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Goal of the project:
» understand main pieces of the system
> validate their behaviour

> validate the behaviour of the overall system.
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A hierarchical control

Panner

path planning

| motion pIanning|

| low-level control |

» Path planning generates a set of way points (does not take into account the
dynamics of the vehicle) from a map (totally or partially) known, take into
account obstacles (static)

» Motion planning generates a set of trajectories feasible for the dynamics
considered and take into account obstacles (static and/or dynamic)

> Low-level controller tries to follow the (discretized) trajectory w.r.t. the

dynamic of the vehicle
3/29



This talk

We focus on sampling-based motion planning algorithms :
» Rapidly-exploring Random Trees (RRTs) and
> Optimal Rapidly-exploring Random Trees (RRT*).
Take into account
» A model of the vehicle,
> A model of a map with obstacles (static),

» Uncertain information on the position/orientation, etc. - bounded within
interval vectors or boxes.

4/29



This talk

Propose new methods to plan guaranteed to be safe paths:
» improved BoxRRT - rciBoxRRT,
» improved BoxRRT - csiBoxRRT,
> new algorithm based RRT* - t(towards)BoxRRT*.

The BoxRRT is based on

Reliable robust path planning. Romain Pepy, Michel Kieffer, Eric Walter. Journal
Applied Mathematical Computing. 2009.
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Box-RRT Algorithm

Goal
» “quickly” find a path going from an initial configuration s; to a final
configuration sy
» while avoiding obstacles s,

» and taking into account bounded uncertainties.

Main ingredients

model of the vehicle
based on RRT Algorithm

combined with interval analysis tools (e.g., guaranteed numerical integration)
applied with

1. a random (rciBoxRRT) and
2. a designed control input (sciBoxRRT)

vV v VY

First improvement : use of modern and new tools for the guaranteed numerical
integration

Implement these algorithms with DynIBEX. 6/29



DynIBEX in few words

A library combining of Constraint Satisfaction Problems solver (IBEX!) with
validated numerical integration methods a la Runge-Kutta.

Three temporal constraints have been used:
> stay in state-space;
> has crossed (in negative form) obstacles;

> one in target;

and one contractor on tube has been used
> get tight(t) to get final state.

So these algorithms can be quickly implemented in DynIBEX.

1Gilles Chabert (EMN) et al. http://www.ibex-1ib.org
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http://www.ibex-lib.org

How does rciBoxRRT —sciBoxRRT work?

Initialization

A discretized map _.-"" s
A final state - =~

Some obstacles -~ ~ |
An initial state . KRR
AY

A tree of possible'~
trajectories « S~

vV vV v v Y
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How does rciBoxRRT —sciBoxRRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick Srandom

3. Compute Spew
until s¢ is reached

Choose randomly a free state of @
the map
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How does rciBoxRRT —sciBoxRRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick siandom

2. Find spearest =+t . :“

3. Compute Spew

until s¢ is reached

Find the nearest node in the tree @
following a Hausdorff distance
between two boxes
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How does rciBoxRRT —sciBoxRRT work?

Iteration 1

The building of the tree follows H

3 main steps in a loop

1. Pick Srandom

2. Find Shearest

3. Compute Shew .

until s¢ is reached

Predict the next state from a 6
random or designed control in- [ v

put u T “i'
if no collision detected add

(Snearest, U, Snew) in the tree
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How does rciBoxRRT —sciBoxRRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop ...’ el

1. Pick Siandom =

2. Find Spearest

3. Compute Spew

until s¢ is reached

Note that the choice of S;andom e
is biased to increase probability u

to be closer to s¢ (Random box

BiasGoal procedure) e
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How does rciBoxRRT —sciBoxRRT work?
Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick siandom

2. Find Spearest =

3. Compute Spew

until s¢ is reached

Computing distances has a linear @

complexity w.r.t. the number of u
nodes in the tree
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How does rciBoxRRT —sciBoxRRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick siandom

2' Flnd Snearest

3. Compute Spew

until s¢ is reached

The absence of collision is de-

tected when the tube does not
intersect an obstacle

8/29



tBoxRRT* Algorithm

RRT* Algorithm

» "quickly” finds a "low cost” path going from an initial configuration s; to a
final configuration s¢
» while avoiding obstacles s,

Based on :

Sampling-based algorithms for optimal motion planning. S. Karaman and E.
Frazzoli. The international journal of robotics research. 2011.

tBoxRRT* Algorithm

» based on RRT* Algorithm : finds a "low distance” path going from an initial
configuration [s;] to a final configuration [sf],
» combined with interval analysis tools (e.g., guaranteed numerical integration)

» while avoiding obstacles Syps

9/29



How does tBoxRRT* work?

> [S,and] < random-box-GoalBias;

> Values inside the vertices : distance (e.g. the Hausdorff distance between two
boxes) from the initial state to that vertex.
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How does tBoxRRT* work?

> [Spearest] < nearest-neighbor( G, [sand]);

> Nearest-neighbor procedure uses the Hausdorff distance between two boxes
metric.
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How does tBoxRRT* work?

> ([snew]7 U) <— steer ([Snearest]a [srand])
» 1. uis computed using a desired objective.
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How does tBoxRRT* work?

Lt [ ~
| ~
% 9 3
, v
1 \
1 “
[snew]
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\\Q\\ 6 7/
~ -
~JCLE Shear

> Shear < near (G, [spew])

> Near procedure : uses k-nearest neighbors algorithm (all vertices within

the area of a ball of radius r(n) = ylog(n) with -y = 2¢ (¢ : Euler's number; n
: number of vertex in the tree at an iteration) )
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How does tBoxRRT* work?

il

’
\

> [smin] ¢ ChooseParent (Sneara [Snearest], [snew])
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How does tBoxRRT* work?

il

’
\

> [smin] ¢ ChooseParent (Sneara [Snearest], [snew])
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How does tBoxRRT* work?

[
9

7([snew])

> G <« rewire(G, [Smin], [Snew])

Until
> max iteration number is reached or
> a solution is found (e.g [Spew] 7# 0, [Snew] C Int([Sgoar]))
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tBoxRRT* Algorithm

input : [sinit]v [SgoaI]x K;
output : G = (V,E);
G.init([s;n,-t]);
i+ 0;
repeat
[Srand] < random-box(/)
[Snearest] <— nearest-neighbor(G, [S;and])
([snew]7 U) <~ Steer([snearest]a [Srand])
if collision-free-path([syew]) then
Shear < near(G, [Spew], V)
[Smin] <~ Chooseparent(snean [Snearest]a [Snew])
G « rewire( G, [Smin], [Snew])
end if
until (i + + < K) or ([Spew] # 0, [Snew] C Int([Sgoar]))
return G

Algorithm 1: BoxRRT* motion planning algorithm
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BoxRRT* Algorithm - Future work

inPUt : [Sinit]. [SgoaI]x K;
output : G = (V,E);
G.init([s;n,-t]);
i+ 0;
repeat
[Srand] <— random-box(i)
[Snearest] <— nearest-neighbor(G, [s;and])
([Snewla U) <~ Steer( [Snearest]a [Srand])
if collision-free-path([syew]) then
Shear < near(G, [Spew], V)
[Smin] <~ ChooseParent(S,,ea,, [Snearest]a [Snew])
[smink] <~ ChooseChiIdren(Snea, \ {[Smin]}7 [Snew]a [Snearest])
G < rewire(G, [smin], [Snew], [Smin,])
end if
until (/ ++ < K)
return G

Algorithm 2: BoxRRT* motion planning algorithm
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How does ChooseChildren procedure work?

L [ ~
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> [smink] — ChooseChiIdren(S,,ea, \ {[smin]}7 [snew]v [snearest])
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How does ChooseChildren procedure work?

L [ ~
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> [smink] — ChooseChiIdren(S,,ea, \ {[smin]}7 [snew]v [snearest])
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How does ChooseChildren procedure work?

> G < rewire(G, [Smin], [Snew]s [Smin.])

Future work :
Until the max iteration number is reached.
Apply the Ax method and find the shortest path? ....
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Cinematic of a Mobile Robot in 2D

We consider a simple car model

x = vcos(d)

y = vsin(6)
6 = %tan (9)

with constraints
» v € [-1,1] - longitudinal speed and
> § € [—7/2,7/2] - steering angle.

> L = 1.5[m] - distance between the front and back axes of the car.
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Control input for the simple car model

» rciBoxRRT : control input randomly chosen in the admissible set.

» sciBoxRRT and tBoxRRT*: control input designed in two steps:

S
nearest
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Results: 4 environments

> rciBoxRRT (2200t.v.:28[s]; 5880 t.v.:103[s]; 3416t.v.:51 [s]; 7802t.v.:141][s]).

0 5K

> sciBoxRRT (570 t.v.:11 [s]; 1149 t.v.:32 [s]; 278 t.v.:5[s]; 978 t.v.:26][s]).

~
Ta M 7, [

> tBoxRRT*( 156 t.v.:3 [s]; 1088 t.v.:38 [s]; 786 t.v.:20 [s]; 963 t.v.:28[s]).

b
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rciBoxRRT, sciBoxRRT and tBoxRRT*
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Results: rciBoxRRT, sciBoxRRT and tBoxRRT*

» Computational time (s) required by the three proposed algorithms for
convergence,

» Number of vertices for the planned path obtained by the three proposed
algorithms,

> Planned path length (cm) obtained by the three proposed algorithms.

s L L L e !n _‘n I i I“ ‘II ‘“

 rCiBOXRRT M SCIBOXRRT ™ tBOXRRT* ® rciBOXRRT  # SciBOXRRT # tBOXRRT*  rciBOXRRT W SCIBOXRRT ™ tBOXRRT*

H
standard deviation

standard deviation

CPU[s] - mean +
Path length cm] - me
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Conclusion

» Shown three motion planner algorithms in the control hierarchy: rciBoxRRT,
sciBoxRRT and tBoxRRT* ( Submitted to CDC17)

» Presented a small example of autonomous vehicle

Future work
> Propose the BoxRRTx* (maybe use the A% method for the shortest path
search)

» BiBoxRRT:x* : based on RRT Algorithm with two trees : one growing from s;
and the other one from s¢ until they intersect 7

> Combine Box-RRT with low-level controller (PID)
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Thank you !
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