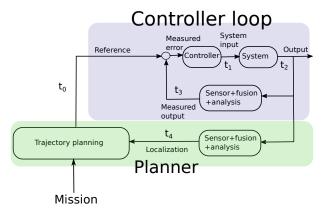
Revisting Box-RRT algorithm with DynIBEX

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier, François Pessaux U2IS, ENSTA ParisTech, Palaiseau, France

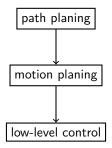
> DGA MRIS meeting November 24, 2016

Autonomous vehicle



Goal of the project try to understand main pieces of the system to validate their behavior and the behavior of the overall system.

A hierarchical control



- Path planing generates a set of way points (does not take into account the dynamics of the vehicle) from a map (totally or partially) known, take into account obstacles (static)
- Motion planing generates a set of trajectories feasible for the dynamics considered and take into account obstacles (static and dynamic)
- Low-level controller tries to follow the (discretized) trajectory w.r.t. the dynamic of the vehicle

We focus on trajectory planing algorithms taking into account

- A model of the vehicle
- A model of a map with obstacles (static)
- Bounded uncertain information on the position/orientation, etc.

This work is based on

Reliable robust path planning. Romain Pepy, Michel Kieffer, Eric Walter. Journal Applied Mathematical Computing. 2009.

More precisely, we implement the **BoxRRT** algorithm with **DynIBEX**.

DynIBEX in few words

A library combining of **CSP solver** (IBEX¹) with **validated numerical integration methods** à la Runge-Kutta.

What can we simulate?

Our main tool for set-based simulation of dynamical systems

- Ordinary differential equations (ODE)
- ► Algebraic-differential equations (DAE) of index-1

$$S \equiv \begin{cases} \dot{\mathbf{y}} = F(t, \mathbf{y}, \mathbf{x}, \mathbf{p}, \mathbf{u}) \\ 0 = G(t, \mathbf{y}, \mathbf{x}, \mathbf{p}, \mathbf{u}) \\ 0 = H(t, \mathbf{y}, \mathbf{p}, \mathbf{u}) \\ \mathbf{y}(0) \in \mathcal{Y}_0, \mathbf{x}(0) \in \mathcal{X}_0, \mathbf{p} \in \mathcal{P}, \mathbf{u} \in \mathcal{U}, t \in [0, t_{end}] \end{cases}$$

How checking temporal properties on S?

¹Gilles Chabert (EMN) et al. http://www.ibex-lib.org

QCSDP

Let S be a differential system and $t_{end} \in \mathcal{R}_+$ the time limit. A QCSDP is a CSP defined by

- ► a set of variables V including at least t, a vector y₀, p, u We represent these variables by the vector v;
- ▶ an initial domain \mathcal{D} containing at least $[0, t_{end}]$, \mathcal{Y}_0 , \mathcal{U} , and \mathcal{P} ;
- ▶ a set of constraints $C = \{c_1, ..., c_e\}$ composed of predicates over sets, that is, constraints of the form

$$c_i \equiv Q \mathbf{v} \in \mathcal{D}_i.f_i(\mathbf{v}) \diamond \mathcal{A}, \qquad \forall 1 \leqslant i \leqslant e$$

with $Q \in \{\exists, \forall\}, f_i : \wp(\mathcal{R}^{|\mathcal{V}|}) \to \wp(\mathcal{R}^q)$ stands for non-linear arithmetic expressions defined over variables **v** and solution of differential system *S*, $\mathbf{y}(t; \mathbf{y}_0, \mathbf{p}, \mathbf{u}) \equiv \mathbf{y}(\mathbf{v}), \diamond \in \{\subseteq, \cap_{\emptyset}\}$ and $\mathcal{A} \subseteq \mathcal{R}^q$ where q > 0.

Note: we follow the same approach that Goldsztejn et al.²

²Including ODE Based Constraints in the Standard CP Framework, CP10

Box-QCSDP

Let S be a differential system and $t_{\mathsf{end}} \in \mathcal{R}_+$ the time limit A Box-QCSDP is defined by

- ► a set of variables V including at least t, a vector y₀, p, u We represent these variables by the vector v;
- ▶ an initial box [d] containing at least $[0, t_{end}]$, $[y_0]$, [u], and [p];
- ▶ a set of interval constraints $C = \{c_1, ..., c_e\}$ composed of predicates over sets, that is, constraints of the form

$$c_i \equiv Q \mathbf{v} \in [\mathbf{d}_i].[f_i](\mathbf{v}) \diamond \alpha(\mathcal{A}), \qquad \forall 1 \leqslant i \leqslant e$$

with $Q \in \{\exists, \forall\}, [f_i] : \mathcal{IR}^{|\mathcal{V}|} \to \mathcal{IR}^q$ stands for non-linear arithmetic expressions defined over variables **v** and interval enclosure solution $[\mathbf{y}](t; \mathbf{y}_0, \mathbf{p}, \mathbf{u}) \equiv [\mathbf{y}](\mathbf{v}), \diamond \in \{\subseteq, \cap_{\emptyset}\}$ and $\alpha \in \{\text{Hull}, \text{Int}\}$

Note: using boxes is not so straightforward to preserve soundness **TODO**: A more formal definition of the abstraction has to be defined!

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers

- ▶ Robust controller synthesis: $\exists u$, $\forall p$, $\forall y_0$ + temporal constraints
- ▶ Parameter synthesis: $\exists \mathbf{p}, \forall \mathbf{u}, \forall \mathbf{y}_0 + \text{temporal constraints}$

etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property	QCSDP translation
Stay in ${\cal A}$	$orall t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \subseteq Int(\mathcal{A})$
In ${\cal A}$ at $ au$	$\exists t \in [0, t_{end}], [{f y}](t, {f v}') \subseteq Int(\mathcal{A})$
Has crossed ${\cal A}$	$\exists t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \cap Hull(\mathcal{A}) eq \emptyset$
Go out ${\mathcal A}$	$\exists t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \cap Hull(\mathcal{A}) = \emptyset$
Has reached ${\cal A}$	$[\mathbf{y}](t_{end},\mathbf{v}')\capHull(\mathcal{A}) eq\emptyset$
Finished in ${\cal A}$	$[\textbf{y}](t_{end},\textbf{v}')\subseteqInt(\mathcal{A})$

Goal

- "quickly" find a trajectory going from an initial configuration s_i to a final configuration s_f
- while avoiding obstacles s_o
- and taking into account bounded uncertainties.

Main ingredients

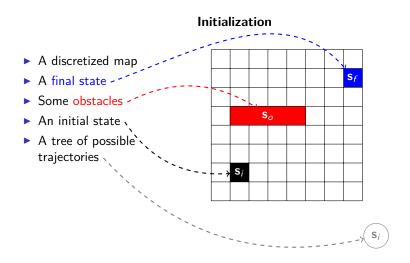
- used a model of the vehicle
- based on RRT (Rapid Explore Tree) Algorithm
- ▶ combined with interval analysis tools (*e.g.*, guaranteed numerical integration)

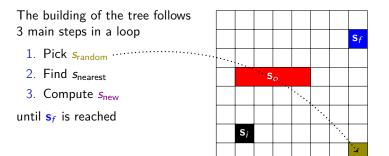
We consider an unicycle model of a robot

$$\begin{split} \dot{x} &= v \cos(\theta) \\ \dot{y} &= v \sin(\theta) \\ \dot{\theta} &= v \tan(\delta + [-\varepsilon, \varepsilon]) \end{split}$$

with constraints

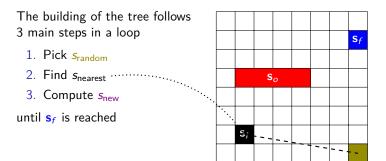
▶
$$v \in [-10, 10]$$
 and $\omega \in [-\pi/6, \pi/6]$
▶ $\varepsilon = 1e^{-3}$





Choose randomly a free state of the map

 \mathbf{s}_i



Find the nearest node in the tree following a Hausdorff distance

 \mathbf{s}_i

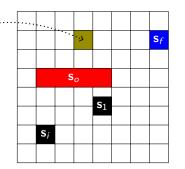
Iteration 1

The building of the tree follows 3 main steps in a loop Sf 1. Pick srandom 2. Find snearest S_o 3. Compute *s*_{new} :: **S**₁ until s_f is reached Si U1 Predict the next state from a ran-Si U1 dom control u if no collision detected add $(\mathbf{s}_{nearest}, u, \mathbf{s}_{new})$ in the tree

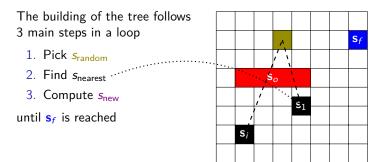
Iteration 2

The building of the tree follows 3 main steps in a loop

- 1. Pick *s*_{random}
- 2. Find snearest
- 3. Compute snew
- until \mathbf{s}_{f} is reached



Note that the choice of $s_{\mbox{random}}$ can be biased to increase probability to be closer to s_f



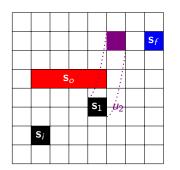
Computing distances has a linear complexity w.r.t. the number of nodes in the tree

Iteration 2

The building of the tree follows 3 main steps in a loop

- 1. Pick srandom
- 2. Find snearest
- 3. Compute snew

until \mathbf{s}_{f} is reached



The absence of collision is detected when the **tube** does not intersect an obstacle

Three temporal constraints have been used:

- stay_in state-space;
- has_crossed (in negative form) obstacles;
- one_in target;

and one contractor on tube has been used

get_tight(t) to get final state.

So this algorithm can be quickly implemented in DynIBEX.

Conclusion

- Defined a framework to analyze robotic application: Box-QCSDP
- Presented a small example of autonomous vehicle
- Shown one algorithm in the control hierarchy: Box-RRT

Future work

- ▶ Define properties we wan/can prove: Viability Kernel, etc.
- Make Box-RRT deterministic ?
- Combine Box-RRT with low-level controller (PID)

Under development

- DynIBEX and contractor and predicate on tubes (J. Alexandre dit Sandretto)
- Extension to n-dimensional case of viability computation (O. Mullier)
- Model this system in an appropriate language, e.g., Zelus (F. Pessaux)
- Combining OpenSMT2 and DynIBEX \Rightarrow SMT modulo ODE (R. Morier)