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Already known result



Already known result

Definition
We say a system of differential equations is equivalent to a
differential inclusion if they have the same solutions.

Theorem?
When U is compact and f(x,U) = F(x) is convex for all x € RP,
then x(t) = f(x(t), u(t)) for u(t) € U is equivalent to

x(t) € F(x(t)).

1J.W. Nieuwenhuis, “Some Remarks on Set-Valued Dynamical Systems”, &
1980



Formulation



The problem

Initial Value Problem

{ x = f(t, x(t), u(t))
x(th) € X

Separable with respect to uncertainties

F(t,x,u) = ho(x,t) + > gi(u)hi(x, t)
i=1
or
f(t,x,u) =g(u)"- h(x,t)

with go(u) = 1.



Problem hypotheses

Hypotheses
x = f(t,x(t), u(t)) = g(u)" - h(x, 1)
x(0) e X (4)
u(t)yeld

with

> X C R" bounded

» U C R™ bounded

» ¢+ u(t) measurable
Carathéodory, for all u: [0, T] — U:

» There exists m: [0, T] — Ry such that
v(t,x), [[f(t,x, u(@))]| < m(t)

» There exists k : [0, T] — Ry such that
Wt 0), (83, 0(8) — F(t 0, u(D)] < k(1) [0 — x| e



Difference with other tools

Other tools use at least Riemann-integrable uncertainties:
Flow*: uncertainties are assumed continuous

CORA: uncertainties are assumed Riemann-integrable



Enclosure of the solution



Inclusion using Lebesgue-integration

Lemma

Let a measurable function v : [0, T] — U with a bounded set

U C R™ and a continuous function g; : R™ — R. Let a
Lesbegue-integrable function h; with a decomposition in positive
functions: h; = h;" — h;.

Let C the closure of the convex hull of {g(a) | & € U}. Then

_
/0 & (u(s))hi(s) ds

T T
G{a/o hfr(s)ds—ﬁ/o h; (s)ds aEC,BGC} (5)

Ex




Some limitations

Need decompositions
Let h:[0,2T] = R and u: [0,2T] — {—1,1} C [~1,1] such that

Vt< T, h(t)=-1 and u(t)=-1 6
Vt>T, h(t)=1 and u(t)=1 (6)
We have
2T
/ u(t)h(t)dt = 2T (7)
° 2T
Va € R, a/o h(t) dt = 0 8)
So

/:T u(s)h(s) ds & {a/O2T h(s) ds

ac [_1,1]} (9)



Some limitations

Only valid in 1D
Let h(t) = (;) VE< T, u(t) = (1) and Vt > T,

u(t) = (:1)

2T : INT /o72 INT p2T
/0 u(£)Th(t) dt = <_§> <8T3>:<§>/() h(t) dt (

but



Our operator

The dynamics
x(t) = g(u(t))" - h(x(t), 1) (12)
with x(0) € Xy C R”, u(t) € U C R¥ and g(u(t)) € R™.

The operator

t
IP)X07(ou')7(5f) (p)=t—x+ /0 ho (¢(s),s) ds

.
—Zﬁi/o ho (¢(s),s)ds (13)

with xg € &Xp and for all i € [1, m], a; and §; belong to the closed

convex hull of {gi(v) | v € U}. %



Fixed-point theorem

Theorem
For all xo, (cj) and (), let , (a:),(;) Such that

Ve €0, T], Py (ar),(8) (@XO,(Q,»),(B,-O (£) C ©x,(an) (80 (1) (14)

and
o= U ror(@i),(81) (15)

X0 EXp
vie[l,m], a;eConv({gi(v) | veld})
vie[l,m], BieConv({gi(v) | veUU})

Then ¢ is an over-approximation of the reachable set.

Ex



Application



Algorithm to compute an over-approximation

Algorithm
We use Taylor Models as sets representations.
1. Compute a raw enclosure of the solution

2. Decompose the functions hj>1(x(t), t) as difference of
positive functions using the raw enclosure

3. Compute the polynomial expansion up to the expected order
4. Find a valid remainder



Decomposition

Affine decomposition
Assume for all t € [0, T], hi(x(t),t) € [a,b] and a < 0 < b. We
define

i (16)
b

and we have h;(x(t),t) = hf (x(t),t) — hy (x(t), t).

Optimality

This decomposition minimizes ‘ hi h;

1

1 1



Examples



Example 1

Simple dynamics

x(t) = (0.1 — t)u(t) (17)
with x(0) = 0 and Vt € [0,0.2], u(t) € [-1,1]

Case: u constant
If uis constant (u(t) = u(0) € [-1,1]), then x(0.2) =0 and
x(t) € [~0.005,0.005].

Exact reachable set
The exact reachable set at time t = 0.2 is x(0.2) € [-0.01,0.01].

Ex



Example 1: Decomposition

Decomposition
For all t € [0,0.2], h1(x(t),t) = (0.1 — t) € [-0.1,0.1].
We deduce hi(x,t) = hi(x,t) — hy (x, t) with

hf(x,t) =0.1 - 0.5t
{ hy (x, ) = 0.5¢ (18)
Equivalent dynamics
The dynamics becomes
x(t) = (0.1 —0.5t) u(t) — (0.5t) u(t) (19)



Example 1: Over-approximation

We replace the occurrences of u(t) by TM («, [0]) and
TM (5, [0]) with o € [-1,1] and 8 € [-1,1].

We start with an expansion to the order 0 in time:
(po(Xg, t) =TM (Xo, [0])

Then, to expected an higher order expansion, we iterate
on+1 =P (pn):

p1(x0, t) = TM (xo, [0]) + TM (a, [()])/Ot’ﬁr (¥0(x0,5),5) ds

— M5, 10) [y (ool ). ) ds

= TM (xo, [0]) + TM (e, [0]) - TM (O.It —0.25¢2, [O])
— TM (B, [0]) - TM (0.25t2, [0])

= TM (x + 0.1t — 0.25(a + B)£, [0])

with xo =0, « € [-1,1] and 8 € [-1,1].

Ex



Example 1: Over-approximation

Result

For all t € [0,0.2], we have

x(t) € TM (x0 + 0.1at — 0.25(c + B)t2, [0]) = [-0.1¢,0.1¢].
So x(0.2) € [—0.02,0.02)].

(Remind) Exact reachable set
The exact reachable set at time t = 0.2 is x(0.2) € [—0.01,0.01].



Decreasing exponential

Dynamics

x(t) = —u(t)x(t)
with x(0) € [1,1.1] and V¢, u(t) € [1,2].

(20)



Decreasing exponential
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Nonlinear perturbation

Dynamics

y(t) = —y(t)
with x(0) =1, y(0) = 2 and u(t) € [-1,1].

{ x(t) = —x(t) + x(t)y(t)u(t) (21)



Nonlinear perturbation
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Nonlinear perturbation

2.0 A

" Flow*
7 CORA
[0 prototype

1.5 1

1.0 A1

0.5 A

0.0 1

—0.5 1

-1.01

0 1 2 3 4 5
0

Figure: Over-approximations with fixed time-step equals to 0.05 with &
order 5 (2 m 20 s)

[m] = =



Conclusion

Summary

» able to handle measurable bounded uncertainties

P promising results on simple examples

Futur work
> try different sets representations

P optimize the prototype



Thank you for your attention
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