, x) is a specification theory for (Mod, ~) and (Spec, <, ||)
forms a bounded distribute commutative residuated lattice up to =.

= || distributes over V and has a unit U, up to =

= || has a residual /, up to =
@ a compositional algebra of specifications: for example,

(Sl A 82)/53 = 51/83 A 82/53
S1[(82/81) £ S (81]|82)/S1 < S
1|Ss=1L S/U=8 Uu<s§/S U=1/1
(51/82)/83 = S1/(S52|S3)
(U/S)II(U/S2) < U/(S11S2)
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Acceptance Automata

A Step Back, Again

Let Mod be a set of models with an equivalence ~.

Definition (slightly ad hoc)

A complete specification theory for (Mod, ~) is (Spec, <, ||, x) such that
(Spec, <, x) is a specification theory for (Mod, ~) and (Spec, <, ||)
forms a bounded distribute commutative residuated lattice up to =.

= || distributes over V and has a unit U, up to =
= || has a residual /, up to =
@ a compositional algebra of specifications

o relation to linear logic and Girard quantales
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Specification Theories

© Motivation
© Acceptance Automata
Q Specification Theories for Real Time, Probabilities, etc.

@ Conclusion
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Specification Theories

Specification Theories for LTS

o (disjunctive) modal transition systems: [Larsen, Xinxin 1989-90]

@ equivalence with acceptance automata and Hennessy-Milner logic
with greatest fixed points: [Larsen-Boudol 1992],
[Benes-Delahaye-UF et al. 2013]

@ modal transition systems with data: [Bauer-Juhl-Larsen et al. 2012]

@ parametric modal transition systems:
[Benes-Kretinsky-Larsen et al. 2011]

o for deadlock equivalence: [Bujtor, Sorokin, Vogler 2015]
o for general linear / branching time: [UF-Legay 2017]
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Specification Theories

Specification Theories for Real-Time Systems

Timed input-output automata:

o [David-Larsen-Legay et al.: Real-time specifications, STTT 2015],
[David-Larsen-Legay et al.: Compositional verification of real-time
systems using ECDAR, STTT 2012]

o complete, with quotient, but without disjunction
@ only for deterministic specifications

o tool support: ECDAR / UppPAAL TiGa (Aalborg),
pyECDAR (Rennes)

@ some work on robustness and implementability: [Larsen-Legay-
Traonouez et al.: Robust synthesis for real-time systems, TCS 2014]
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Specification Theories

Timed Input-Output Automata

Machine HalfAdmi HalfAdm2 Researcher UniSpec

combine with operator
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Specification Theories

Specification Theories for Real-Time Systems, contd.

Modal event-clock specifications:

o [Bertrand-Legay-Pinchinat et al.: Modal event-clock specifications
for timed component-based design, SCP 2012]

@ complete, with quotient, but without disjunction

o only for deterministic specifications

@ some work on robustness: [UF-Legay 2012]
Synchronous time-triggered interface theories:

o [Delahaye-UF-Henzinger et al. 2012]

@ no quotient, no real conjunction, no implementation

o relation to BIP (Grenoble)
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Specification Theories

Specification Theories for Probabilistic (Timed) Systems

Abstract probabilistic automata:

o [Delahaye-Katoen-Larsen et al.: Abstract probabilistic automata,
1&C 2013], [Delahaye-UF-Larsen et al. 2014]

@ no quotient, no disjunction, toy implementation
Abstract probabilistic event-clock automata:
o [Han-Krause-Kwiatkowska et al. 2013]

@ no quotient, no disjunction, no implementation, other problems

Uli Fahrenberg Behavioral Specification Theories 23


http://dx.doi.org/10.1016/j.ic.2013.10.002
http://dx.doi.org/10.1016/j.ic.2013.10.002
http://dx.doi.org/10.2168/LMCS-10(3:11)2014
http://dx.doi.org/10.4204/EPTCS.117.5

Specification Theories

Specification Theories for Hybrid Systems
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Specification Theories

Specification Theories for Hybrid Systems

imgfip.com
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Specification Theories

Interfaces and Contracts

Modal interface automata
o [Littgen-Vogler: Modal interface automata, LMCS 2013]
o interface automata: [de Alfaro-Henzinger 2001]
@ inputs vs outputs
o complete, without quotient
From specifications to contracts:
o [Bauer-David-Hennicker et al. 2012]
@ complete specification theory = contract theory

@ in a timed setting: [Le-Passerone-UF et al.: A tag contract
framework for modeling heterogeneous systems, SCP 2016]
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Specification Theories
Robust Specification Theories

Definition (recall)

A specification theory (Spec, <, x) for (Mod, ~) is nice if
(Spec, <) forms a bounded distributive lattice up to == <N >.

o for robustness: replace ~ by pseudometric dpyod

@ (such that Dyoed(M1, M2) = 0 iff M1 ~ Mb3)

o replace < by non-symmetric pseudometric d (“hemimetric”)
(dmod and d are related via x)

instead of M ): S1&85 <8 —= M ): So,

want d(M,81) + d(S51,82) > d(M, S,)

d(Sl Vv Sy, S) = max(d(Sl, S), d(SQ, 8), OO)

d(S,81 A S2) = max(d(S,S1),d(S, S2), 0)

(*]
(*]

(4]

(4]
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Specification Theories

Robust Specification Theories, contd.

Definition (recall)

A complete specification theory for (Mod, ~) is (Spec, <, ||, x) such that
(Spec, <, x) is a specification theory for (Mod, ~) and (Spec, <, ||)
forms a bounded distribute commutative residuated lattice up to =.

o for independent implementability, want uniform continuity for ||:
a function C : R>g X R>¢ — R>¢ such that we can
replace S; < S3 8_4 S §?94 == _81”82 < 83”«54
with  C(d(S1,83),d(S2,84)) > d(S1]|S2, S3/|Sa)
o for quotient, instead of S1(|S2 < 83 <—= S» < S§3/851
want d(81H82,83) = d(82,83/81)
o [UF-Legay TCS 2014], [UF-Legay Acta Inf. 2014],
[UF-K¥etinsky-Legay et al. 2014]
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Conclusion

Conclusion?

o incrementalityy M ES1 &S5 <S8 = MES,

e conjunctionn MESI&ME S < MESIAS

e disjunction: MES;) oo MES, < MESI VS

e compositionality: Mj | 81 & My =S = Mi|[M2 E 51|82
e quotient: M1 ES1& Mo ES/S1 = Mi|M2 S

@ safety properties

(]

Are these all the properties we want?
Also need robustness

(]

o Long way
from acceptance automata
to hybrid systems
to industry ...

Uli Fahrenberg Behavioral Specification Theories 29



	Motivation
	Acceptance Automata
	Specification Theories for Real Time, Probabilities, etc.
	Conclusion

