Reachability Analysis for Separable ODE with respect to Time Varying Bounded Uncertainties

François Bidet, Éric Goubault and Sylvie Putot

Laboratoire d'Informatique de l'École polytechnique

November 3, 2020

Already known result

Already known result

Definition

We say a system of differential equations is equivalent to a differential inclusion if they have the same solutions.

Theorem ${ }^{1}$
When \mathcal{U} is compact and $f(x, \mathcal{U})=F(x)$ is convex for all $x \in \mathbb{R}^{p}$, then $\dot{x}(t)=f(x(t), u(t))$ for $u(t) \in \mathcal{U}$ is equivalent to $\dot{x}(t) \in F(x(t))$.
${ }^{1}$ J.W. Nieuwenhuis, "Some Remarks on Set-Valued Dynamical Systems", 1980

Formulation

The problem

Initial Value Problem

$$
\left\{\begin{array}{l}
\dot{x}=f(t, x(t), u(t)) \tag{1}\\
x\left(t_{0}\right) \in \mathcal{X}
\end{array}\right.
$$

Separable with respect to uncertainties

$$
\begin{equation*}
f(t, x, u)=h_{0}(x, t)+\sum_{i=1}^{m} g_{i}(u) h_{i}(x, t) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
f(t, x, u)=g(u)^{\top} \cdot h(x, t) \tag{3}
\end{equation*}
$$

with $g_{0}(u)=1$.

Problem hypotheses

Hypotheses

$$
\left\{\begin{array}{l}
\dot{x}=f(t, x(t), u(t))=g(u)^{\top} \cdot h(x, t) \tag{4}\\
x(0) \in \mathcal{X} \\
u(t) \in \mathcal{U}
\end{array}\right.
$$

with

- $\mathcal{X} \subset \mathbb{R}^{n}$ bounded
- $\mathcal{U} \subset \mathbb{R}^{m}$ bounded
- $t \mapsto u(t)$ measurable

Carathéodory, for all $u:[0, T] \rightarrow \mathcal{U}$:

- There exists $m:[0, T] \rightarrow \mathbb{R}_{+}$such that $\forall(t, x),\|f(t, x, u(t))\| \leq m(t)$
- There exists $k:[0, T] \rightarrow \mathbb{R}_{+}$such that

$$
\forall\left(t, x_{1}, x_{2}\right),\left\|f\left(t, x_{1}, u(t)\right)-f\left(t, x_{2}, u(t)\right)\right\| \leq k(t)\left\|x_{1}-x_{2}\right\| \text {, }
$$

Difference with other tools

Other tools use at least Riemann-integrable uncertainties:
Flow*: uncertainties are assumed continuous
CORA: uncertainties are assumed Riemann-integrable

Enclosure of the solution

Inclusion using Lebesgue-integration

Lemma

Let a measurable function $u:[0, T] \rightarrow \mathcal{U}$ with a bounded set $\mathcal{U} \subset \mathbb{R}^{m}$ and a continuous function $g_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$. Let a
Lesbegue-integrable function h_{i} with a decomposition in positive functions: $h_{i}=h_{i}^{+}-h_{i}^{-}$.
Let \mathcal{C} the closure of the convex hull of $\{g(\alpha) \mid \alpha \in \mathcal{U}\}$. Then

$$
\begin{align*}
& \int_{0}^{T} g_{i}(u(s)) h_{i}(s) d s \\
& \quad \in\left\{\alpha \int_{0}^{T} h_{i}^{+}(s) d s-\beta \int_{0}^{T} h_{i}^{-}(s) d s \mid \alpha \in \mathcal{C}, \beta \in \mathcal{C}\right\} \tag{5}
\end{align*}
$$

Some limitations

Need decompositions
Let $h:[0,2 T] \rightarrow \mathbb{R}$ and $u:[0,2 T] \rightarrow\{-1,1\} \subset[-1,1]$ such that

$$
\left\{\begin{array}{lcc}
\forall t \leq T, \quad h(t)=-1 & \text { and } & u(t)=-1 \tag{6}\\
\forall t>T, & h(t)=1 & \text { and } \\
u(t)=1
\end{array}\right.
$$

We have

$$
\begin{gather*}
\int_{0}^{2 T} u(t) h(t) d t=2 T \tag{7}\\
\forall \alpha \in \mathbb{R}, \alpha \int_{0}^{2 T} h(t) d t=0 \tag{8}
\end{gather*}
$$

So

$$
\begin{equation*}
\int_{0}^{2 T} u(s) h(s) d s \notin\left\{\alpha \int_{0}^{2 T} h(s) d s \mid \alpha \in[-1,1]\right\} \tag{9}
\end{equation*}
$$

Some limitations

Only valid in 1D
Let $h(t)=\binom{t}{t^{2}}, \forall t \leq T, u(t)=\binom{1}{1}$ and $\forall t>T$,
$u(t)=\binom{-1}{-1}$.
$\int_{0}^{2 T} u(t)^{\top} h(t) d t=\binom{-\frac{1}{2}}{-\frac{3}{4}}^{\top} \cdot\binom{2 T^{2}}{8 T^{3}}=\binom{-\frac{1}{2}}{-\frac{3}{4}}^{\top} \cdot \int_{0}^{2 T} h(t) d t(10)$
but

$$
\begin{equation*}
\binom{-\frac{1}{2}}{-\frac{3}{4}} \notin \operatorname{Conv}\left(\left\{\binom{-1}{-1},\binom{1}{1}\right\}\right) \tag{11}
\end{equation*}
$$

Our operator

The dynamics

$$
\begin{equation*}
\dot{x}(t)=g(u(t))^{\top} \cdot h(x(t), t) \tag{12}
\end{equation*}
$$

with $x(0) \in \mathcal{X}_{0} \subset \mathbb{R}^{n}, u(t) \in \mathcal{U} \subset \mathbb{R}^{k}$ and $g(u(t)) \in \mathbb{R}^{m}$.
The operator

$$
\begin{align*}
\mathbb{P}_{x_{0},\left(\alpha_{i}\right),\left(\beta_{i}\right)}(\varphi)=t & \mapsto x_{0}+\int_{0}^{t} h_{0}(\varphi(s), s) d s \\
& +\sum_{i=1}^{m} \alpha_{i} \int_{0}^{T} h_{i}^{+}(\varphi(s), s) d s \\
& \quad-\sum_{i=1}^{m} \beta_{i} \int_{0}^{T} h_{i}^{-}(\varphi(s), s) d s \tag{13}
\end{align*}
$$

with $x_{0} \in \mathcal{X}_{0}$ and for all $i \in \llbracket 1, m \rrbracket, \alpha_{i}$ and β_{i} belong to the closed convex hull of $\left\{g_{i}(v) \mid v \in \mathcal{U}\right\}$.

Fixed-point theorem

Theorem
For all $x_{0},\left(\alpha_{i}\right)$ and $\left(\beta_{i}\right)$, let $\varphi_{x_{0},\left(\alpha_{i}\right),\left(\beta_{i}\right)}$ such that

$$
\begin{equation*}
\forall t \in[0, T], \mathbb{P}_{x_{0},\left(\alpha_{i}\right),\left(\beta_{i}\right)}\left(\varphi_{x_{0},\left(\alpha_{i}\right),\left(\beta_{i}\right)}\right)(t) \subset \varphi_{x_{0},\left(\alpha_{i}\right),\left(\beta_{i}\right)}(t) \tag{14}
\end{equation*}
$$

and

$$
\varphi=\bigcup_{\substack{x_{0} \in \mathcal{X}_{0} \\
\forall i \in \llbracket 1, m \rrbracket, \forall i \in \llbracket 1, m \rrbracket, \beta_{i} \in \operatorname{Convv}\left(\left\{g_{i}(v)\right.\right.}} \varphi_{x_{0},\left(\alpha_{i}\right),\left(\beta_{i}\right)} \left\lvert\, \begin{aligned}
& v \in \mathcal{U}\}) \\
& v \in \mathcal{U}\})
\end{aligned}\right.
$$

Then φ is an over-approximation of the reachable set.

Application

邀

Algorithm to compute an over-approximation

Algorithm

We use Taylor Models as sets representations.

1. Compute a raw enclosure of the solution
2. Decompose the functions $h_{i \geq 1}(x(t), t)$ as difference of positive functions using the raw enclosure
3. Compute the polynomial expansion up to the expected order
4. Find a valid remainder

Decomposition

Affine decomposition
Assume for all $t \in[0, T], h_{i}(x(t), t) \in[a, b]$ and $a<0<b$. We define

$$
\left\{\begin{array}{l}
h_{i}^{+}(x(t), t)=\frac{b}{b-a} h_{i}(x(t), t)-\frac{a b}{b-a} \tag{16}\\
h_{i}^{-}(x(t), t)=\frac{a}{b-a} h_{i}(x(t), t)-\frac{a b}{b-a}
\end{array}\right.
$$

and we have $h_{i}(x(t), t)=h_{i}^{+}(x(t), t)-h_{i}^{-}(x(t), t)$.
Optimality
This decomposition minimizes $\left\|h_{i}^{+}\right\|_{1}+\left\|h_{i}^{-}\right\|_{1}$.

Examples

Example 1

Simple dynamics

$$
\begin{equation*}
\dot{x}(t)=(0.1-t) u(t) \tag{17}
\end{equation*}
$$

with $x(0)=0$ and $\forall t \in[0,0.2], u(t) \in[-1,1]$
Case: u constant
If u is constant $(u(t)=u(0) \in[-1,1])$, then $x(0.2)=0$ and
$x(t) \in[-0.005,0.005]$.
Exact reachable set
The exact reachable set at time $t=0.2$ is $x(0.2) \in[-0.01,0.01]$.

Example 1: Decomposition

Decomposition

For all $t \in[0,0.2], h_{1}(x(t), t)=(0.1-t) \in[-0.1,0.1]$.
We deduce $h_{1}(x, t)=h_{1}^{+}(x, t)-h_{1}^{-}(x, t)$ with

$$
\left\{\begin{array}{l}
h_{1}^{+}(x, t)=0.1-0.5 t \tag{18}\\
h_{1}^{-}(x, t)=0.5 t
\end{array}\right.
$$

Equivalent dynamics
The dynamics becomes

$$
\begin{equation*}
\dot{x}(t)=(0.1-0.5 t) u(t)-(0.5 t) u(t) \tag{19}
\end{equation*}
$$

Example 1: Over-approximation

We replace the occurrences of $u(t)$ by $\operatorname{TM}(\alpha,[0])$ and $\operatorname{TM}(\beta,[0])$ with $\alpha \in[-1,1]$ and $\beta \in[-1,1]$.
We start with an expansion to the order 0 in time:
$\varphi_{0}\left(x_{0}, t\right)=\operatorname{TM}\left(x_{0},[0]\right)$.
Then, to expected an higher order expansion, we iterate

$$
\varphi_{n+1}=\mathbb{P}\left(\varphi_{n}\right):
$$

$$
\begin{aligned}
\varphi_{1}\left(x_{0}, t\right)= & \operatorname{TM}\left(x_{0},[0]\right)+\operatorname{TM}(\alpha,[0]) \int_{0}^{t} h_{1}^{+}\left(\varphi_{0}\left(x_{0}, s\right), s\right) d s \\
& \quad-\operatorname{TM}(\beta,[0]) \int_{0}^{t} h_{1}^{-}\left(\varphi_{0}\left(x_{0}, s\right), s\right) d s \\
= & \operatorname{TM}\left(x_{0},[0]\right)+\operatorname{TM}(\alpha,[0]) \cdot \operatorname{TM}\left(0.1 t-0.25 t^{2},[0]\right) \\
& \quad-\operatorname{TM}(\beta,[0]) \cdot \operatorname{TM}\left(0.25 t^{2},[0]\right) \\
= & \operatorname{TM}\left(x_{0}+0.1 \alpha t-0.25(\alpha+\beta) t^{2},[0]\right)
\end{aligned}
$$

with $x_{0}=0, \alpha \in[-1,1]$ and $\beta \in[-1,1]$.

Example 1: Over-approximation

Result

For all $t \in[0,0.2]$, we have
$x(t) \in \mathrm{TM}\left(x_{0}+0.1 \alpha t-0.25(\alpha+\beta) t^{2},[0]\right)=[-0.1 t, 0.1 t]$.
So $x(0.2) \in[-0.02,0.02]$.
(Remind) Exact reachable set
The exact reachable set at time $t=0.2$ is $x(0.2) \in[-0.01,0.01]$.

Decreasing exponential

Dynamics

$$
\begin{equation*}
\dot{x}(t)=-u(t) x(t) \tag{20}
\end{equation*}
$$

with $x(0) \in[1,1.1]$ and $\forall t, u(t) \in[1,2]$.

Decreasing exponential

Figure: Over-approximations with fixed time-step equals to 0.05

Nonlinear perturbation

Dynamics

$$
\left\{\begin{array}{l}
\dot{x}(t)=-x(t)+x(t) y(t) u(t) \tag{21}\\
\dot{y}(t)=-y(t)
\end{array}\right.
$$

with $x(0)=1, y(0)=2$ and $u(t) \in[-1,1]$.

Nonlinear perturbation

Figure: Over-approximations with fixed time-step equals to 0.05 with order 4 (31 s)

Nonlinear perturbation

Figure: Over-approximations with fixed time-step equals to 0.05 with order $5(2 m 20 s)$

Conclusion

Summary

- able to handle measurable bounded uncertainties
- promising results on simple examples

Futur work

- try different sets representations
- optimize the prototype

Thank you for your attention

