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Context: Hybrid systems
Example written in Zélus [Bourke and Pouzet, 2013], a synchronous language with ODEs

The heater
(Nicolas Halbwachs, Collège de France, 2010)

1 let low = 1.0
2 let high = 1.0
3 let c = 50.0
4 let α = 0.1
5 let β = 0.05
6 let tempext = 0.0
7 let temp0 = 15.0
8
9 let hybrid heater(u) = temp where
10 rec der temp =
11 if u then α *. (c -. temp)
12 else β *. (tempext -. temp)
13 init temp0
14
15 let hybrid relay (low, high, temp) = u where rec
16 automaton
17 | Low → do u = true until up(temp -. high) then High
18 | High → do u = false until up(low -. temp) then Low
19
20 let hybrid system(ref) = temp where
21 rec u = relay(ref -. low, ref +. high, temp)
22 and temp = heater(u)
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I discrete phase D: execution of discrete
reactions

I continuous phase C: integration of ODEs by
numeric solver

I event: zero-crossings defined by up
I encore: if additional discrete step needed
I approximate: no event found yet

A static analysis ensures that continuous and discrete contexts are enforced

Note: during the continuous phase, all values are expected to be
continuous. In particular, booleans should be constant.
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Context: The falsification problem

Notations
T, time domain SV = T → V , signals

I = SVi1 ∗ ... ∗ SVin , inputs set
O = SVj1 ∗ ... ∗ SVjm , outputs set

SUT : I → O
Obs : I ∗ O → SB Assert : I ∗ O → SB

∀t ∈ T ,T |t = {t′|t′ ≤ t}
∀s ∈ SV , t ∈ T , s|t : T |t → V prefix of s

Falsification problem: Given a system
SUT, a property Assert over its inputs and
a property Obs over its outputs,
find an input i ∈ I and a time t ∈ T such
that the prefix s|t produces an output
o|t = SUT(i |t) such that they verifies
Assert but not Obs.

∃i ∈ I, t ∈ T , o|t = SUT(i |t),
[∀t ′ ∈ T |t ,Assert(i |t , o|t)(t ′)]∧

¬Obs(i |t , o|t)(t)

Common approach: write an input
generator Gen : O → I that
generates correct inputs, that is,

∀o ∈ Sm, i = Gen(o)⇒
∀t ∈ T ,Assert(i ,SUT(i))(t)

SUT

Obs

Gen
o

i

ok

How to find a falsifying input ?

Several tools:
Breach [Donzé, 2010]

S-TaLiRo [Annpureddy et al., 2011]
Lurette [Jahier et al., 2013]
FALSTAR [Ernst et al., 2018]
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State-of-the-art: Discrete systems
Lurette [Jahier et al., 2013] [Jahier et al., 2004]

Lurette: random testing of discrete systems

I T = N
I signals are streams
I Assert: linear constraints over I

and O, can depend on time

SUT
Lustre, Scade,...

Obs
Lustre

Gen
Lutin

oi

ok

Gen (Lutin)
node gen_x_v2() returns (x:real) =

loop {
(0.0<x and x<42.0) fby loop[20] x = pre x

}

node gen_x_v3() returns (target:real; x:real=0.0) =
run target := gen_x_v2() in
loop { x = (pre x + target) / 2.0 }

Obs (Lustre observer
[Halbwachs et al., 1994])

node true_since_n_seconds(n: real; signal: bool)
returns (res: bool)
var timer : real;
let

timer = n →
if not signal then n else
max(0.0, pre(timer)-1000.0 * cycle_time);
res = (timer = 0.0);

tel
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State-of-the-art: Discrete systems
Lurette [Jahier et al., 2013] [Jahier et al., 2004]: Lutin [Raymond et al., 2008]

Variables of a Lutin node are booleans or numerical values, the node defines:
I constraints over booleans
I linear numerical constraints

From a partial valuation of the variables (induced by inputs and memory), the
node compute a valuation that satisfies all the constraints, or fails.

Execution of the program: at each step

1. represent the constraints as a BDD with polyhedra at its leaves:
1.1 gather all boolean constraints for the current step
1.2 construct a BDD with them
1.3 for each path in the BDD, gather the corresponding numerical constraints
1.4 construct a polyhedron from those and put it as a leaf of the BDD path

2. choose a satisfiable path in the BDD with a non-empty polyhedron leaf
3. pick a random value in the polyhedron (increased probability near the

borders)
4. the BDD path and the value from the polyhedron are the new valuation
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State-of-the-art: Hybrid systems
S-TaLiRo [Annpureddy et al., 2011], Breach [Donzé, 2010]: optimization-based testing of
hybrid systems

I T ⊂ R a finite time domain, that is, a signal is an array of timed values.
I signals are computed and sampled by Simulink
I Assert: linear constraints over I, does not depend on time

New idea: quantitative semantic (called robustness) over properties, that is,
Obs : I ∗ O → R

Meaning: sign of Obs(i , o) is the truth value and its absolute value is a score
↪→ problem becomes:
∃i ∈ I, t ∈ T , o|t = SUT(i |t), [∀t ′ ∈ T |t ,Assert(i |t , o|t)(t ′)] ∧Obs(i |t , o|t) < 0
This can be solved as a minimization problem.

We feed that robustness back to the
generator: Gen : O ∗ R→ I

SUT
Simulink

Obs
MITL

Gen
Matlab

oi

r
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State-of-the-art: Hybrid systems
S-TaLiRo [Annpureddy et al., 2011], Breach [Donzé, 2010]

Observers: Metric Interval Temporal Logic (MITL) formulas [Alur et al., 1996]

Syntax of a formula:
ϕ1, ϕ2 := > | p | ¬ ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b] ϕ2

(with v a variable, p a predicate (e.g. (x > 0)))

Derived operators:
⊥ = ¬> 3[a,b]ϕ = > U[a,b] ϕ (eventually)

ϕ ∨ ϕ′ = ¬(¬ϕ ∧ ¬ϕ′) 2[a,b]ϕ = ¬3[a,b](¬ϕ) (always)

The robust semantic [Fainekos and Pappas, 2009] of ϕ is a function
Obs = ρ(ϕ):

ρ(>)(i, o)(t) = +∞ ρ(v < f )(i, o)(t) = f − v(t)
ρ(¬ ϕ)(i, o)(t) = − ρ(ϕ)(i, o)(t) ρ(v > f )(i, o)(t) = v(t)− f

ρ(ϕ1 ∧ ϕ2)(i, o)(t) = min(ρ(ϕ1)(i, o)(t), ρ(ϕ2)(i, o)(t))

ρ(ϕ1 UI ϕ2)(i, o)(t) = min
t′∈(t+R I)

(
max
(
ρ(ϕ2)(i, o)(t′), max

t<t′′<t′
ρ(ϕ1)(i, o)(t′′)

))
(with v a variable in i or in o)
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State-of-the-art: Hybrid systems
S-TaLiRo [Annpureddy et al., 2011]

Generator: optimization algorithm
in S-TaLiRo, by default: Simulated Annealing with Monte-Carlo sampling
1 f u n c t i o n p i ck_ne i ghbo r ( r a d i u s : f l o a t , p o i n t : f l o a t a r r a y ) : f l o a t a r r a y ;
2 f u n c t i o n b e r n o u l l i ( prob : f l o a t ) : boo l ;
3 f u n c t i o n upda t e_d i sp l a c e_accep tance ( keep_new : boo l ) : v o i d ;
4
5 g l o b a l l a s t_ r , acceptance , d i s p l a c e : f l o a t ;
6 g l o b a l i , l a s t _ i : f l o a t a r r a y ;
7
8 f u n c t i o n Gen ( o : f l o a t ar ray , r : f l o a t ) {
9 p ← i f ( r < l a s t _ r ) then 1 . e l s e exp ( ( l a s t _ r − r ) ∗ accep tance ) ;

10 keep_new ← b e r n o u l l i ( p ) ;
11
12 a c t u a l_ i ← i f keep_new then i e l s e l a s t _ i ;
13 a c t ua l_ r ← i f keep_new then r e l s e l a s t _ r ;
14 new_i ← p i ck_ne i ghbo r ( d i s p l a c e , a c t u a l _ i ) ;
15
16 l a s t _ i ← a c t u a l_ i ;
17 l a s t _ r ← a c t ua l_ r ;
18 i ← new_i ;
19
20 upda t e_d i sp l a c e_accep tance ( keep_new ) ;
21
22 r e t u r n new_i ;
23 }

This generator does not use the output vector of the SUT.
In Breach, by default: Nelder-Mead algorithm.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 8/30



State-of-the-art: Hybrid systems
FALSTAR [Ernst et al., 2018]: tree-search based testing of hybrid systems

I T ⊂ R a finite time domain
I signals are integrated by Simulink and then sampled
I Assert: linear constraints over I, does not depend on time
I Obs: interval robustness of MITL formulas over partial traces

Gen: explore a tree of all possible piecewise-constant inputs

0 1 2 3 4 5
0
2
4 ••

•

•

For each partial input u, they compute an interval [ρSUT(ϕ)(u), ρSUT(ϕ)(u)]

ρSUT(ϕ)(u) = min
u′/uu′∈I

ρ(ϕ)(uu′,SUT(uu′))

ρSUT(ϕ)(u) = max
u′/uu′∈I

ρ(ϕ)(uu′,SUT(uu′))

bounding the expected robustness of the subtree starting at u. They then use
that to choose whether to keep exploring the subtree or to explore another one.
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Questions
Writing a specification

MITL:
I Not intuitive easy to make mistakes, not easy to understand.

From [Hoxha et al., 2015]: φAT8 : A gear increase from first to fourth in under 10secs, ending in an RPM
above max_rpm within 2 seconds of that, should result in a vehicle speed above max_speed.

Paper formula:(
(g1 U g2 U g3 U g4) ∧3[0,10]

(
g4 ∧3[0,2](ω ≥ ω̄)

))
⇒

3[0,10](g4 ⇒ 3[0,ε](g4 U[0,1] (v ≥ v̄)))

According to me:(
g1 ∧3[0,10]

(
g4 ∧3[0,2](ω ≥ ω̄)

))
⇒ 2[0,10]

(
(g4 ∧ ω ≥ ω̄)⇒ v ≥ v̄

)
I The robust semantic is computed on sampled signals by the tools.

Can we compute it online ? No [Maler et al., 2006]
that is, some formulas require non-deterministic automata (e.g. 2(y ⇒ (3[a,b]x)))

Do we really need all the expressive power of MITL to write our specifications ?
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Questions
Generating inputs

The dimension of the set of (sampled) inputs of a hybrid system, is too big.
How can we reduce it ?

Possible answers:
I S-TaLiRo and Breach: inputs of the system are made using statically

generated parameters at the beginning of the run.
They generate an array of timed values (user-specified length) and
interpolate it.

I FALSTAR: compute piecewise-constant inputs with a user-specified
period.

Idea: use gradient-based optimization techniques to explore the input space
more efficiently.
Problem: how to compute the gradient of the robustness wrt. the inputs of the
system?
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Specification: Pattern templates [Gamma et al., 1995]
Do we really need all the expressive power of MITL ?

Pattern templates: enough to express most of our specifications
[Frehse et al., 2018]

Pattern name Description

Absence After q, it is never the case that p holds
2(q ⇒ 2(¬p))

Absence (timed) T seconds after q is first satisfied, it is never the case that p holds
2(q ⇒ 2[0,T ](¬p))

Minimum duration After q, it is always the case that once p becomes satisfied, it holds for at least T seconds
2(q ⇒ (2(p FS q)⇒ 2[ε,T ]p)))

Maximum duration After q, it is always the case that once p becomes satisfied, it holds for at most T seconds
2(q ⇒ (2(p↑ε ⇒ 3[ε,T ]¬p)))

Bounded recurrence After q, it is always the case that p holds at least every T seconds
2(q ⇒ 2(3[0,T ]p))

Bounded response After q, it is always the case that if p holds, then s holds after at most T seconds
2(q ⇒ 2(p ⇒ 3[0,T ]s))

Bounded invariance After q, it is always the case that if p holds then s holds for at least T seconds
2(q ⇒ 2(p ⇒ 2[0,T ]s))

with p, q predicates, that is, boolean signals
with ϕ↑ε = ¬ϕ ∧ 3[0,ε]ϕ (pronounced "up ϕ")

with ϕ FS ψ = ϕ ∧ ((¬ϕ) S ψ) (pronounced "first ϕ since ψ"")

Idea: write these these templates as hybrid observers and give them a
quantitative semantics
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Synchronous observers [Halbwachs et al., 1994]

Synchronous observer: discrete boolean node that encodes a
specification.

Example: B has been true at least once between A and C

node never p = neverp where
rec neverp = not p → (pre neverp && not p)

node since(a, b) = asinceb where
asinceb = if b then a
else (true → a or pre(asinceb))

node onceBfromAtoC(a, b, c) =
c ⇒ (never a || since(b, a))

B "since(a, b)" here stands for "a has been true at least once since last time
b has been true" which is not the same as the usual meaning of the operator S
in MITL.
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Synchronous observers with quantitative semantics
Discrete time

let qnot p = -. p let qand (a, b) = min a b
let qor (a, b) = max a b let qimply (a, b) = qor (qnot a, b)

node never p = neverp where
rec neverp = qnot p → qand (pre neverp, qnot p)

node since(a, b) = . . . (* next slide *)

node onceBfromAtoC(a, b, c) =
qimply(c, qor (never a, since(b, a)))
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Synchronous observers with quantitative semantics
Discrete time

node once p = oncep where rec oncep = p → qor (pre oncep, p)
node since(a, b) = asinceb where
automaton

| INIT →
do asinceb = qor (never b, a)
until (qistrue b) () then BTRUE

| BTRUE →
do asinceb = a
until (qisfalse b) () then BFALSE(a)

| BFALSE(lastres) →
do asinceb = qor (lastres, once a)
until (qistrue b) () then BTRUE
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Hybrid observers
Continuous time: always and once

Discrete time:

node always p = alwaysp where rec alwaysp = p → min p (pre alwaysp)

Continuous time ? Possible solution:
I if we have access to the time-derivative dp of p wrt. time:

hybrid always (p, dp) = alwaysp where
(* flat : if true then alwaysp should not change *)
rec flat =

present
(* follow the derivative if *)
(* p becomes < alwaysp *) | xup(alwaysp -. p)
| (disc dp) on (p < alwaysp && dp < 0.)
→ false
(* stop following it if *)
(* dp becomes > 0 *) | xup(dp)
| (disc p) on (p > alwaysp)
→ true

init dp ≥ 0.
and der alwaysp = if flat then 0. else dp

init p
reset (disc p) → min p (last alwaysp)

0 2 4 6 8 10

−1
0
1 p

always p

0 2 4 6 8 10
−1
0
1 dp

flat?

I we can compute dp automatically by using automatic differentiation
(here, with dual numbers for example)

I problem: requires to use dual numbers instead of normal floats
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Hybrid observers
Continuous time: always and once

Discrete time:

node always p = alwaysp where rec alwaysp = p → min p (pre alwaysp)

Continuous time ? Simpler solution: sample the signal
let static eps = 0.1

hybrid always p = alwaysp where
rec init alwaysp = p
and der t = 1. init 0.
and present

(* compute new min when *)
(* | current min p - p | > eps *)
| xup((alwaysp -. eps) -. p) | xup(p -. (alwaypp +. eps))
(* p crosses 0 *)
| xup(p) | xup(-.p) →

do alwaysp = min ((last alwaysp), p) done

0 1 2 3 4 5 6 7

p
always p
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Specification: A library of hybrid observers
How to specify the outputs

0 2 4 6 8 10 12 14

false
true
false
true
false
true first A last A

once B

always B

t [sec]

A
B
C

after first A holds, once B holds until C holdslast always

↪→ these 4 constructions are enough to express all the properties in these
benchmarks: [Ernst et al., 2019] [Dokhanchi et al., 2018] [Hoxha et al., 2014]
↪→ they are enough to express all the pattern templates of [Frehse et al., 2018]
↪→ they express a subset of MITL

My contribution on this: quantitative semantics to synchronous observers +
continuous version with quantitative semantics
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Preliminary: Differentiation
Definition of a differential

Let f : Rn → Rm be a function differentiable in Rn and
∀i ∈ [1,m], fi (x1, ..., xn) = (f (x1, ..., xn))i .
The differential function df : R2n → Rm is defined by

df (x1, dx1, ..., xn, dxn) = (
∂ f1
∂x1

dx1 + ... +
∂ f1
∂xn

dxn,

...,

∂ fm
∂x1

dx1 + ... +
∂ fm
∂xn

dxn)

x0 = 2 3

4

8
9f (x0 + dx) =

f (x0) =

dx

df (x0, dx)

x

f (x) = x2

f (x1, ..., xn) + df (x1, dx1, ..., xn, dxn)
is a first order approximation of
f (x1 + dx1, ..., xn + dxn)
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FADBADml
Automatic Differentiation

FADBADml:
I OCaml porting of FADBAD++ [Stauning, 1997] (written by Ole

Stauning)
I written by François Bidet and myself
I available on github: https://github.com/fadbadml-dev/FADBADml

Example:

let x = make 5 in
let y = make 3 in
diff x 0 2;
diff y 1 2;
let
z = x + sin y * x
in . . .
(* access dz/dx
and dz/dy
with ‘d z 0‘
and ‘d z 1‘ *)

+
v: 5.71
diff: [1.14,−4.95]

∗
v: 0.71
diff: [0.14,−4.95]

sin
v: 0.14
diff: [0,−0.99]

value
v: 5
diff: [1, 0]

value
v: 3
diff: [0, 1]

x

y

z
I Can be used for discrete

nodes to compute
differentials without
source-to-source
transformation.

I For hybrid nodes, we
would need to provide an
API to the external ODE
solver.
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A toy language (WIP)
Syntax (to be extended)

I This is a subset of Zélus, it will be compiled into Zélus
I All variables are of type float, booleans are given a

quantitative semantic (same idea as robustness of MITL).
I am working on extending this kernel.

I Primitive combinatorial functions (+, sin, ...) are
expected to be differentiable wrt. their input.
They also come with their differential (e.g.
let sin_d (x, dx) = (sin x, dx*cos(x)), ...).

I Other combinatorial functions such as abs (not
differentiable in 0) can be used if implemented as a node:

let hybrid abs(x) = (y) where
present xup x → sign = 1.
else xup (-.x) → sign = -1.
init sign = (if x ≥ 0. then 1. else -1.)
and y = sign *. x

How to compute the differential of a
node ?

impl ::= let kind id (id(, id)∗) = (id(, id)∗) where eq

kind ::= fun | node | hybrid

eq ::= id(, id)∗ = exp
| der id = exp init exp
| if exp then eq else eq
| eq and eq

| present (| cond → eq)+else eq

| automaton (| state → do eq transition)+

transition ::= done | until exp then state

exp ::= true | const | x | (exp)
| let eq in exp

| id(exp(, exp)∗)
| pre exp | exp → exp
| exp > 0 | up exp
| not exp | exp b_op exp

b_op ::= && | || | on
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Differentiation operator
D(let kind f (x1, ..., xn) = (y1, ..., ym) where eq)

def
= let kind df (x1, dx1, ..., xn, dxn) = (y1, dy1, ..., ym, dym) where Deq (eq)

Deq ((x1, ..., xn) = e)
def
= (x1, dx1, ..., xn, dxn) = Deq (e)

Deq (der x = e1 init e2)
def
=

(xd , dxd ) = Deq (e1)

and (x0, dx0) = Deq (e2)

and der x = xd init x0
and der dx = dxd init dx0

Deq (if e then eq1 else eq2)
def
=

if istrue(e) then Deq (eq1) else Deq (eq2)

Deq (eq1 and eq2)
def
= Deq (eq1) and Deq (eq2)

Deq (present (| ei → eqi )0≤i<n else eqn)
def
=

present (| ei → Deq (eqi ))0≤i<n else Deq (eqn)

Dexp (const)
def
= (const, 0) Dexp (true)

def
= (+∞, 0) Dexp (not e)

def
= −Dexp (e) Dexp (e > 0)

def
= Dexp (e)

Dexp ((x1, ..., xn))
def
= (x1, dx1, ..., xn, dxn) Dexp (up e)

def
=

[
let (v, dv) = Dexp (e)

in (up v, dv)
Dexp (pre e)

def
= (pre e, 0)

Dexp (let eq in exp)
def
= let Deq (eq) in Dexp (exp) Dexp (x1, ..., xn = e))

def
= x1, dx1, ..., xn, dxn = Dexp (e)

Dexp (f (e1, ...en)))
def
=

let (v1, dv1) = Dexp (e1)

and ...

and (vn, dvn) = Dexp (en)

in df (v1, dv1, ..., vn, dvn)

Dexp (e1 && e2)
def
=


let (v1, dv1) = Dexp (e1)

and (v2, dv2) = Dexp (e2)

and if v1 − v2 > 0

then v = v2 and dv = dv2
else v = v1 and dv = dv1

in(v, dv)

Dexp (e1 on e2)
def
= Dexp (e1 || (not e2)) Dexp (e1 → e2)

def
= Dexp (e1) → Dexp (e2) Dexp (e1 || e2)

def
= Dexp (not ((not e1) && (not e2)))



Differentiation operator
Important cases

Assumption: All available combinatorial functions (+,
sin, ...) are differentiable wrt. their inputs.
⇒ during a continuous phase, all the signals are
differentiable.

Deq(der x = e1 init e2) :=

(xd , dxd ) = Deq(e1)

and (x0, dx0) = Deq(e2)
and der x = xd init x0
and der dx = dxd init dx0

Leibniz integral rule
Let f be such that f (x, t) and ∂ f

∂x (x, t) are continuous
in ([0, t] ∗ X ), then

∀x ∈ X
F (x) =

∫ t

0
f (x, h)dh ⇒ ∂F

∂x (x) =
∫ t

0
∂ f
∂x (x, h)dh

In our case, the program der x = f(x,y) init x0
encodes the fixpoint equation

x(y, t) = x0 +
∫ t

0
f (x, y, h)dh

so, following the Leibniz rule, its partial derivative is
∂ x
∂y (y, t) =

∫ t

0
∂ f
∂y (x, y, h)dh

that we encode as
der dx = df(x, dx, y, dy) init 0.

Dexp(pre e) := (pre e, 0)

we want the differential of pre e wrt. the current inputs
of the node. pre e does not depend on the current
inputs, so its differential is 0.

Dexp(if e then e1 else e2) :=
if istrue(e) then Dexp(e1) else Dexp(e2)

I istrue is a Zelus node that listens for the events
up(e) and up(−.e) to compute a boolean from
the value of e.
In particular, its output is constant during a
continuous phase.

I if e does not depend on the values of the
variables wrt. which we differentiate, this
differential is correct
otherwise, weird things can happen:

let node mySqr(x) = y where
if x = 5. then y = 25.
else y = x *. x

would become

let node dmySqr(x, dx) = y, dy where
if x = 5.

then y = 25. and dy = 0.
else y = x *. x

and dy = 2. *. dx *. x
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Falsifying a specification using differentials (WIP)
The automatic transmission benchmark [Hoxha et al., 2015]

Input: throttle, brake Output: gear, speed, rpm
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Falsifying a specification using differentials (WIP)
The automatic transmission benchmark [Hoxha et al., 2015]

Input shape
(dim. 4)

0 5 10 15 20 tmax

v1 v3

t
% throttle brakev2

v4

ft.
lb

Specification
If the engine speed never reaches w̄ in the first 30 seconds,
then the vehicle speed never reaches v̄ in the first d seconds.

(2[0,30](w < w̄))⇒ (2[0,d](v < v̄))

Robustness ρ(w , v)(t) = max(−mint∈[0,30](w̄ − w(t)),mint∈[0,d](v̄ − v(t)))

Observer qimplies(always_timed 30 (qle (w, w_bar)), always_timed d (qle (v, v_bar)))
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Falsifying a specification using differentials (WIP)
The automatic transmission: discrete version

Uniform Random

Gradient descent

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 26/30



Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 26/30



Falsifying a specification using differentials (WIP)
The heater (transformed by hand)

let low = 1.0
let high = 1.0
let c = 50.0
let α = 0.1
let β = 0.05
let tempext = 0.0
let temp0 = 15.0

let hybrid heater(u) = temp where
rec der temp =

if u then α *. (c -. temp)
else β *. (tempext -. temp)

init temp0

let hybrid relay (low, high, temp) = u where rec
automaton
| Low → do u = true until up(temp -. high) then High
| High → do u = false until up(low -. temp) then Low

let hybrid system(ref) = temp where
rec u = relay(ref -. low, ref +. high, temp)
and temp = heater(u)

let low_d = 0.000000
let high_d = 0.000000
let c_d = 0.000000
let α_d = 0.000000
let β_d = 0.000000
let tempext_d = 0.000000
let temp0_d = 0.000000
let h_d = 0.000000

let hybrid heater_d (u) = temp, temp_d where
rec der temp =

if u then (α *. (c -. temp))
else (β *. (tempext -. temp))

init temp0
and der temp_d =

if u then
((α_d *. (c -. temp)) +.
(α *. (c_d -. temp_d)))

else
((β_d *. (tempext -. temp)) +.
(β *. (tempext_d -. temp_d)))

init temp0_d

let hybrid relay (low, high, v) = u where rec
automaton
| Low → do u = true until up(v -. high) then High
| High → do u = false until up( low -. v) then Low

let hybrid qsystem_d (ref, ref_d) = temp, temp_d where
rec u = relay(ref -. low, ref +. high, temp)
and temp, temp_d = heater_d(u)

Problem:

˙dtemp(t) =

{
0 if t = 0
dα ∗ (c − temp(t)) + α ∗ (dc − dtemp(t)) else if u
dβ ∗ (tempext − temp(t)) + β ∗ (dtempext − dtemp(t)) else

=

{
0 if t = 0
− α ∗ dtemp(t) else if u
− β ∗ dtemp(t) else

has a unique solution ∀t, dtemp(t) = 0. If dtemp = 0, no matter what spec you define, dspec will also be 0.
⇒ differentials do not guide us
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Switching modes using differentials (WIP)
The quantitative heater (transformed by my compiler)

Point of interest: discontinuities of u
We can compute a quantitative semantic qu for the boolean u. qu satisfies the sufficient condition because there is
no if (or present) between ref and qu.

let low = 1.0
let high = 1.0
let c = 50.0
let α = 0.1
let β = 0.05
let tempext = 0.0
let temp0 = 15.0

let hybrid heater(qu) = temp where
rec der temp =

if qu
then α *. (c -. temp)
else β *. (tempext -. temp)

init temp0

let hybrid relay (low, high, v) = qu where rec
automaton
| Low → do qu = (high -. v) until up(-.qu) then High
| High → do qu = (low -. v) until up(qu) then Low

let hybrid system(ref) = qu, temp where
rec qu = relay(ref -. low, ref +. high, temp)
and temp = heater(qu)

let low_d = 0.000000
let high_d = 0.000000
let c_d = 0.000000
let α_d = 0.000000
let β_d = 0.000000
let tempext_d = 0.000000
let temp0_d = 0.000000
let h_d = 0.000000

let hybrid heater_d (qu, qu_d) = temp, temp_d where
rec der temp =

if istrue(qu)
then (α *. (c -. temp))
else (β *. (tempext -. temp))

init temp0
and der temp_d =

if istrue(qu) then
((α_d *. (c -. temp)) +.
(α *. (c_d -. temp_d)))

else
((β_d *. (tempext -. temp)) +.
(β *. (tempext_d -. temp_d)))

init temp0_d

let hybrid qrelay_d (low, low_d, high, high_d, v, v_d) = qu, qu_d where rec
automaton
| Low → do

qu = (high -. v)
and qu_d = (high_d -. v_d)

until up(-.qu) then High
| High → do

qu = (low -. v)
and qu_d = (low_d -. v_d)

until up(qu) then Low

let hybrid qsystem_d (ref, ref_d) = qu, qu_d, temp, temp_d where
rec qu, qu_d =

qrelay_d ((ref -. low), (ref_d -. low_d),
(ref +. high), (ref_d +. high_d),
temp, temp_d)

and temp, temp_d = heater_d(qu, qu_d)

Now that we have qu_d, we can use gradient descent to make qrelay go from one state to the other and try to
find a bug this way.
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Switching modes using differentials (WIP)
The main loop

let ref0 = 19.
let α = 2.
let inp_step = 0.5 (* period of sampling of the input *)
let plot_step = 0.1 (* period of sampling of the plot *)

let node grad_descent (ref, grad) = new_ref where
rec acc_grad = grad *. grad → (pre acc_grad +. grad *. grad)
and new_ref = ref +. α *. grad /. (Pervasives.sqrt acc_grad)

let hybrid main () =
let der t = 1. init 0. in

let rec qu, qu_d, temp, temp_d = qsystem_d (ref, 1.)

and init ref = ref0
and present (period(inp_step)) →

do
next ref = grad_descent (ref, if qu > 0. then -.qu_d else qu_d)

done
in

present (period(plot_step)) →
plot (ref, t, (qu, qu_d, temp, temp_d))

else ()

Remark: we are not trying to falsify a property here, we are trying
to trigger mode switches.
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Switching modes using differentials (WIP)
The heater

Spec: Between 4s and 20s, the temperature stays between ref − 1.5 and ref + 1.5. FALSIFIED

0 2 4 6 8 10 12 14 16 18 20
15

20

25

ref temp bang-bang bounds spec bounds

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

4

qu
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