Extended Reliable Robust Motion Planners

Adina M. Panchea ${ }^{1}$
joint work with Alexandre Chapoutot ${ }^{2}$, David Filliat ${ }^{2}$
${ }^{1}$ LIX, Ecole Polytechnique, Palaiseau, France
${ }^{2}$ U2IS, ENSTA ParisTech, Palaiseau, France

March 28, 2017

Introduction

Autonomous vehicle

Controller loop

Goal of the project:

- understand main pieces of the system
- validate their behaviour
- validate the behaviour of the overall system.

A hierarchical control

- Path planning generates a set of way points (does not take into account the dynamics of the vehicle) from a map (totally or partially) known, take into account obstacles (static)
- Motion planning generates a set of trajectories feasible for the dynamics considered and take into account obstacles (static and/or dynamic)
- Low-level controller tries to follow the (discretized) trajectory w.r.t. the dynamic of the vehicle

This talk

We focus on sampling-based motion planning algorithms :

- Rapidly-exploring Random Trees (RRTs) and
- Optimal Rapidly-exploring Random Trees (RRT*).

Take into account

- A model of the vehicle,
- A model of a map with obstacles (static),
- Uncertain information on the position/orientation, etc. - bounded within interval vectors or boxes.

This talk

Propose new methods to plan guaranteed to be safe paths:

- improved BoxRRT - rciBoxRRT,
- improved BoxRRT - csiBoxRRT,
- new algorithm based RRT* - t(towards)BoxRRT*.

The BoxRRT is based on
Reliable robust path planning. Romain Pepy, Michel Kieffer, Eric Walter. Journal Applied Mathematical Computing. 2009.

Box-RRT Algorithm

Goal

- "quickly" find a path going from an initial configuration \mathbf{s}_{i} to a final configuration \mathbf{s}_{f}
- while avoiding obstacles \mathbf{s}_{o}
- and taking into account bounded uncertainties.

Main ingredients

- model of the vehicle
- based on RRT Algorithm
- combined with interval analysis tools (e.g., guaranteed numerical integration)
- applied with

1. a random (rciBoxRRT) and
2. a designed control input (sciBoxRRT)

First improvement : use of modern and new tools for the guaranteed numerical integration

DynlBEX in few words

A library combining of Constraint Satisfaction Problems solver (IBEX ${ }^{1}$) with validated numerical integration methods à la Runge-Kutta.

Three temporal constraints have been used:

- stay in state-space;
- has crossed (in negative form) obstacles;
- one in target;
and one contractor on tube has been used
- get tight(t$)$ to get final state.

So these algorithms can be quickly implemented in DynIBEX.

[^0]
How does rciBoxRRT-sciBoxRRT work?

Initialization

- A discretized map
- A final state - $^{-}$
- Some obstacles -
- An initial state ,
- A tree of possiblè, trajectories

How does rciBoxRRT-sciBoxRRT work?

Iteration 1
The building of the tree follows 3 main steps in a loop

1. Pick $S_{\text {random }}$
2. Find $s_{\text {nearest }}$
3. Compute $s_{\text {new }}$
until \mathbf{s}_{f} is reached

							\mathbf{S}_{f}
\cdots	\ldots						
	\ddots_{0}						
				\ddots	\ddots		
					\ddots		
					\ddots		
	\mathbf{S}_{i}					\ddots	
							\ddots

Choose randomly a free state of the map

How does rciBoxRRT-sciBoxRRT work?

Iteration 1

The building of the tree follows 3 main steps in a loop

1. Pick $S_{\text {random }}$
2. Find $s_{\text {nearest }}$
3. Compute $S_{\text {new }}$
until \mathbf{s}_{f} is reached

Find the nearest node in the tree following a Hausdorff distance between two boxes

How does rciBoxRRT-sciBoxRRT work?

Iteration 1
The building of the tree follows 3 main steps in a loop

1. Pick $S_{\text {random }}$
2. Find $s_{\text {nearest }}$
3. Compute $s_{\text {new }}$
until \mathbf{s}_{f} is reached

Predict the next state from a random or designed control input u
if no collision detected add

($\mathbf{S}_{\text {nearest }}, u, \mathbf{s}_{\text {new }}$) in the tree

How does rciBoxRRT-sciBoxRRT work?

Iteration 2

The building of the tree follows 3 main steps in a loop.

1. Pick $S_{\text {random }}$.
2. Find $s_{\text {nearest }}$
3. Compute $S_{\text {new }}$
until \mathbf{s}_{f} is reached

Note that the choice of $\mathrm{S}_{\text {random }}$ is biased to increase probability to be closer to \mathbf{s}_{f} (Random box BiasGoal procedure)

How does rciBoxRRT-sciBoxRRT work?

Iteration 2
The building of the tree follows 3 main steps in a loop

1. Pick $s_{\text {random }}$
2. Find $s_{\text {nearest }}$
3. Compute $s_{\text {new }}$
until \mathbf{s}_{f} is reached

Computing distances has a linear complexity w.r.t. the number of nodes in the tree

How does rciBoxRRT-sciBoxRRT work?

Iteration 2
The building of the tree follows 3 main steps in a loop

1. Pick $S_{\text {random }}$
2. Find $s_{\text {nearest }}$
3. Compute $s_{\text {new }}$
until \mathbf{s}_{f} is reached

					\vdots		
				\vdots		\mathbf{S}_{f}	
				\vdots	\vdots		
	\mathbf{S}_{o}						
		\vdots					
				\vdots	\vdots		
				\mathbf{S}_{1}	\dot{U}_{2}		
	\mathbf{S}_{i}						

The absence of collision is detected when the tube does not intersect an obstacle

tBoxRRT* Algorithm

RRT* Algorithm

- "quickly" finds a "low cost" path going from an initial configuration \mathbf{s}_{i} to a final configuration \mathbf{s}_{f}
- while avoiding obstacles $\mathbf{s}_{\text {o }}$

Based on :
Sampling-based algorithms for optimal motion planning. S. Karaman and E. Frazzoli. The international journal of robotics research. 2011.

tBoxRRT* Algorithm

- based on RRT* Algorithm : finds a "low distance" path going from an initial configuration $\left[\mathbf{s}_{i}\right]$ to a final configuration $\left[\mathbf{s}_{f}\right]$,
- combined with interval analysis tools (e.g., guaranteed numerical integration)
- while avoiding obstacles $\mathcal{S}_{\text {obs }}$

How does tBoxRRT* work?

- $\left[s_{r a n d}\right] \leftarrow$ random-box-GoalBias;
- Values inside the vertices : distance (e.g. the Hausdorff distance between two boxes) from the initial state to that vertex.

How does tBoxRRT* work?

- $\left[s_{\text {nearest }}\right] \leftarrow$ nearest-neighbor $\left(G,\left[s_{r a n d}\right]\right)$;
- Nearest-neighbor procedure uses the Hausdorff distance between two boxes metric.

How does tBoxRRT* work?

- $\left(\left[s_{\text {new }}\right], u\right) \leftarrow \operatorname{steer}\left(\left[s_{\text {nearest }}\right],\left[s_{\text {rand }}\right]\right)$
- 1. u is computed using a desired objective.

How does tBoxRRT* work?

- $\mathcal{S}_{\text {near }} \leftarrow \operatorname{near}\left(G,\left[s_{\text {new }}\right]\right)$
- Near procedure: uses k-nearest neighbors algorithm (all vertices within the area of a ball of radius $r(n)=\gamma \log (n)$ with $\gamma=2 \epsilon(\epsilon$: Euler's number; n : number of vertex in the tree at an iteration))

How does tBoxRRT* work?

- $\left[s_{\text {min }}\right] \leftarrow$ ChooseParent $\left(\mathcal{S}_{\text {near }},\left[s_{\text {nearest }}\right],\left[s_{\text {new }}\right]\right)$

How does tBoxRRT* work?

- $\left[s_{\text {min }}\right] \leftarrow$ ChooseParent $\left(\mathcal{S}_{\text {near }},\left[s_{\text {nearest }}\right],\left[s_{\text {new }}\right]\right)$

How does tBoxRRT* work?

- $G \leftarrow \operatorname{rewire}\left(G,\left[s_{\text {min }}\right],\left[s_{\text {new }}\right]\right)$

Until

- max iteration number is reached or
- a solution is found $\left(e . g\left[s_{\text {new }}\right] \neq \emptyset,\left[s_{\text {new }}\right] \subset \operatorname{lnt}\left(\left[s_{\text {goal }}\right]\right)\right)$

tBoxRRT* Algorithm

```
input : \(\left[s_{\text {init }}\right],\left[s_{\text {goal }}\right], K\);
output: \(G=(V, E)\);
G.init \(\left(\left[s_{i n i t}\right]\right)\);
\(\mathrm{i} \leftarrow 0\);
repeat
    \(\left[s_{\text {rand }}\right] \leftarrow\) random-box \((i)\)
    \(\left[s_{\text {nearest }}\right] \leftarrow\) nearest-neighbor \(\left(G,\left[s_{\text {rand }}\right]\right)\)
    \(\left(\left[s_{\text {new }}\right], u\right) \leftarrow \operatorname{steer}\left(\left[s_{\text {nearest }}\right],\left[s_{\text {rand }}\right]\right)\)
    if collision-free-path \(\left(\left[s_{n e w}\right]\right)\) then
        \(\mathcal{S}_{\text {near }} \leftarrow \operatorname{near}\left(G,\left[s_{\text {new }}\right], V\right)\)
        \(\left[s_{\text {min }}\right] \leftarrow\) ChooseParent \(\left(\mathcal{S}_{\text {near }},\left[s_{\text {nearest }}\right],\left[s_{\text {new }}\right]\right)\)
        \(G \leftarrow \operatorname{rewire}\left(G,\left[s_{m i n}\right],\left[s_{n e w}\right]\right)\)
    end if
until \((i++<K)\) or \(\left(\left[s_{\text {new }}\right] \neq \emptyset,\left[s_{\text {new }}\right] \subset \operatorname{Int}\left(\left[s_{\text {goal }}\right]\right)\right)\)
return \(G\)
```

Algorithm 1: BoxRRT* motion planning algorithm

BoxRRT* Algorithm - Future work

```
input : [sinit}],[\mp@subsup{s}{\mathrm{ goal }}{}],K
output: G = (V,E);
G.init([sinit]);
i}\leftarrow0
repeat
    [s sand}]\leftarrow\mathrm{ random-box (i)
    [snearest }]\leftarrow\mathrm{ nearest-neighbor (G,[s [sand }]
    ([snew}],u)\leftarrow\operatorname{steer}([\mp@subsup{s}{nearest }{ ]},[\mp@subsup{s}{\mathrm{ rand }}{}]
    if collision-free-path}([\mp@subsup{s}{new}{}])\mathrm{ then
        S Snear }\leftarrow\operatorname{near}(G,[\mp@subsup{s}{\mathrm{ new }}{}],V
        [smin}]\leftarrow\mathrm{ ChooseParent ( (S 年ar , [s nearest }],[\mp@subsup{s}{\mathrm{ new }}{}]
```



```
        G\leftarrow\operatorname{rewire}(G,[s, min}],[\mp@subsup{s}{new}{}],[\mp@subsup{s}{\mp@subsup{min}{k}{}}{}]
    end if
until (i++<<K)
return G
```

Algorithm 2: BoxRRT* motion planning algorithm

How does ChooseChildren procedure work?

- $\left[s_{\text {min }_{k}}\right] \leftarrow$ ChooseChildren $\left(\mathcal{S}_{\text {near }} \backslash\left\{\left[s_{\text {min }}\right]\right\},\left[s_{\text {new }}\right],\left[s_{\text {nearest }}\right]\right)$

How does ChooseChildren procedure work?

- $\left[s_{\text {min }_{k}}\right] \leftarrow$ ChooseChildren $\left(\mathcal{S}_{\text {near }} \backslash\left\{\left[s_{\text {min }}\right]\right\},\left[s_{\text {new }}\right],\left[s_{\text {nearest }}\right]\right)$

How does ChooseChildren procedure work?

- $G \leftarrow \operatorname{rewire}\left(G,\left[s_{\text {min }}\right],\left[s_{\text {new }}\right],\left[s_{\text {min }}\right]\right)$

Future work :

Until the max iteration number is reached.
Apply the A* method and find the shortest path?

Cinematic of a Mobile Robot in 2D

We consider a simple car model

$$
\begin{aligned}
\dot{x} & =v \cos (\theta) \\
\dot{y} & =v \sin (\theta) \\
\dot{\theta} & =\frac{v}{L} \tan (\delta)
\end{aligned}
$$

with constraints

- $v \in[-1,1]$ - longitudinal speed and
- $\delta \in[-\pi / 2, \pi / 2]$ - steering angle.
- $L=1.5[m]$ - distance between the front and back axes of the car.

Control input for the simple car model

- rciBoxRRT : control input randomly chosen in the admissible set.
- sciBoxRRT and tBoxRRT*: control input designed in two steps:

Results: 4 environments

- rciBoxRRT(2200t.v.:28[s]; 5880 t.v.:103[s]; 3416t.v.:51[s]; 7802t.v.:141[s]).

- sciBoxRRT(570 t.v.: 11 [s]; 1149 t.v.: 32 [s]; 278 t.v.:5[s]; 978 t.v.: $26[\mathrm{~s}]$).

- tBoxRRT* 156 t.v.: 3 [s]; 1088 t.v.: 38 [s]; 786 t.v.: 20 [s]; 963 t.v.: $28[s]$).

Results: rciBoxRRT, sciBoxRRT and tBoxRRT*

Results: rciBoxRRT, sciBoxRRT and tBoxRRT*

- Computational time (s) required by the three proposed algorithms for convergence,
- Number of vertices for the planned path obtained by the three proposed algorithms,
- Planned path length (cm) obtained by the three proposed algorithms.

Conclusion

- Shown three motion planner algorithms in the control hierarchy: rciBoxRRT, sciBoxRRT and tBoxRRT* (Submitted to CDC17)
- Presented a small example of autonomous vehicle

Future work

- Propose the BoxRRT* (maybe use the $\mathrm{A} *$ method for the shortest path search)
- BiBoxRRT*: based on RRT Algorithm with two trees: one growing from \mathbf{s}_{i} and the other one from \mathbf{s}_{f} until they intersect ?
- Combine Box-RRT with low-level controller (PID)

Acknowledgment

Thanks to

- Olivier Mullier, Julien Alexandre dit Sandretto, (U2IS, ENSTA ParisTech, Palaiseau, France)
- Eric Goubault and Benjamin Martin, (LIX, Ecole Polytechnique, Palaiseau, France)
for productive and useful discussions.

Thank you !

[^0]: ${ }^{1}$ Gilles Chabert (EMN) et al. http://www.ibex-lib.org

