Safety Verification of Neural Network Controlled Systems

A. Claviere¹ E. Asselin¹ C. Garion² C. Pagetti³

¹Collins Aerospace, France

²ISAE-SUPAERO, France

³ONERA, France

Scientific meeting DGA AID, November 3, 2020

Table of Contents

Introduction

- 2 System model
- Operation 3 Problem definition
- 4 Reachability-based approach
- 5 Experiments
- 6 Conclusion and future work

A B F A B F

Table of Contents

Introduction

- System model
- 3 Problem definition
- 4 Reachability-based approach
- 5 Experiments
 - Conclusion and future work

(日) (同) (三) (三)

The safety perspective

Neural network controlled system

The combination of a continuous-time dynamical system with a discrete-time neural network based controller.

What if such a system is considered as safety critical?

One has to show evidence that the system fulfills a set of *safety requirements*.

e.g., "A catastrophic failure shall occur with a probability less than 10^{-9} per hour of flight."

• • = • • = •

Safety: the classical approach

The system has to be developped in accordance with stringent *standards*.

They involve:

- Refinement of the system requirements at the *item* level
 - \rightarrow each item must be allocated a *correct, comprehensive* specification

Safety: the classical approach

The system has to be developped in accordance with stringent *standards*.

They involve:

- Refinement of the system requirements at the *item* level
 - \rightarrow each item must be allocated a correct, comprehensive specification

Each item must be developped in compliance with dedicated standards \rightarrow each item must be shown to fulfill its specification

Safety: the case of NN controlled system

This approach is not applicable to neural network controlled systems:

- example data = pointwise, non-comprehensive specification
 - \rightarrow One cannot refine the system requirements at the network level

The learning process does not guarantee the correctness of the network

ightarrow It may be infeasible to show that a network fullills its specification

A D A D A D A

Motivating example: the ACAS Xu controller

Two aircraft:

- the ownship, equipped with the ACAS Xu
- the intruder, equipped or not with the ACAS Xu

Objective: avoid a near mid-air collision between the two aircraft

Motivating example: the ACAS Xu controller

Two aircraft:

- the ownship, equipped with the ACAS Xu
- the intruder, equipped or not with the ACAS Xu

Objective: avoid a near mid-air collision between the two aircraft

Original design: lookup tables

2GB memory

Neural network approximation

2.4MB memory (×0.001)

relative runtime: $\times 0.97$

can be run on legacy avionics

Safety of NN Controlled Systems

Motivating example: the ACAS Xu controller

Two aircraft:

- the ownship, equipped with the ACAS Xu
- the intruder, equipped or not with the ACAS Xu

Objective: avoid a near mid-air collision between the two aircraft

How to prove that the neural network based ACAS Xu is safe?

Safety: the case of NN controlled system

How to deal with these issues?

- $\rightarrow\,$ Demonstrate safety without performing item-level refinement and analyses:
 - construct a model of the overall system
 - perform a reachability analysis on this model

< 注入 < 注入

Table of Contents

Introduction

2 System model

- 3 Problem definition
- 4 Reachability-based approach
- 5 Experiments
 - Conclusion and future work

(日) (同) (三) (三)

Closed-loop system

Closed-loop system C:

- a *continuous-time* plant \mathcal{P} , with state $\mathbf{s}(t) \in \mathbb{R}^{I}$
- a *discrete-time* neural network based controller \mathcal{N} , with period \mathcal{T} :

• its
$$j^{th}$$
 execution occurs in $[jT, (j+1)T[$
• $\mathbf{u}(t) = \mathbf{u}_{j+1} \ \forall t \in [(j+1)T, (j+2)T[$
 \mathcal{N} is a *classifier i.e.*, $\mathbf{u}_{j+1} \in \mathbf{U} = {\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(P)}}$

- ∢ ≣ →

Neural Network based controller

Uses a *collection* of ReLU networks $\mathbf{N} = \{N^{(1)}, \dots, N^{(D)}\}$ \rightarrow only one network is executed at the *j*th control step, depending on the previous command: $N_j = \lambda(\mathbf{u}_j)$

ReLU network

A (deterministic) function $F : \mathbb{R}^m \to \mathbb{R}^p$ that is the composition of affine transformations and non-linear ReLU units $\sigma : x \mapsto \max(0, x)$

→ ∃ →

< 4 →

Plant - Example (ACAS Xu)

 $\mathcal{P} = \{\text{ownship}, \text{intruder}\} \qquad \mathbf{s}(t) = (x(t) \ y(t) \ \psi(t) \ v_{\text{own}}(t) \ v_{\text{int}}(t))^{T}$

simplified 2D kinematic model:

- the intruder has a uniform rectilinear displacement
- the ownship has a constant velocity

通 ト イヨ ト イヨト

Neural Network based controller - Example (ACAS Xu)

Output = turn rate of ownship:

$$\mathbf{U} = \{0 \text{ deg/s}, 1.5 \text{ deg/s}, -1.5 \text{ deg/s}, 3 \text{ deg/s}, -3 \text{ deg/s}\}$$

Uses a collection of 5 ReLU networks $\mathbf{N} = \{N^{(1)}, \dots, N^{(5)}\}$

The post-processing is a argmin function

A. Claviere (Collins Aerospace)

Safety of NN Controlled Systems

11.3.2020 13 / 30

Closed-loop system

The state of the closed-loop \mathcal{C} is $\phi(t) = (\mathbf{s}(t), \mathbf{u}(t)) \in \mathbb{R}^{l} imes \mathbf{U}$

- $I \subseteq \mathbb{R}^{l} \times U$ is the set of the possible initial states
- $\mathbf{E} \subset \mathbb{R}^{\prime} \times \mathbf{U}$ is a set of *erroneous* states
- $\mathbf{T} \subset \mathbb{R}^{l} \times \mathbf{U}$ is a set of *target* states ($\mathbf{T} \cap \mathbf{E} = \emptyset$)

Closed-loop system

The state of the closed-loop \mathcal{C} is $\phi(t) = (\mathbf{s}(t), \mathbf{u}(t)) \in \mathbb{R}^{l} imes \mathbf{U}$

- $I \subseteq \mathbb{R}^{l} \times U$ is the set of the possible initial states
- $\mathbf{E} \subset \mathbb{R}^{l} \times \mathbf{U}$ is a set of *erroneous* states
- $\mathbf{T} \subset \mathbb{R}^{\prime} \times \mathbf{U}$ is a set of *target* states ($\mathbf{T} \cap \mathbf{E} = \emptyset$)

Deterministic behaviour: for a given initial state $\phi_0 \in I$ and time horizon τ , there is a unique function ϕ_{ϕ_0} such that $\phi_{\phi_0}(t)$ is the state of C at instant $t \leq \tau$

A. Claviere (Collins Aerospace)

Closed-loop system - Example (ACAS Xu)

- I: the ownship detects the intruder (u = 0.0 deg/s i.e., COC)
- **E**: the intruder lies in the collision cylinder around ownship
- T: the intruder is out of range

Table of Contents

Introduction

System model

Operation 3 Problem definition

- Reachability-based approach
- 5 Experiments
 - Conclusion and future work

(日) (同) (三) (三)

Problem definition

Definition

The safety verification problem \mathcal{V} consists in deciding if:

$$\mathsf{R}_{[0, au]} \cap \mathsf{E} = \emptyset$$

where $\mathbf{R}_{[0,\tau]}$ are the reachable states over $[0,\tau]$

- $\bullet \ \mathcal{V}$ is undecidable when the plant \mathcal{P} has a non-linear dynamics
- verifying pre/post-conditions on a network is a NP-hard problem
- the controller has a non-trivial logic

(1)

Problem definition

Definition

The safety verification problem \mathcal{V} consists in deciding if:

F

$$\mathsf{R}_{[0, au]} \cap \mathsf{E} = \emptyset$$

where $\mathbf{R}_{[0,\tau]}$ are the reachable states over $[0,\tau]$

Definition

The safety verification problem $\widetilde{\mathcal{V}}$ consists in finding a set $\widetilde{\mathsf{R}}_{[0,\tau]}$ satisfying $\widetilde{\mathsf{R}}_{[0,\tau]} \supset \mathsf{R}_{[0,\tau]}$ and $\widetilde{\mathsf{R}}_{[0,\tau]} \cap \mathsf{E} = \emptyset$

(1)

Table of Contents

Introduction

- System model
- 3 Problem definition
- 4 Reachability-based approach
 - 5 Experiments
 - Conclusion and future work

A B < A B </p>

< A

Symbolic state and symbolic set

Definition

A symbolic state is a 2-tuple ([**s**], **u**) wherein $[\mathbf{s}] \subset \mathbb{R}^{l}$ is a *l*-dimensional box *i.e.*, the cartesian product of *l* intervals, and $\mathbf{u} \in \mathbf{U}$. It symbolically represents the set $\{\phi(t) = (\mathbf{s}(t), \mathbf{u}(t)) \in \mathbb{R}^{l} \times \mathbf{U} \mid \mathbf{s}(t) \in [\mathbf{s}] \land \mathbf{u}(t) = \mathbf{u}\}$.

Definition

A symbolic set is a collection of symbolic states defined by $\widetilde{\Phi} = \{([\mathbf{s}]_k, \mathbf{u}_k)\}_{1 \le k \le K}$ wherein $K \in \mathbb{N}$. It corresponds to the union of the sets represented by each $([\mathbf{s}]_k, \mathbf{u}_k)$.

Procedure

The procedure involves two types of sets:

- The symbolic set $\hat{\mathbf{R}}_j$ approximates the reachable states at t = jT
- The symbolic set $\widetilde{\mathbf{R}}_{[j[}$ approximates the reachable states for $t \in [jT, (j+1)T[$

It works iteratively:

- \bullet starts with the symbolic set $\widehat{R}_0 \supset I$ enclosing the possible initial states.
- at control step j, builds $\widetilde{\mathbf{R}}_{[j]}$ and $\widetilde{\mathbf{R}}_{j+1}$ based on $\widetilde{\mathbf{R}}_j$.

Finally, $\widetilde{\mathbf{R}}_{[0,\tau]}$ is taken as the union of the $\widetilde{\mathbf{R}}_{[j]}$.

超す イヨト イヨト ニヨ

Procedure

Approximation of the j^{th} control step:

$$jT \qquad ([\mathbf{s}_{j}]_{1}, \mathbf{u}_{j,1}) \cdots ([\mathbf{s}_{j}]_{k}, \mathbf{u}_{j,k}) \cdots ([\mathbf{s}_{j}]_{K_{j}}, \mathbf{u}_{j,K_{j}}) \widetilde{\mathsf{R}}_{j}$$

$$(j+1)T \qquad \cdots \qquad ([\mathbf{s}_{j+1}]_{k}, \mathbf{u}_{j+1,1_{k}}) \cdots ([\mathbf{s}_{j+1}]_{k}, \mathbf{u}_{j+1,i_{k}}) \cdots \widetilde{\mathsf{R}}_{j+1}$$

- ① involves validated simulation (DynIBEX)
- ② involves both validated simulation (DynIBEX) and abstract interpretation (with a specialized solver ReluVal)

イロト 不得下 イヨト イヨト

Procedure

Approximation of the j^{th} control step:

$$jT = ((\mathbf{s}_{j}]_{1}, \mathbf{u}_{j,1}) \cdots ((\mathbf{s}_{j}]_{k}, \mathbf{u}_{j,k}) \cdots ((\mathbf{s}_{j}]_{K_{j}}, \mathbf{u}_{j,K_{j}}) \widetilde{\mathsf{R}}_{j}$$

$$((\mathbf{s}_{j}]_{1}, \mathbf{u}_{j,k}) (1) (\mathbf{s}_{j}]_{1} (\mathbf{$$

To take account of a potential termination of C ($\phi \in \mathbf{T}$), the symbolic states ($[\mathbf{s}_j]_k, \mathbf{u}_{j,k}$) $\subset \mathbf{T}$ are not further propagated

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimizations

• Improving precision

Improving time complexity

Avoid an exponential blow up of the number of symbolic states in $\mathbf{R}_j \rightarrow$ merge the *"closest"* symbolic states

Table of Contents

Introduction

- System model
- 3 Problem definition
- Reachability-based approach

5 Experiments

Conclusion and future work

Image: A matrix

A B F A B F

Experimental setup

Partitioning: $\widetilde{\mathsf{R}}_0 = \{([\mathsf{s}_0]_k, 0.0 \text{ deg/s})\}_{1 \le k \le K_0} \text{ with } K_0 = 198,764$

- a single initial symbolic state ([s₀], 0.0 deg/s) approximating I is unsafe
- the K₀ initial symbolic states composing $\hat{\mathbf{R}}_0$ can be seen as K₀ independent verification problems (parallelization)
- the smaller the box $[\mathbf{s}_0]_k$, the more precise the reachability analysis

Experimental setup

Partitioning: $\widetilde{\mathsf{R}}_0 = \{([\mathsf{s}_0]_k, 0.0 \text{ deg/s})\}_{1 \le k \le K_0} \text{ with } K_0 = 198,764$

Split refinement: the initial symbolic states $([\mathbf{s}_0]_k, 0.0 \text{ deg/s})$ for which the system cannot be proved safe are bisected \rightarrow new reachability analysis

Experiments

Results

- coverage of 90.3%
- capability to identify the initial states for which the system could not be proved safe

Experiments

Results

• most critical situations: the intruder is approaching from the left

• symmetry *w.r.t.* the $x_0 = 0$ axis: captures the symmetry of the collision avoidance problem

Table of Contents

Introduction

- System model
- 3 Problem definition
- 4 Reachability-based approach
- 5) Experiments
- 6 Conclusion and future work

< □ > < ---->

A B F A B F

Conclusion

- system-level approach for verifying the safety of neural network controlled systems
 - ightarrow realistic model together with reachability analysis
- applicable to real-world systems
- provide valuable information from a practical point of view

- 4 週 ト - 4 三 ト - 4 三 ト

Future work

- more efficient partitioning strategy (e.g., CFD)
- more efficient heuristics for splitting the initial symbolic states
- combine the approach with an efficient falsification strategy
- ACAS Xu: consider multiple UAVs, each one being equipped with a collision avoidance controller

(4 個) トイヨト イヨト