Underwater Robotics: a Prospective

Julien Damers¹² Hervé de Forges¹ Uli Fahrenberg³

Kopadia

ENSTA Bretagne

École Polytechnique

November 3, 2020

000	0000	00	0000000
Conclusion			

The near future of underwater robotics is distributed.

Challenges:

- communication
- Iocalization
- navigation
- cooperation

000	0000	00	0000000
A Story			

This talk based on work with Julien Damers, Kopadia / ENSTA Brest, and Hervé de Forges, Kopadia

- survey article submitted to special issue of the *Leibniz Transactions on Embedded Systems* on Distributed Hybrid Systems
- http://dhs.gforge.inria.fr/#journal

Further based on presentation by Hervé at DHS 2019 workshop in Amsterdam

- Praised be the times when we could travel
- http://dhs.gforge.inria.fr/2019/
- I'm stealing some of Hervé's slides

Further based on the kindness of Luc Jaulin ...

Kopadia in a nutshell

Underwater robotics:

- Technical developments
- Offshore operations

Company

- Created early 2017
- Team of 8 peoples
- 9 light AUV
- Based in Orsay and Nantes

Communication	Localization	Navigation	Cooperation

Communication

2 Localization

3 Navigation

Communication	Accustics		
•00	0000	00	0000000
Communication	Localization	Navigation	Cooperation

Communication: Acoustics

- sonar: standard tech for underwater comm
- 500 kbps / 10 m 1 kbps / 1000 m
- bandwidth limits <== reflections
- relays

Communication: Ontical		
Communication Localization ○●○ ○○○○	Navigation 00	Cooperation

- Underwater Optical Wireless Communication (UOWC)
- relatively new tech
- up to 1 Gbps, up to 200 m (?)
- depends heavily on water conditions
- limits ⇐ absorption & scattering
- relays

000	0000	00	0000000
Communication	Localization	Navigation	Cooperation

Communication: Optical

Distance	Power	Source	Data Rate	
30-50 m	1 W	Laser	1Gbps	
20-30 m	500 mW (avg)	Blue LED	pprox kbps	
2 m	10 mW	Laser diode	1 Gbps	
31 m (deep sea)	0.1 W	LED	1 Gbps	
18 m (clean ocean)				
11 m (coastal)				
30 cm tank (turbid)	6 V _{pp} (vol.)	Semiconductor Laser	5-20 Mbps	
30 m (pool)	5 W	LED	1.2 Mbps	
3 m (ocean)			0.6 Mbps	
64 m (clear ocean)	3 W	Laser	4 Gbps	
8 m (turbid harbor)			1 Gbps	
7 m (coastal)	12 mW	Laser	2.3 Gbps	
20 - 30m	30 mW	LED	1 Mbps (30m)	
			10 Mbps (20m)	
200 m	5 W	LED	1.2 Mbps	
4.8 m	40 mW	Laser	1.45 Gbps	
5.4 m	15 mW	Laser	4.8 Gbps	
Damers, de Forges, F	ahrenberg	Underwater Robotics: a Prospec	tive 8/ 22	

Communication	Localization	Navigation	Cooperation
	•000	00	0000000
Localization			

There Is No GPS Underwater.

000	0000	00	000000
I ocalization	Inertial Methods		

- Inertial Navigation System (INS)
- continuously integrate acceleration & angular velocities to determine position
- blind driving $\Longrightarrow drift$
- periodically return to surface for recalibration?
 - at least once an hour!
- INS plus Doppler velocity log

Communication	Localization	Navigation	Cooperation
000	00●0	00	0000000
Localization: Ac	oustic Methods		

Ultra-Short Baseline Localization:

- transponder on AUV
- 4 hydrophones on surface vessel
- surface vessel calculates AUV position
- needs surface vessel
- max. distance 5 km

Tars	
Baseline ≈ <10cm	
X	
74	
~	

000	0000	00	0000000
Communication	Localization	Navigation	Cooperation

Localization: Acoustic Methods

Long Baseline Localization:

- 4 beacons in fixed positions
- transponder+hydrophone on AUV
- ping-pong
- AUV calculates own position
- needs beacons deployed
- (no need for surface vessel)

Communication	Localization	Navigation	Cooperation
000	000●	00	0000000
Localization:	Acoustic Metho	ds	

Long Baseline Localization:

- 4 beacons in fixed positions
- transponder+hydrophone on AUV
- ping-pong
- AUV calculates own position
- needs beacons deployed
- (no need for surface vessel)

Communication	Localization	Navigation	Cooperation
000	0000	●0	0000000
Navigation:	Terrain-Based		

- using INS plus maps, plus sonar
- Simultaneous Localization And Mapping (SLAM)
- also using optical sensors when close to seabed
- often using isobaths

Communication Communication Cooperation C

Navigation: Alternating Landmark

- specifically for swarms
- some AUVs know position, stay fixed, act as beacons
- others use beacons for LBL
- later, roles are switched

Communication	Localization	Navigation	Cooperation
000	0000	00	•000000
Cooperation			

- distributed system of underwater robots
- heterogeneous: AUVs / ROVs / hybrid ROVs
- low-bandwidth communication; uncertain localization; imprecise navigation
- (some of these are treated in the theory of distributed robotics)
- still preferable over single-AUV missions!
- resistance to failures

Typical 2030 underwater activity

Goal, to crop mineral resources from seabed Phase 1: exploration

Automatic sampling

Intensive geophysical & environmental survey

exploration

Typical 2030 underwater activity

Goal, to crop mineral resources from seabed Phase 2: installation

page 26 / 28

Typical 2030 underwater activity

Goal, to crop mineral resources from seabed Phase 3: exploitation

Infrastructure maintenance

 Communication
 Localization
 Navigation
 Cooperation

 Navigation
 000
 00
 000
 000

 And the Military Said
 Said
 Said
 Said

Euronaval conference 13 October 2020

Communication	Localization	Navigation	Cooperation
000	0000	00	0000000
And the Military	Said		

Daniel Scourzic, ECA Group:

- there is a military use for AUV swarms, for example for mine clearing
- need to be *quiet*: no sonar
- then, how does the swarm coordinate?
- urgent need for research on underwater communication beyond sonar

Communication	Localization	Navigation	Cooperation
000	0000	00	000000●
Conclusion			

- for near-future underwater missions, need heterogeneous swarms of underwater robots
- difficulties in communication, localization, navigation, cooperation
- much research and progress in communication, localization, navigation
- for cooperation, the theory of distributed systems / distributed robotics may help
- So Exciting!