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Goal of the project try to understand main pieces of the system to validate their
behavior and the behavior of the overall system.
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A hierarchical control

path planing

motion planing

low-level control

I Path planing generates a set of way points (does not take into account the
dynamics of the vehicle) from a map (totally or partially) known, take into
account obstacles (static)

I Motion planing generates a set of trajectories feasible for the dynamics
considered and take into account obstacles (static and dynamic)

I Low-level controller tries to follow the (discretized) trajectory w.r.t. the
dynamic of the vehicle
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This talk

We focus on trajectory planing algorithms taking into account
I A model of the vehicle
I A model of a map with obstacles (static)
I Bounded uncertain information on the position/orientation, etc.

This work is based on

Reliable robust path planning. Romain Pepy, Michel Kieffer, Eric Walter. Journal
Applied Mathematical Computing. 2009.

More precisely, we implement the BoxRRT algorithm with DynIBEX.
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DynIBEX in few words

A library combining of CSP solver (IBEX1) with validated numerical
integration methods à la Runge-Kutta.

What can we simulate?
Our main tool for set-based simulation of dynamical systems

I Ordinary differential equations (ODE)
I Algebraic-differential equations (DAE) of index-1

S ≡


ẏ = F (t, y, x,p,u)
0 = G(t, y, x,p,u)
0 = H(t, y,p,u)

y(0) ∈ Y0, x(0) ∈ X0,p ∈ P,u ∈ U , t ∈ [0, tend] .

How checking temporal properties on S?

1Gilles Chabert (EMN) et al. http://www.ibex-lib.org
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Quantified Constraint Satisfaction Differential Problems

QCSDP
Let S be a differential system and tend ∈ R+ the time limit. A QCSDP is a CSP
defined by

I a set of variables V including at least t, a vector y0, p, u
We represent these variables by the vector v;

I an initial domain D containing at least [0, tend], Y0, U , and P;
I a set of constraints C = {c1, . . . , ce} composed of predicates over sets, that

is, constraints of the form

ci ≡ Qv ∈ Di .fi (v) � A, ∀1 6 i 6 e

with Q ∈ {∃,∀}, fi : ℘(R|V|)→ ℘(Rq) stands for non-linear arithmetic
expressions defined over variables v and solution of differential system S,
y(t; y0,p,u) ≡ y(v), � ∈ {⊆,∩∅} and A ⊆ Rq where q > 0.

Note: we follow the same approach that Goldsztejn et al.2

2Including ODE Based Constraints in the Standard CP Framework, CP10
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Box-QCSDP as abstraction of QCSDP

Box-QCSDP
Let S be a differential system and tend ∈ R+ the time limit A Box-QCSDP is
defined by

I a set of variables V including at least t, a vector y0, p, u
We represent these variables by the vector v;

I an initial box [d] containing at least [0, tend], [y0], [u], and [p];
I a set of interval constraints C = {c1, . . . , ce} composed of predicates over

sets, that is, constraints of the form

ci ≡ Qv ∈ [di ].[fi ](v) � α(A), ∀1 6 i 6 e

with Q ∈ {∃,∀}, [fi ] : IR|V| → IRq stands for non-linear arithmetic
expressions defined over variables v and interval enclosure solution
[y](t; y0,p,u) ≡ [y](v), � ∈ {⊆,∩∅} and α ∈ {Hull, Int}

Note: using boxes is not so straightforward to preserve soundness
TODO: A more formal definition of the abstraction has to be defined!
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DynIBEX: a Box-QCSDP solver with restrictions
Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers
I Robust controller synthesis: ∃u, ∀p, ∀y0 + temporal constraints
I Parameter synthesis: ∃p, ∀u, ∀y0 + temporal constraints
I etc.

We also defined a set of temporal constraints useful to analyze/design robotic
application.

Verbal property QCSDP translation
Stay in A ∀t ∈ [0, tend], [y](t, v′) ⊆ Int(A)
In A at τ ∃t ∈ [0, tend], [y](t, v′) ⊆ Int(A)

Has crossed A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) = ∅

Has reached A [y](tend, v′) ∩ Hull(A) 6= ∅
Finished in A [y](tend, v′) ⊆ Int(A)
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Box-RRT Algorithm

Goal
I “quickly” find a trajectory going from an initial configuration si to a final

configuration sf

I while avoiding obstacles so

I and taking into account bounded uncertainties.

Main ingredients
I used a model of the vehicle
I based on RRT (Rapid Explore Tree) Algorithm
I combined with interval analysis tools (e.g., guaranteed numerical integration)
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Cinematic of a Robot in 2D

We consider an unicycle model of a robot

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = v tan (δ + [−ε, ε])

with constraints
I v ∈ [−10, 10] and ω ∈ [−π/6, π/6]
I ε = 1e−3
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How does Box-RRT work?

Initialization

I A discretized map
I A final state
I Some obstacles
I An initial state
I A tree of possible

trajectories
si

sf

so

si
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How does Box-RRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

Choose randomly a free state of
the map

si
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How does Box-RRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

Find the nearest node in the tree
following a Hausdorff distance

si
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How does Box-RRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1

u1

Predict the next state from a ran-
dom control u

if no collision detected add
(snearest, u, snew) in the tree

si

s1

u1

11 / 13



How does Box-RRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1

Note that the choice of srandom
can be biased to increase proba-
bility to be closer to sf

si

s1

u1
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How does Box-RRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1

Computing distances has a linear
complexity w.r.t. the number of
nodes in the tree

si

s1

u1
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How does Box-RRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick srandom

2. Find snearest

3. Compute snew

until sf is reached
si

sf

so

s1 u2

The absence of collision is de-
tected when the tube does not
intersect an obstacle

si

s1

u1
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Box-RRT in DynIBEX

Three temporal constraints have been used:
I stay_in state-space;
I has_crossed (in negative form) obstacles;
I one_in target;

and one contractor on tube has been used
I get_tight(t) to get final state.

So this algorithm can be quickly implemented in DynIBEX.
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Conclusion

I Defined a framework to analyze robotic application: Box-QCSDP
I Presented a small example of autonomous vehicle
I Shown one algorithm in the control hierarchy: Box-RRT

Future work
I Define properties we wan/can prove: Viability Kernel, etc.
I Make Box-RRT deterministic ?
I Combine Box-RRT with low-level controller (PID)

Under development
I DynIBEX and contractor and predicate on tubes (J. Alexandre dit Sandretto)
I Extension to n-dimensional case of viability computation (O. Mullier)
I Model this system in an appropriate language, e.g., Zelus (F. Pessaux)
I Combining OpenSMT2 and DynIBEX ⇒ SMT modulo ODE (R. Morier)
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