
Revisting Box-RRT algorithm with DynIBEX

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier, François Pessaux
U2IS, ENSTA ParisTech, Palaiseau, France

DGA MRIS meeting
November 24, 2016

Introduction

Autonomous vehicle

Reference
Controller System

Sensor+fusion
+analysis

Output

Measured
output

Measured
error

System
input

Trajectory planning
Sensor+fusion
+analysisLocalization

Controller loop

Planner

Mission

t0

t1 t2

t3

t4

Goal of the project try to understand main pieces of the system to validate their
behavior and the behavior of the overall system.

2 / 13

A hierarchical control

path planing

motion planing

low-level control

I Path planing generates a set of way points (does not take into account the
dynamics of the vehicle) from a map (totally or partially) known, take into
account obstacles (static)

I Motion planing generates a set of trajectories feasible for the dynamics
considered and take into account obstacles (static and dynamic)

I Low-level controller tries to follow the (discretized) trajectory w.r.t. the
dynamic of the vehicle

3 / 13

This talk

We focus on trajectory planing algorithms taking into account
I A model of the vehicle
I A model of a map with obstacles (static)
I Bounded uncertain information on the position/orientation, etc.

This work is based on

Reliable robust path planning. Romain Pepy, Michel Kieffer, Eric Walter. Journal
Applied Mathematical Computing. 2009.

More precisely, we implement the BoxRRT algorithm with DynIBEX.

4 / 13

DynIBEX in few words

A library combining of CSP solver (IBEX1) with validated numerical
integration methods à la Runge-Kutta.

What can we simulate?
Our main tool for set-based simulation of dynamical systems

I Ordinary differential equations (ODE)
I Algebraic-differential equations (DAE) of index-1

S ≡

ẏ = F (t, y, x,p,u)
0 = G(t, y, x,p,u)
0 = H(t, y,p,u)

y(0) ∈ Y0, x(0) ∈ X0,p ∈ P,u ∈ U , t ∈ [0, tend] .

How checking temporal properties on S?

1Gilles Chabert (EMN) et al. http://www.ibex-lib.org
5 / 13

http://www.ibex-lib.org

Quantified Constraint Satisfaction Differential Problems

QCSDP
Let S be a differential system and tend ∈ R+ the time limit. A QCSDP is a CSP
defined by

I a set of variables V including at least t, a vector y0, p, u
We represent these variables by the vector v;

I an initial domain D containing at least [0, tend], Y0, U , and P;
I a set of constraints C = {c1, . . . , ce} composed of predicates over sets, that

is, constraints of the form

ci ≡ Qv ∈ Di .fi (v) � A, ∀1 6 i 6 e

with Q ∈ {∃,∀}, fi : ℘(R|V|)→ ℘(Rq) stands for non-linear arithmetic
expressions defined over variables v and solution of differential system S,
y(t; y0,p,u) ≡ y(v), � ∈ {⊆,∩∅} and A ⊆ Rq where q > 0.

Note: we follow the same approach that Goldsztejn et al.2

2Including ODE Based Constraints in the Standard CP Framework, CP10
6 / 13

Box-QCSDP as abstraction of QCSDP

Box-QCSDP
Let S be a differential system and tend ∈ R+ the time limit A Box-QCSDP is
defined by

I a set of variables V including at least t, a vector y0, p, u
We represent these variables by the vector v;

I an initial box [d] containing at least [0, tend], [y0], [u], and [p];
I a set of interval constraints C = {c1, . . . , ce} composed of predicates over

sets, that is, constraints of the form

ci ≡ Qv ∈ [di].[fi](v) � α(A), ∀1 6 i 6 e

with Q ∈ {∃,∀}, [fi] : IR|V| → IRq stands for non-linear arithmetic
expressions defined over variables v and interval enclosure solution
[y](t; y0,p,u) ≡ [y](v), � ∈ {⊆,∩∅} and α ∈ {Hull, Int}

Note: using boxes is not so straightforward to preserve soundness
TODO: A more formal definition of the abstraction has to be defined!

7 / 13

DynIBEX: a Box-QCSDP solver with restrictions
Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers
I Robust controller synthesis: ∃u, ∀p, ∀y0 + temporal constraints
I Parameter synthesis: ∃p, ∀u, ∀y0 + temporal constraints
I etc.

We also defined a set of temporal constraints useful to analyze/design robotic
application.

Verbal property QCSDP translation
Stay in A ∀t ∈ [0, tend], [y](t, v′) ⊆ Int(A)
In A at τ ∃t ∈ [0, tend], [y](t, v′) ⊆ Int(A)

Has crossed A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) = ∅

Has reached A [y](tend, v′) ∩ Hull(A) 6= ∅
Finished in A [y](tend, v′) ⊆ Int(A)

8 / 13

Box-RRT Algorithm

Goal
I “quickly” find a trajectory going from an initial configuration si to a final

configuration sf

I while avoiding obstacles so

I and taking into account bounded uncertainties.

Main ingredients
I used a model of the vehicle
I based on RRT (Rapid Explore Tree) Algorithm
I combined with interval analysis tools (e.g., guaranteed numerical integration)

9 / 13

Cinematic of a Robot in 2D

We consider an unicycle model of a robot

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = v tan (δ + [−ε, ε])

with constraints
I v ∈ [−10, 10] and ω ∈ [−π/6, π/6]
I ε = 1e−3

10 / 13

How does Box-RRT work?

Initialization

I A discretized map
I A final state
I Some obstacles
I An initial state
I A tree of possible

trajectories
si

sf

so

si

11 / 13

How does Box-RRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

Choose randomly a free state of
the map

si

11 / 13

How does Box-RRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

Find the nearest node in the tree
following a Hausdorff distance

si

11 / 13

How does Box-RRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1

u1

Predict the next state from a ran-
dom control u

if no collision detected add
(snearest, u, snew) in the tree

si

s1

u1

11 / 13

How does Box-RRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1

Note that the choice of srandom
can be biased to increase proba-
bility to be closer to sf

si

s1

u1

11 / 13

How does Box-RRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1

Computing distances has a linear
complexity w.r.t. the number of
nodes in the tree

si

s1

u1

11 / 13

How does Box-RRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1 u2

The absence of collision is de-
tected when the tube does not
intersect an obstacle

si

s1

u1

11 / 13

Box-RRT in DynIBEX

Three temporal constraints have been used:
I stay_in state-space;
I has_crossed (in negative form) obstacles;
I one_in target;

and one contractor on tube has been used
I get_tight(t) to get final state.

So this algorithm can be quickly implemented in DynIBEX.

12 / 13

Conclusion

I Defined a framework to analyze robotic application: Box-QCSDP
I Presented a small example of autonomous vehicle
I Shown one algorithm in the control hierarchy: Box-RRT

Future work
I Define properties we wan/can prove: Viability Kernel, etc.
I Make Box-RRT deterministic ?
I Combine Box-RRT with low-level controller (PID)

Under development
I DynIBEX and contractor and predicate on tubes (J. Alexandre dit Sandretto)
I Extension to n-dimensional case of viability computation (O. Mullier)
I Model this system in an appropriate language, e.g., Zelus (F. Pessaux)
I Combining OpenSMT2 and DynIBEX ⇒ SMT modulo ODE (R. Morier)

13 / 13

