
Validated non collision prediction of multiple drones

AID Meeting

Julien Alexandre dit Sandretto Alexandre Chapoutot Christophe Garion
Olivier Mullier Xavier Thirioux Ghilès Ziat
March, 13, 2020



Context: Swarm of Drones

Safety of an evolving swarm of drones
in term of collision avoidance

Two types of obstacles:

• static: forbidden areas;

• dynamic: the robots themselves

Goal
Guarantee on the non collision of the swarm with the environment (static
obstacles) and the other drones (dynamic obstacles).

Validated non collision prediction of multiple drones – Olivier Mullier 2/14



Mathematical Formulation

A drone i from the swarm is modeled with a controlled dynamical system:

(Si )

ẋi = f (xi , ui )

xi (0) = xi ;0

From a given control ui and a given time horizon T on which the control is
applied to the system, the goal is to prove that, for two drones i and j :

xi (t) 6= xj(t), ∀t ∈ [0,T ] (1)

Uncertainties make this constraint intractable to check in general.

Validated method
Use of outer approximations to guarantee the non collision.

Validated non collision prediction of multiple drones – Olivier Mullier 3/14



Interval Analysis

An interval is denoted [x ] = [x , x ] with x 6 x .

The set of intervals is denoted

IR = {[x ] = [x , x ] | x , x ∈ R, x 6 x}.

The Cartesian product of intervals [x] ∈ IRn is a box.

Interval arithmetic
Evaluating an arithmetic expression with intervals leads to an
outer-approximation of the set it defines.

To deal with interval functions, an interval inclusion function (or interval
extension) of a function can be defined.

Examples:

• natural extension: replaces the operations on reals by their interval
counterparts using interval arithmetic;

• mean value extension: linearizes the function around its mean value.

Validated non collision prediction of multiple drones – Olivier Mullier 4/14



Validated Numerical Integration of Dynamical Systems

Definition (IVP-ode)
An IVP-ODE is defined as

(S)

ẏ = f (t, y)

y(0) ∈ Y0 ⊆ Rn, t ∈ [0, tend] .

Goal is to compute y(t;Y0) = {y(t; y0) | y0 ∈ Y0}.

Phase 1 a priori enclosure
[
y[ti ,ti+1]

]
of

{y(tk ; yi ) | tk ∈ [ti , ti+1] , yi ∈ [yi ]}

Phase 2 tight enclosure [yti+1 ] at time
ti+1.

time

st
at

e

Picard-Lindelof

tighter approx.

t

A trajectory then consists in a set of boxes called a tube.

Validated non collision prediction of multiple drones – Olivier Mullier 5/14



Validated Numerical Integration of Controlled Dynamical Systems

If we consider again the dynamic of a drone i :

(Si )


ẋi = f (xi , ui )

xi (0) ∈ [xi ;0]

ui ∈ [ui ]

The control ui is considered constant during the simulation over time t.

we infer a solution operator

xi (t, [xi,0] , [ui ]) = {x(t; x0; ui ) | x0 ∈ [xi ;0] , ui ∈ [ui ]}.

and its associated interval inclusion [xi ] (t, [xi,0] , [ui ]).

Validated non collision prediction of multiple drones – Olivier Mullier 6/14



DynIBEX

Validated Simulation with Runge-Kutta

• Proof of existence and uniqueness of solution for ODEs and DAEs,

• Local truncation error computation for any Runge-Kutta method
(implicit or explicit),

• Combined with contractors (HC4, etc.).

Verification of temporal constraints

• Stayed in A until t̃ < tend :

∀t ∈ [0, t̃] , {y(t; y0) | y0 ∈ [y0]} ⊆ int(A)

• Included in A inside [0, tend] :

∃t ∈ [0, tend] , {y(t; y0) | y0 ∈ [y0]} ⊆ int(A).

Validated non collision prediction of multiple drones – Olivier Mullier 7/14



Solving the Problem with DynIBEX

Temporal constraint
Has crossed A (before τ):

∃t < τ, y(t) ∩�A 6= ∅

We can define the collision detection in term of this temporal constraint.

Validated non collision prediction of multiple drones – Olivier Mullier 8/14



Solving the Problem with DynIBEX: a Small Example

(Si )


Ẋi =


ẋi

ẏi

żi

 =


vi cosψi cos θi

v sinψi cos θi

v sin θi


Xi (0) ∈ [X0]

x

y

z

θ

ψ

with

• the state vector Xi = (xi , yi , zi )
T representing the position of the robot;

• the control vector ui = (vi , ψi , θi )
T consisting in the velocity vi , the heading

angle ψi and the track angle θi .

Validated non collision prediction of multiple drones – Olivier Mullier 9/14



Solving the Problem with DynIBEX: a Small Example

drone (S1):

• X1 = (1, 1, 1) and v1 = 1;

• ψ1 = π
2 and θ1 = π

2 .

drone (S2):

• X2 = (1, 7.8, 7.8) and v2 = −1;

• ψ2 = −π2 and θ2 = − 3π
4 .

drone (S3):

• X3 = (0, 1, 2) and v3 = 1;

• ψ3 = π and θ3 = π
2 .

The simulation time is 10s.
Validated non collision prediction of multiple drones – Olivier Mullier 10/14



Solving the Problem with DynIBEX: a Small Example

For N drones, we obtain the N tubes :

• (S1) :
{[

x1;[t1,0]
]
,
[
x1;[t1,1]

]
, . . . ,

[
x1;[t1,m1 ]

]}
• (S2) :

{[
x2;[t2,0]

]
,
[
x2;[t2,1]

]
, . . . ,

[
x2;[t2,m2 ]

]}
•

...

• (SN) :
{[

xN;[tN,0]

]
,
[
xN;[tN,1]

]
, . . . ,

[
xN;[tN,mN ]

]}
with

[
xi ;[ti,j ]

]
⊇ {xi (t) |t ∈ [ti,j ]}

Validated non collision prediction of multiple drones – Olivier Mullier 11/14



Algorithm 1: Algorithm for checking the non collision between a set of drones.

Input: (S1) :
{[

x1;[t1,0]
]
,
[
x1;[t1,1]

]
, . . . ,

[
x1;[t1,m1 ]

]}
Input: (S2) :

{[
x2;[t2,0]

]
,
[
x2;[t2,1]

]
, . . . ,

[
x2;[t2,m2 ]

]}
...

Input: (SN) :
{[

xN;[tN,0]

]
,
[
xN;[tN,1]

]
, . . . ,

[
xN;[tN,mN ]

]}
for i = 1 to N do

for j = 0 to mi do
for k = i + 1 to N do

for l = 0 to mk do
if [ti ;j ] ∩ [tk;l ] 6= ∅ then

if
[
xi ;[ti,j ]

]
∩
[
xk;[tk,l ]

]
6= ∅ then

possible collision

no collision detected

Validated non collision prediction of multiple drones – Olivier Mullier 12/14



Solving the Problem with DynIBEX: a Small Example

We end up with a solution with a high complexity.

DynIbex

• handle the dynamics;

• handle static obstacles constraints easily (for example boxRRT);

• requires more sophisticated tools to handle the dynamic obstacles.

A solution:

AbSolute
(
Constraint solver based on abstract domains)

Validated non collision prediction of multiple drones – Olivier Mullier 13/14



From DynIBEX to AbSolute

We cast the results from DynIBEX into a Constraint Satisfaction Problem.

init
real x0 = [−10000.000000; 10000.000000]
real x1 = [−10000.000000; 10000.000000]
real x2 = [−10000.000000; 10000.000000]
real t = [0; 100.0]

constraints
T0 :(
t in [t0,0] &&x0 in

[
x1;[t0,0]

]
0
&& x1 in

[
x1;[t0,0]

]
1
&& x2 in

[
x1;[t0,0]

]
2

) ∣∣∣∣
(
t in [t0,1] &&x0 in

[
x1;[t0,1]

]
0
&& x1 in

[
x1;[t0,1]

]
1
&& x2 in

[
x1;[t0,1]

]
2

) ∣∣∣∣
...
T1 :(
t in [t1,0] &&x0 in

[
x1;[t1,0]

]
0
&& x1 in

[
x1;[t1,0]

]
1
&& x2 in

[
x1;[t1,0]

]
2

) ∣∣∣∣
...

Validated non collision prediction of multiple drones – Olivier Mullier 14/14


	Introduction

