Extended Reliable Robust Motion Planners

Adina M. Pancheal

joint work with Alexandre Chapoutot?, David Filliat?
LLIX, Ecole Polytechnique, Palaiseau, France
2U2IS, ENSTA ParisTech, Palaiseau, France

March 28, 2017

Autonomous vehicle

Controller loop

Measured

Reference

t

Measured
output

ty

Localization

Planner

Trajectory planning

Sensor+fusion
+analysis

Mission

Goal of the project:
» understand main pieces of the system
> validate their behaviour

> validate the behaviour of the overall system.
2/29

A hierarchical control

Panner

path planning

| motion pIanning|

| low-level control |

» Path planning generates a set of way points (does not take into account the
dynamics of the vehicle) from a map (totally or partially) known, take into
account obstacles (static)

» Motion planning generates a set of trajectories feasible for the dynamics
considered and take into account obstacles (static and/or dynamic)

> Low-level controller tries to follow the (discretized) trajectory w.r.t. the

dynamic of the vehicle
3/29

This talk

We focus on sampling-based motion planning algorithms :
» Rapidly-exploring Random Trees (RRTs) and
> Optimal Rapidly-exploring Random Trees (RRT*).
Take into account
» A model of the vehicle,
> A model of a map with obstacles (static),

» Uncertain information on the position/orientation, etc. - bounded within
interval vectors or boxes.

4/29

This talk

Propose new methods to plan guaranteed to be safe paths:
» improved BoxRRT - rciBoxRRT,
» improved BoxRRT - csiBoxRRT,
> new algorithm based RRT* - t(towards)BoxRRT*.

The BoxRRT is based on

Reliable robust path planning. Romain Pepy, Michel Kieffer, Eric Walter. Journal
Applied Mathematical Computing. 2009.

5/29

Box-RRT Algorithm

Goal
» “quickly” find a path going from an initial configuration s; to a final
configuration sy
» while avoiding obstacles s,

» and taking into account bounded uncertainties.

Main ingredients

model of the vehicle
based on RRT Algorithm

combined with interval analysis tools (e.g., guaranteed numerical integration)
applied with

1. a random (rciBoxRRT) and
2. a designed control input (sciBoxRRT)

vV v VY

First improvement : use of modern and new tools for the guaranteed numerical
integration

Implement these algorithms with DynIBEX. 6/29

DynIBEX in few words

A library combining of Constraint Satisfaction Problems solver (IBEX!) with
validated numerical integration methods a la Runge-Kutta.

Three temporal constraints have been used:
> stay in state-space;
> has crossed (in negative form) obstacles;

> one in target;

and one contractor on tube has been used
> get tight(t) to get final state.

So these algorithms can be quickly implemented in DynIBEX.

1Gilles Chabert (EMN) et al. http://www.ibex-1ib.org
7/29

http://www.ibex-lib.org

How does rciBoxRRT —sciBoxRRT work?

Initialization

A discretized map _.-"" s
A final state - =~

Some obstacles -~ ~ |
An initial state . KRR
AY

A tree of possible'~
trajectories « S~

vV vV v v Y

8/29

How does rciBoxRRT —sciBoxRRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick Srandom

3. Compute Spew
until s¢ is reached

Choose randomly a free state of @
the map

8/29

How does rciBoxRRT —sciBoxRRT work?

Iteration 1

The building of the tree follows
3 main steps in a loop

1. Pick siandom

2. Find spearest =+t . :“

3. Compute Spew

until s¢ is reached

Find the nearest node in the tree @
following a Hausdorff distance
between two boxes

8/29

How does rciBoxRRT —sciBoxRRT work?

Iteration 1

The building of the tree follows H

3 main steps in a loop

1. Pick Srandom

2. Find Shearest

3. Compute Shew .

until s¢ is reached

Predict the next state from a 6
random or designed control in- [v

put u T “i'
if no collision detected add

(Snearest, U, Snew) in the tree

8/29

How does rciBoxRRT —sciBoxRRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop ...’ el

1. Pick Siandom =

2. Find Spearest

3. Compute Spew

until s¢ is reached

Note that the choice of S;andom e
is biased to increase probability u

to be closer to s¢ (Random box

BiasGoal procedure) e

8/29

How does rciBoxRRT —sciBoxRRT work?
Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick siandom

2. Find Spearest =

3. Compute Spew

until s¢ is reached

Computing distances has a linear @

complexity w.r.t. the number of u
nodes in the tree

8/29

How does rciBoxRRT —sciBoxRRT work?

Iteration 2

The building of the tree follows
3 main steps in a loop

1. Pick siandom

2' Flnd Snearest

3. Compute Spew

until s¢ is reached

The absence of collision is de-

tected when the tube does not
intersect an obstacle

8/29

tBoxRRT* Algorithm

RRT* Algorithm

» "quickly” finds a "low cost” path going from an initial configuration s; to a
final configuration s¢
» while avoiding obstacles s,

Based on :

Sampling-based algorithms for optimal motion planning. S. Karaman and E.
Frazzoli. The international journal of robotics research. 2011.

tBoxRRT* Algorithm

» based on RRT* Algorithm : finds a "low distance” path going from an initial
configuration [s;] to a final configuration [sf],
» combined with interval analysis tools (e.g., guaranteed numerical integration)

» while avoiding obstacles Syps

9/29

How does tBoxRRT* work?

> [S,and] < random-box-GoalBias;

> Values inside the vertices : distance (e.g. the Hausdorff distance between two
boxes) from the initial state to that vertex.

10/29

How does tBoxRRT* work?

> [Spearest] < nearest-neighbor(G, [sand]);

> Nearest-neighbor procedure uses the Hausdorff distance between two boxes
metric.

11/29

How does tBoxRRT* work?

> ([snew]7 U) <— steer ([Snearest]a [srand])
» 1. uis computed using a desired objective.

12/29

How does tBoxRRT* work?

Lt [~
| ~
% 9 3
, v
1 \
1 “
[snew]
5 10
— Si 4 :\\ \ /I Sg |
\\Q\\ 6 7/
~ -
~JCLE Shear

> Shear < near (G, [spew])

> Near procedure : uses k-nearest neighbors algorithm (all vertices within

the area of a ball of radius r(n) = ylog(n) with -y = 2¢ (¢ : Euler's number; n
: number of vertex in the tree at an iteration))

13/29

How does tBoxRRT* work?

il

’
\

> [smin] ¢ ChooseParent (Sneara [Snearest], [snew])

14 /29

How does tBoxRRT* work?

il

’
\

> [smin] ¢ ChooseParent (Sneara [Snearest], [snew])

15/29

How does tBoxRRT* work?

[
9

7([snew])

> G <« rewire(G, [Smin], [Snew])

Until
> max iteration number is reached or
> a solution is found (e.g [Spew] 7# 0, [Snew] C Int([Sgoar]))
16/29

tBoxRRT* Algorithm

input : [sinit]v [SgoaI]x K;
output : G = (V,E);
G.init([s;n,-t]);
i+ 0;
repeat
[Srand] < random-box(/)
[Snearest] <— nearest-neighbor(G, [S;and])
([snew]7 U) <~ Steer([snearest]a [Srand])
if collision-free-path([syew]) then
Shear < near(G, [Spew], V)
[Smin] <~ Chooseparent(snean [Snearest]a [Snew])
G « rewire(G, [Smin], [Snew])
end if
until (i + + < K) or ([Spew] # 0, [Snew] C Int([Sgoar]))
return G

Algorithm 1: BoxRRT* motion planning algorithm

17 /29

BoxRRT* Algorithm - Future work

inPUt : [Sinit]. [SgoaI]x K;
output : G = (V,E);
G.init([s;n,-t]);
i+ 0;
repeat
[Srand] <— random-box(i)
[Snearest] <— nearest-neighbor(G, [s;and])
([Snewla U) <~ Steer([Snearest]a [Srand])
if collision-free-path([syew]) then
Shear < near(G, [Spew], V)
[Smin] <~ ChooseParent(S,,ea,, [Snearest]a [Snew])
[smink] <~ ChooseChiIdren(Snea, \ {[Smin]}7 [Snew]a [Snearest])
G < rewire(G, [smin], [Snew], [Smin,])
end if
until (/ ++ < K)
return G

Algorithm 2: BoxRRT* motion planning algorithm

18/29

How does ChooseChildren procedure work?

L [~
bl ~
% 9 3
, ~
1 \‘
+ A}
7(Xnew) 3
L / ~ A
5 : 10
T
— S 4 N /I Sg]
E— k4
~ 6 ’
~ 1 ==l Snear

> [smink] — ChooseChiIdren(S,,ea, \ {[smin]}7 [snew]v [snearest])

19/29

How does ChooseChildren procedure work?

L [~
bl ~
% 9 3
, ~
1 \‘
+ A}
7(Snew) s
[/ ~ !
] 5 /y 10 1
T
T
— Si 4 N /I Sg u
E— k4
~ 6 ’
~ 1 ==l Snear

> [smink] — ChooseChiIdren(S,,ea, \ {[smin]}7 [snew]v [snearest])

20/29

How does ChooseChildren procedure work?

> G < rewire(G, [Smin], [Snew]s [Smin.])

Future work :
Until the max iteration number is reached.
Apply the Ax method and find the shortest path?

21/29

Cinematic of a Mobile Robot in 2D

We consider a simple car model

x = vcos(d)

y = vsin(6)
6 = %tan (9)

with constraints
» v € [-1,1] - longitudinal speed and
> § € [—7/2,7/2] - steering angle.

> L = 1.5[m] - distance between the front and back axes of the car.

22/29

Control input for the simple car model

» rciBoxRRT : control input randomly chosen in the admissible set.

» sciBoxRRT and tBoxRRT*: control input designed in two steps:

S
nearest

23/29

Results: 4 environments

> rciBoxRRT (2200t.v.:28[s]; 5880 t.v.:103[s]; 3416t.v.:51 [s]; 7802t.v.:141][s]).

0 5K

> sciBoxRRT (570 t.v.:11 [s]; 1149 t.v.:32 [s]; 278 t.v.:5[s]; 978 t.v.:26][s]).

~
Ta M 7, [

> tBoxRRT*(156 t.v.:3 [s]; 1088 t.v.:38 [s]; 786 t.v.:20 [s]; 963 t.v.:28[s]).

b

24 /29

rciBoxRRT, sciBoxRRT and tBoxRRT*

env4 - B
©NV3 [mmmwmen s mwor mosm men wx w» i

tRRT*

BNV2 | % kmcbmxmmenmumrs %0
NV memesmmoncms X x * N

E env4 - -
LT env3 fmssm sw axoox i
x

o

M env2f T K X X K R xR il
@ envil e mam = *

env4 -

lD—: NV [wwx wommmom oo e AR X A X %K » * - ,
s

X env2 - B i Rk me -
genwam’ MR E KX * * * * -
©

2

I
10000 15000 20000
Number of iterations

25/29

Results: rciBoxRRT, sciBoxRRT and tBoxRRT*

» Computational time (s) required by the three proposed algorithms for
convergence,

» Number of vertices for the planned path obtained by the three proposed
algorithms,

> Planned path length (cm) obtained by the three proposed algorithms.

s L L L e !n _‘n I i I“ ‘II ‘“

 rCiBOXRRT M SCIBOXRRT ™ tBOXRRT* ® rciBOXRRT # SciBOXRRT # tBOXRRT* rciBOXRRT W SCIBOXRRT ™ tBOXRRT*

H
standard deviation

standard deviation

CPU[s] - mean +
Path length cm] - me

26 /29

Conclusion

» Shown three motion planner algorithms in the control hierarchy: rciBoxRRT,
sciBoxRRT and tBoxRRT* (Submitted to CDC17)

» Presented a small example of autonomous vehicle

Future work
> Propose the BoxRRTx* (maybe use the A% method for the shortest path
search)

» BiBoxRRT:x* : based on RRT Algorithm with two trees : one growing from s;
and the other one from s¢ until they intersect 7

> Combine Box-RRT with low-level controller (PID)

27 /29

Acknowledgment

Thanks to

» Olivier Mullier, Julien Alexandre dit Sandretto,
(U2IS, ENSTA ParisTech, Palaiseau, France)

» Eric Goubault and Benjamin Martin,
(LIX, Ecole Polytechnique, Palaiseau, France)

for productive and useful discussions.

28 /29

Thank you !

29 /29

