
Extended Reliable Robust Motion Planners

Adina M. Panchea1

joint work with Alexandre Chapoutot2

, David Filliat2

1

LIX, Ecole Polytechnique, Palaiseau, France

2

U2IS, ENSTA ParisTech, Palaiseau, France

March 28, 2017

Introduction

Autonomous vehicle

Reference Controller System

Sensor+fusion
+analysis

Output

Measured
output

Measured
error

System
input

Trajectory planning Sensor+fusion
+analysisLocalization

Controller loop

Planner
Mission

t0

t1 t2

t3

t4

Goal of the project:
I understand main pieces of the system
I validate their behaviour
I validate the behaviour of the overall system.

2 / 29

A hierarchical control

Panner

path planning

motion planning

low-level control

I Path planning generates a set of way points (does not take into account the
dynamics of the vehicle) from a map (totally or partially) known, take into
account obstacles (static)

I Motion planning generates a set of trajectories feasible for the dynamics
considered and take into account obstacles (static and/or dynamic)

I Low-level controller tries to follow the (discretized) trajectory w.r.t. the
dynamic of the vehicle

3 / 29

This talk

We focus on sampling-based motion planning algorithms :
I Rapidly-exploring Random Trees (RRTs) and
I Optimal Rapidly-exploring Random Trees (RRTú).

Take into account
I A model of the vehicle,
I A model of a map with obstacles (static),
I Uncertain information on the position/orientation, etc. - bounded within

interval vectors or boxes.

4 / 29

This talk

Propose new methods to plan guaranteed to be safe paths:
I improved BoxRRT - rciBoxRRT,
I improved BoxRRT - csiBoxRRT,
I new algorithm based RRTú - t(towards)BoxRRTú.

The BoxRRT is based on
Reliable robust path planning. Romain Pepy, Michel Kie�er, Eric Walter. Journal
Applied Mathematical Computing. 2009.

5 / 29

Box-RRT Algorithm
Goal

I “quickly” find a path going from an initial configuration s
i

to a final
configuration s

f

I while avoiding obstacles s
o

I and taking into account bounded uncertainties.

Main ingredients
I model of the vehicle
I based on RRT Algorithm
I combined with interval analysis tools (e.g., guaranteed numerical integration)
I applied with

1. a random (rciBoxRRT) and

2. a designed control input (sciBoxRRT)

First improvement : use of modern and new tools for the guaranteed numerical
integration

Implement these algorithms with DynIBEX. 6 / 29

DynIBEX in few words

A library combining of Constraint Satisfaction Problems solver (IBEX1) with
validated numerical integration methods à la Runge-Kutta.

Three temporal constraints have been used:
I stay in state-space;
I has crossed (in negative form) obstacles;
I one in target;

and one contractor on tube has been used
I get tight(t) to get final state.

So these algorithms can be quickly implemented in DynIBEX.

1

Gilles Chabert (EMN) et al. http://www.ibex-lib.org

7 / 29

http://www.ibex-lib.org

How does rciBoxRRT≠sciBoxRRT work?

Initialization

I A discretized map
I A final state
I Some obstacles
I An initial state
I A tree of possible

trajectories
s

i

s
f

s
o

s
i

8 / 29

How does rciBoxRRT≠sciBoxRRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick s

random

2. Find s

nearest

3. Compute s

new

until s
f

is reached
s

i

s
f

s
o

Choose randomly a free state of
the map

s
i

8 / 29

How does rciBoxRRT≠sciBoxRRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick s

random

2. Find s

nearest

3. Compute s

new

until s
f

is reached
s

i

s
f

s
o

Find the nearest node in the tree
following a Hausdor� distance
between two boxes

s
i

8 / 29

How does rciBoxRRT≠sciBoxRRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick s

random

2. Find s

nearest

3. Compute s

new

until s
f

is reached
s

i

s
f

s
o

s
1

u

1

Predict the next state from a
random or designed control in-
put u

if no collision detected add
(s

nearest

, u, s
new

) in the tree

s
i

s
1

u

1

8 / 29

How does rciBoxRRT≠sciBoxRRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick s

random

2. Find s

nearest

3. Compute s

new

until s
f

is reached
s

i

s
f

s
o

s
1

Note that the choice of s
random

is biased to increase probability
to be closer to s

f

(Random box

BiasGoal procedure)

s
i

s
1

u

1

8 / 29

How does rciBoxRRT≠sciBoxRRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick s

random

2. Find s

nearest

3. Compute s

new

until s
f

is reached
s

i

s
f

s
o

s
1

Computing distances has a linear
complexity w.r.t. the number of
nodes in the tree

s
i

s
1

u

1

8 / 29

How does rciBoxRRT≠sciBoxRRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick s

random

2. Find s

nearest

3. Compute s

new

until s
f

is reached
s

i

s
f

s
o

s
1

u

2

The absence of collision is de-
tected when the tube does not
intersect an obstacle

s
i

s
1

u

1

8 / 29

tBoxRRTú Algorithm
RRTú Algorithm

I ”quickly” finds a ”low cost” path going from an initial configuration s
i

to a
final configuration s

f

I while avoiding obstacles s
o

Based on :

Sampling-based algorithms for optimal motion planning. S. Karaman and E.
Frazzoli. The international journal of robotics research. 2011.

tBoxRRTú Algorithm
I based on RRTú Algorithm : finds a ”low distance” path going from an initial

configuration [s
i

] to a final configuration [s
f

],
I combined with interval analysis tools (e.g., guaranteed numerical integration)
I while avoiding obstacles S

obs

9 / 29

How does tBoxRRTú work?

s

i 4
5

9

10

6
s

g

s

rand

I [s
rand

] Ω random-box-GoalBias;
I Values inside the vertices : distance (e.g. the Hausdor� distance between two

boxes) from the initial state to that vertex.

10 / 29

How does tBoxRRTú work?

s

i 4
5

9

10

6
s

g

s

rand

I [s
nearest

] Ω nearest-neighbor(G , [s
rand

]);
I Nearest-neighbor procedure uses the Hausdor� distance between two boxes

metric.

11 / 29

How does tBoxRRTú work?

s

i 4
5

9

10

6
s

g

[s
new

]

s

rand

10

I ([s
new

], u) Ω steer ([s
nearest

], [s
rand

])
I

1. u is computed using a desired objective.

12 / 29

How does tBoxRRTú work?

s

i 4
5

9

10

6
s

g

[s
new

]

10

S
near

I S
near

Ω near (G , [s
new

])
I Near procedure : uses k-nearest neighbors algorithm (all vertices within

the area of a ball of radius r(n) = “log(n) with “ = 2‘ (‘ : Euler’s number; n
: number of vertex in the tree at an iteration))

13 / 29

How does tBoxRRTú work?

s

i 4
5

9

10

6
s

g

[s
new

]
s

rand

10

7

9

12

S
near

I [s
min

] Ω ChooseParent (S
near

, [s
nearest

], [s
new

])

14 / 29

How does tBoxRRTú work?

s

i 4
5

9

10

6
s

g

[s
new

]
s

rand

10

7

9

12

S
near

I [s
min

] Ω ChooseParent (S
near

, [s
nearest

], [s
new

])

15 / 29

How does tBoxRRTú work?

s

i 4
5

9

10

6
s

g

7([s
new

])

I
G Ω rewire(G , [s

min

], [s
new

])

Until
I

max iteration number is reached or
I

a solution is found (e.g [s
new

] ”= ÿ, [s
new

] µ Int([s
goal

]))
16 / 29

tBoxRRTú Algorithm

input : [s
init

], [s
goal

], K ;
output : G = (V , E);
G .init([s

init

]);
i Ω 0 ;
repeat

[s
rand

] Ω random-box(i)
[s

nearest

] Ω nearest-neighbor(G , [s
rand

])
([s

new

], u) Ω steer([s
nearest

], [s
rand

])
if collision-free-path([s

new

]) then
S

near

Ω near(G , [s
new

], V)
[s

min

] Ω ChooseParent(S
near

, [s
nearest

], [s
new

])
G Ω rewire(G , [s

min

], [s
new

])
end if

until (i + + < K) or ([s
new

] ”= ÿ, [s
new

] µ Int([s
goal

]))
return G

Algorithm 1: BoxRRTú motion planning algorithm

17 / 29

BoxRRTú Algorithm - Future work

input : [s
init

], [s
goal

], K ;
output : G = (V , E);
G .init([s

init

]);
i Ω 0 ;
repeat

[s
rand

] Ω random-box(i)
[s

nearest

] Ω nearest-neighbor(G , [s
rand

])
([s

new

], u) Ω steer([s
nearest

], [s
rand

])
if collision-free-path([s

new

]) then
S

near

Ω near(G , [s
new

], V)
[s

min

] Ω ChooseParent(S
near

, [s
nearest

], [s
new

])
[s

min

k

] Ω ChooseChildren(S
near

\ {[s
min

]}, [s
new

], [s
nearest

])
G Ω rewire(G , [s

min

], [s
new

], [s
min

k

])
end if

until (i + + < K)
return G

Algorithm 2: BoxRRTú motion planning algorithm

18 / 29

How does ChooseChildren procedure work?

s

i 4
5

9

10

6
s

g

7(x
new

)

9

10

8

S
near

I [s
min

k

] Ω ChooseChildren(S
near

\ {[s
min

]}, [s
new

], [s
nearest

])

19 / 29

How does ChooseChildren procedure work?

s

i 4
5

9

10

6
s

g

7(s
new

)

9

10

8

S
near

I [s
min

k

] Ω ChooseChildren(S
near

\ {[s
min

]}, [s
new

], [s
nearest

])

20 / 29

How does ChooseChildren procedure work?

s

i 4
5

9

8

6
s

g

7(s
new

)

I
G Ω rewire(G , [s

min

], [s
new

], [s
min

k

])

Future work :
Until the max iteration number is reached.
Apply the Aú method and find the shortest path?

21 / 29

Cinematic of a Mobile Robot in 2D

We consider a simple car model

ẋ = v cos(◊)
ẏ = v sin(◊)

◊̇ = v

L

tan (”)

with constraints
I

v œ [≠1, 1] - longitudinal speed and
I ” œ [≠fi/2, fi/2] - steering angle.
I

L = 1.5[m] - distance between the front and back axes of the car.

22 / 29

Control input for the simple car model

I rciBoxRRT : control input randomly chosen in the admissible set.

I sciBoxRRT and tBoxRRTú: control input designed in two steps:

23 / 29

Results: 4 environments
I

rciBoxRRT (2200t.v.:28[s]; 5880 t.v.:103[s]; 3416t.v.:51 [s]; 7802t.v.:141[s]).

I
sciBoxRRT (570 t.v.:11 [s]; 1149 t.v.:32 [s]; 278 t.v.:5[s]; 978 t.v.:26[s]).

I
tBoxRRT

ú(156 t.v.:3 [s]; 1088 t.v.:38 [s]; 786 t.v.:20 [s]; 963 t.v.:28[s]).

24 / 29

Results: rciBoxRRT, sciBoxRRT and tBoxRRTú

25 / 29

Results: rciBoxRRT, sciBoxRRT and tBoxRRTú

I Computational time (s) required by the three proposed algorithms for
convergence,

I Number of vertices for the planned path obtained by the three proposed
algorithms,

I Planned path length (cm) obtained by the three proposed algorithms.

26 / 29

Conclusion

I Shown three motion planner algorithms in the control hierarchy: rciBoxRRT,
sciBoxRRT and tBoxRRTú (Submitted to CDC17)

I Presented a small example of autonomous vehicle

Future work
I Propose the BoxRRTú (maybe use the Aú method for the shortest path

search)
I BiBoxRRTú : based on RRT Algorithm with two trees : one growing from s

i

and the other one from s
f

until they intersect ?
I Combine Box-RRT with low-level controller (PID)

27 / 29

Acknowledgment

Thanks to
I Olivier Mullier, Julien Alexandre dit Sandretto,

(U2IS, ENSTA ParisTech, Palaiseau, France)
I Eric Goubault and Benjamin Martin,

(LIX, Ecole Polytechnique, Palaiseau, France)
for productive and useful discussions.

28 / 29

Thank you !

29 / 29

