
Falsification of Hybrid Systems
using Automatic Differentiation

Journée scientifique conjointe Chaire ISC et projet DGA AID

Ismail Bennani
PhD Student, PARKAS, ENS/INRIA

supervised by

Marc Pouzet Goran Frehse Timothy Bourke
PARKAS, ENS/INRIA U2IS, ENSTA Paris PARKAS, ENS/INRIA

March 13, 2020

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 1/30

Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 1/30

Context: Hybrid systems
Example written in Zélus [Bourke and Pouzet, 2013], a synchronous language with ODEs

The heater
(Nicolas Halbwachs, Collège de France, 2010)

1 let low = 1.0
2 let high = 1.0
3 let c = 50.0
4 let α = 0.1
5 let β = 0.05
6 let tempext = 0.0
7 let temp0 = 15.0
8
9 let hybrid heater(u) = temp where
10 rec der temp =
11 if u then α *. (c -. temp)
12 else β *. (tempext -. temp)
13 init temp0
14
15 let hybrid relay (low, high, temp) = u where rec
16 automaton
17 | Low → do u = true until up(temp -. high) then High
18 | High → do u = false until up(low -. temp) then Low
19
20 let hybrid system(ref) = temp where
21 rec u = relay(ref -. low, ref +. high, temp)
22 and temp = heater(u)

0 5 10
16
18
20

t

te
m
p,

re
f

Simulation algorithm of a hybrid program

CD

event
approximate

reinit

encore

I discrete phase D: execution of discrete
reactions

I continuous phase C: integration of ODEs by
numeric solver

I event: zero-crossings defined by up
I encore: if additional discrete step needed
I approximate: no event found yet

A static analysis ensures that continuous and discrete contexts are enforced

Note: during the continuous phase, all values are expected to be
continuous. In particular, booleans should be constant.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 2/30

Context: The falsification problem

Notations
T, time domain SV = T → V , signals

I = SVi1 ∗ ... ∗ SVin , inputs set
O = SVj1 ∗ ... ∗ SVjm , outputs set

SUT : I → O
Obs : I ∗ O → SB Assert : I ∗ O → SB

∀t ∈ T ,T |t = {t′|t′ ≤ t}
∀s ∈ SV , t ∈ T , s|t : T |t → V prefix of s

Falsification problem: Given a system
SUT, a property Assert over its inputs and
a property Obs over its outputs,
find an input i ∈ I and a time t ∈ T such
that the prefix s|t produces an output
o|t = SUT(i |t) such that they verifies
Assert but not Obs.

∃i ∈ I, t ∈ T , o|t = SUT(i |t),
[∀t ′ ∈ T |t ,Assert(i |t , o|t)(t ′)]∧

¬Obs(i |t , o|t)(t)

Common approach: write an input
generator Gen : O → I that
generates correct inputs, that is,

∀o ∈ Sm, i = Gen(o)⇒
∀t ∈ T ,Assert(i ,SUT(i))(t)

SUT

Obs

Gen
o

i

ok

How to find a falsifying input ?

Several tools:
Breach [Donzé, 2010]

S-TaLiRo [Annpureddy et al., 2011]
Lurette [Jahier et al., 2013]
FALSTAR [Ernst et al., 2018]

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 3/30

Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 3/30

State-of-the-art: Discrete systems
Lurette [Jahier et al., 2013] [Jahier et al., 2004]

Lurette: random testing of discrete systems

I T = N
I signals are streams
I Assert: linear constraints over I

and O, can depend on time

SUT
Lustre, Scade,...

Obs
Lustre

Gen
Lutin

oi

ok

Gen (Lutin)
node gen_x_v2() returns (x:real) =

loop {
(0.0<x and x<42.0) fby loop[20] x = pre x

}

node gen_x_v3() returns (target:real; x:real=0.0) =
run target := gen_x_v2() in
loop { x = (pre x + target) / 2.0 }

Obs (Lustre observer
[Halbwachs et al., 1994])

node true_since_n_seconds(n: real; signal: bool)
returns (res: bool)
var timer : real;
let

timer = n →
if not signal then n else
max(0.0, pre(timer)-1000.0 * cycle_time);
res = (timer = 0.0);

tel

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 4/30

State-of-the-art: Discrete systems
Lurette [Jahier et al., 2013] [Jahier et al., 2004]: Lutin [Raymond et al., 2008]

Variables of a Lutin node are booleans or numerical values, the node defines:
I constraints over booleans
I linear numerical constraints

From a partial valuation of the variables (induced by inputs and memory), the
node compute a valuation that satisfies all the constraints, or fails.

Execution of the program: at each step

1. represent the constraints as a BDD with polyhedra at its leaves:
1.1 gather all boolean constraints for the current step
1.2 construct a BDD with them
1.3 for each path in the BDD, gather the corresponding numerical constraints
1.4 construct a polyhedron from those and put it as a leaf of the BDD path

2. choose a satisfiable path in the BDD with a non-empty polyhedron leaf
3. pick a random value in the polyhedron (increased probability near the

borders)
4. the BDD path and the value from the polyhedron are the new valuation

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 5/30

Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 5/30

State-of-the-art: Hybrid systems
S-TaLiRo [Annpureddy et al., 2011], Breach [Donzé, 2010]: optimization-based testing of
hybrid systems

I T ⊂ R a finite time domain, that is, a signal is an array of timed values.
I signals are computed and sampled by Simulink
I Assert: linear constraints over I, does not depend on time

New idea: quantitative semantic (called robustness) over properties, that is,
Obs : I ∗ O → R

Meaning: sign of Obs(i , o) is the truth value and its absolute value is a score
↪→ problem becomes:
∃i ∈ I, t ∈ T , o|t = SUT(i |t), [∀t ′ ∈ T |t ,Assert(i |t , o|t)(t ′)] ∧Obs(i |t , o|t) < 0
This can be solved as a minimization problem.

We feed that robustness back to the
generator: Gen : O ∗ R→ I

SUT
Simulink

Obs
MITL

Gen
Matlab

oi

r
Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 6/30

State-of-the-art: Hybrid systems
S-TaLiRo [Annpureddy et al., 2011], Breach [Donzé, 2010]

Observers: Metric Interval Temporal Logic (MITL) formulas [Alur et al., 1996]

Syntax of a formula:
ϕ1, ϕ2 := > | p | ¬ ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b] ϕ2

(with v a variable, p a predicate (e.g. (x > 0)))

Derived operators:
⊥ = ¬> 3[a,b]ϕ = > U[a,b] ϕ (eventually)

ϕ ∨ ϕ′ = ¬(¬ϕ ∧ ¬ϕ′) 2[a,b]ϕ = ¬3[a,b](¬ϕ) (always)

The robust semantic [Fainekos and Pappas, 2009] of ϕ is a function
Obs = ρ(ϕ):

ρ(>)(i, o)(t) = +∞ ρ(v < f)(i, o)(t) = f − v(t)
ρ(¬ ϕ)(i, o)(t) = − ρ(ϕ)(i, o)(t) ρ(v > f)(i, o)(t) = v(t)− f

ρ(ϕ1 ∧ ϕ2)(i, o)(t) = min(ρ(ϕ1)(i, o)(t), ρ(ϕ2)(i, o)(t))

ρ(ϕ1 UI ϕ2)(i, o)(t) = min
t′∈(t+R I)

(
max
(
ρ(ϕ2)(i, o)(t′), max

t<t′′<t′
ρ(ϕ1)(i, o)(t′′)

))
(with v a variable in i or in o)

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 7/30

State-of-the-art: Hybrid systems
S-TaLiRo [Annpureddy et al., 2011]

Generator: optimization algorithm
in S-TaLiRo, by default: Simulated Annealing with Monte-Carlo sampling
1 f u n c t i o n p i ck_ne i ghbo r (r a d i u s : f l o a t , p o i n t : f l o a t a r r a y) : f l o a t a r r a y ;
2 f u n c t i o n b e r n o u l l i (prob : f l o a t) : boo l ;
3 f u n c t i o n upda t e_d i sp l a c e_accep tance (keep_new : boo l) : v o i d ;
4
5 g l o b a l l a s t_ r , acceptance , d i s p l a c e : f l o a t ;
6 g l o b a l i , l a s t _ i : f l o a t a r r a y ;
7
8 f u n c t i o n Gen (o : f l o a t ar ray , r : f l o a t) {
9 p ← i f (r < l a s t _ r) then 1 . e l s e exp ((l a s t _ r − r) ∗ accep tance) ;

10 keep_new ← b e r n o u l l i (p) ;
11
12 a c t u a l_ i ← i f keep_new then i e l s e l a s t _ i ;
13 a c t ua l_ r ← i f keep_new then r e l s e l a s t _ r ;
14 new_i ← p i ck_ne i ghbo r (d i s p l a c e , a c t u a l _ i) ;
15
16 l a s t _ i ← a c t u a l_ i ;
17 l a s t _ r ← a c t ua l_ r ;
18 i ← new_i ;
19
20 upda t e_d i sp l a c e_accep tance (keep_new) ;
21
22 r e t u r n new_i ;
23 }

This generator does not use the output vector of the SUT.
In Breach, by default: Nelder-Mead algorithm.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 8/30

State-of-the-art: Hybrid systems
FALSTAR [Ernst et al., 2018]: tree-search based testing of hybrid systems

I T ⊂ R a finite time domain
I signals are integrated by Simulink and then sampled
I Assert: linear constraints over I, does not depend on time
I Obs: interval robustness of MITL formulas over partial traces

Gen: explore a tree of all possible piecewise-constant inputs

0 1 2 3 4 5
0
2
4 ••

•

•

For each partial input u, they compute an interval [ρSUT(ϕ)(u), ρSUT(ϕ)(u)]

ρSUT(ϕ)(u) = min
u′/uu′∈I

ρ(ϕ)(uu′,SUT(uu′))

ρSUT(ϕ)(u) = max
u′/uu′∈I

ρ(ϕ)(uu′,SUT(uu′))

bounding the expected robustness of the subtree starting at u. They then use
that to choose whether to keep exploring the subtree or to explore another one.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 9/30

Questions
Writing a specification

MITL:
I Not intuitive easy to make mistakes, not easy to understand.

From [Hoxha et al., 2015]: φAT8 : A gear increase from first to fourth in under 10secs, ending in an RPM
above max_rpm within 2 seconds of that, should result in a vehicle speed above max_speed.

Paper formula:(
(g1 U g2 U g3 U g4) ∧3[0,10]

(
g4 ∧3[0,2](ω ≥ ω̄)

))
⇒

3[0,10](g4 ⇒ 3[0,ε](g4 U[0,1] (v ≥ v̄)))

According to me:(
g1 ∧3[0,10]

(
g4 ∧3[0,2](ω ≥ ω̄)

))
⇒ 2[0,10]

(
(g4 ∧ ω ≥ ω̄)⇒ v ≥ v̄

)
I The robust semantic is computed on sampled signals by the tools.

Can we compute it online ? No [Maler et al., 2006]
that is, some formulas require non-deterministic automata (e.g. 2(y ⇒ (3[a,b]x)))

Do we really need all the expressive power of MITL to write our specifications ?

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 10/30

Questions
Generating inputs

The dimension of the set of (sampled) inputs of a hybrid system, is too big.
How can we reduce it ?

Possible answers:
I S-TaLiRo and Breach: inputs of the system are made using statically

generated parameters at the beginning of the run.
They generate an array of timed values (user-specified length) and
interpolate it.

I FALSTAR: compute piecewise-constant inputs with a user-specified
period.

Idea: use gradient-based optimization techniques to explore the input space
more efficiently.
Problem: how to compute the gradient of the robustness wrt. the inputs of the
system?

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 11/30

Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 11/30

Specification: Pattern templates [Gamma et al., 1995]
Do we really need all the expressive power of MITL ?

Pattern templates: enough to express most of our specifications
[Frehse et al., 2018]

Pattern name Description

Absence After q, it is never the case that p holds
2(q ⇒ 2(¬p))

Absence (timed) T seconds after q is first satisfied, it is never the case that p holds
2(q ⇒ 2[0,T](¬p))

Minimum duration After q, it is always the case that once p becomes satisfied, it holds for at least T seconds
2(q ⇒ (2(p FS q)⇒ 2[ε,T]p)))

Maximum duration After q, it is always the case that once p becomes satisfied, it holds for at most T seconds
2(q ⇒ (2(p↑ε ⇒ 3[ε,T]¬p)))

Bounded recurrence After q, it is always the case that p holds at least every T seconds
2(q ⇒ 2(3[0,T]p))

Bounded response After q, it is always the case that if p holds, then s holds after at most T seconds
2(q ⇒ 2(p ⇒ 3[0,T]s))

Bounded invariance After q, it is always the case that if p holds then s holds for at least T seconds
2(q ⇒ 2(p ⇒ 2[0,T]s))

with p, q predicates, that is, boolean signals
with ϕ↑ε = ¬ϕ ∧ 3[0,ε]ϕ (pronounced "up ϕ")

with ϕ FS ψ = ϕ ∧ ((¬ϕ) S ψ) (pronounced "first ϕ since ψ"")

Idea: write these these templates as hybrid observers and give them a
quantitative semantics

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 12/30

Synchronous observers [Halbwachs et al., 1994]

Synchronous observer: discrete boolean node that encodes a
specification.

Example: B has been true at least once between A and C

node never p = neverp where
rec neverp = not p → (pre neverp && not p)

node since(a, b) = asinceb where
asinceb = if b then a
else (true → a or pre(asinceb))

node onceBfromAtoC(a, b, c) =
c ⇒ (never a || since(b, a))

B "since(a, b)" here stands for "a has been true at least once since last time
b has been true" which is not the same as the usual meaning of the operator S
in MITL.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 13/30

Synchronous observers with quantitative semantics
Discrete time

let qnot p = -. p let qand (a, b) = min a b
let qor (a, b) = max a b let qimply (a, b) = qor (qnot a, b)

node never p = neverp where
rec neverp = qnot p → qand (pre neverp, qnot p)

node since(a, b) = . . . (* next slide *)

node onceBfromAtoC(a, b, c) =
qimply(c, qor (never a, since(b, a)))

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 14/30

Synchronous observers with quantitative semantics
Discrete time

node once p = oncep where rec oncep = p → qor (pre oncep, p)
node since(a, b) = asinceb where
automaton

| INIT →
do asinceb = qor (never b, a)
until (qistrue b) () then BTRUE

| BTRUE →
do asinceb = a
until (qisfalse b) () then BFALSE(a)

| BFALSE(lastres) →
do asinceb = qor (lastres, once a)
until (qistrue b) () then BTRUE

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 15/30

Hybrid observers
Continuous time: always and once

Discrete time:

node always p = alwaysp where rec alwaysp = p → min p (pre alwaysp)

Continuous time ? Possible solution:
I if we have access to the time-derivative dp of p wrt. time:

hybrid always (p, dp) = alwaysp where
(* flat : if true then alwaysp should not change *)
rec flat =

present
(* follow the derivative if *)
(* p becomes < alwaysp *) | xup(alwaysp -. p)
| (disc dp) on (p < alwaysp && dp < 0.)
→ false
(* stop following it if *)
(* dp becomes > 0 *) | xup(dp)
| (disc p) on (p > alwaysp)
→ true

init dp ≥ 0.
and der alwaysp = if flat then 0. else dp

init p
reset (disc p) → min p (last alwaysp)

0 2 4 6 8 10

−1
0
1 p

always p

0 2 4 6 8 10
−1
0
1 dp

flat?

I we can compute dp automatically by using automatic differentiation
(here, with dual numbers for example)

I problem: requires to use dual numbers instead of normal floats
Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 16/30

Hybrid observers
Continuous time: always and once

Discrete time:

node always p = alwaysp where rec alwaysp = p → min p (pre alwaysp)

Continuous time ? Simpler solution: sample the signal
let static eps = 0.1

hybrid always p = alwaysp where
rec init alwaysp = p
and der t = 1. init 0.
and present

(* compute new min when *)
(* | current min p - p | > eps *)
| xup((alwaysp -. eps) -. p) | xup(p -. (alwaypp +. eps))
(* p crosses 0 *)
| xup(p) | xup(-.p) →

do alwaysp = min ((last alwaysp), p) done

0 1 2 3 4 5 6 7

p
always p

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 17/30

Specification: A library of hybrid observers
How to specify the outputs

0 2 4 6 8 10 12 14

false
true
false
true
false
true first A last A

once B

always B

t [sec]

A
B
C

after first A holds, once B holds until C holdslast always

↪→ these 4 constructions are enough to express all the properties in these
benchmarks: [Ernst et al., 2019] [Dokhanchi et al., 2018] [Hoxha et al., 2014]
↪→ they are enough to express all the pattern templates of [Frehse et al., 2018]
↪→ they express a subset of MITL

My contribution on this: quantitative semantics to synchronous observers +
continuous version with quantitative semantics

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 18/30

Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 18/30

Preliminary: Differentiation
Definition of a differential

Let f : Rn → Rm be a function differentiable in Rn and
∀i ∈ [1,m], fi (x1, ..., xn) = (f (x1, ..., xn))i .
The differential function df : R2n → Rm is defined by

df (x1, dx1, ..., xn, dxn) = (
∂ f1
∂x1

dx1 + ... +
∂ f1
∂xn

dxn,

...,

∂ fm
∂x1

dx1 + ... +
∂ fm
∂xn

dxn)

x0 = 2 3

4

8
9f (x0 + dx) =

f (x0) =

dx

df (x0, dx)

x

f (x) = x2

f (x1, ..., xn) + df (x1, dx1, ..., xn, dxn)
is a first order approximation of
f (x1 + dx1, ..., xn + dxn)

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 19/30

FADBADml
Automatic Differentiation

FADBADml:
I OCaml porting of FADBAD++ [Stauning, 1997] (written by Ole

Stauning)
I written by François Bidet and myself
I available on github: https://github.com/fadbadml-dev/FADBADml

Example:

let x = make 5 in
let y = make 3 in
diff x 0 2;
diff y 1 2;
let
z = x + sin y * x
in . . .
(* access dz/dx
and dz/dy
with ‘d z 0‘
and ‘d z 1‘ *)

+
v: 5.71
diff: [1.14,−4.95]

∗
v: 0.71
diff: [0.14,−4.95]

sin
v: 0.14
diff: [0,−0.99]

value
v: 5
diff: [1, 0]

value
v: 3
diff: [0, 1]

x

y

z
I Can be used for discrete

nodes to compute
differentials without
source-to-source
transformation.

I For hybrid nodes, we
would need to provide an
API to the external ODE
solver.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 20/30

https://fadbadml-dev.github.io/FADBADml/
https://github.com/fadbadml-dev/FADBADml

A toy language (WIP)
Syntax (to be extended)

I This is a subset of Zélus, it will be compiled into Zélus
I All variables are of type float, booleans are given a

quantitative semantic (same idea as robustness of MITL).
I am working on extending this kernel.

I Primitive combinatorial functions (+, sin, ...) are
expected to be differentiable wrt. their input.
They also come with their differential (e.g.
let sin_d (x, dx) = (sin x, dx*cos(x)), ...).

I Other combinatorial functions such as abs (not
differentiable in 0) can be used if implemented as a node:

let hybrid abs(x) = (y) where
present xup x → sign = 1.
else xup (-.x) → sign = -1.
init sign = (if x ≥ 0. then 1. else -1.)
and y = sign *. x

How to compute the differential of a
node ?

impl ::= let kind id (id(, id)∗) = (id(, id)∗) where eq

kind ::= fun | node | hybrid

eq ::= id(, id)∗ = exp
| der id = exp init exp
| if exp then eq else eq
| eq and eq

| present (| cond → eq)+else eq

| automaton (| state → do eq transition)+

transition ::= done | until exp then state

exp ::= true | const | x | (exp)
| let eq in exp

| id(exp(, exp)∗)
| pre exp | exp → exp
| exp > 0 | up exp
| not exp | exp b_op exp

b_op ::= && | || | on

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 21/30

Differentiation operator
D(let kind f (x1, ..., xn) = (y1, ..., ym) where eq)

def
= let kind df (x1, dx1, ..., xn, dxn) = (y1, dy1, ..., ym, dym) where Deq (eq)

Deq ((x1, ..., xn) = e)
def
= (x1, dx1, ..., xn, dxn) = Deq (e)

Deq (der x = e1 init e2)
def
=

(xd , dxd) = Deq (e1)

and (x0, dx0) = Deq (e2)

and der x = xd init x0
and der dx = dxd init dx0

Deq (if e then eq1 else eq2)
def
=

if istrue(e) then Deq (eq1) else Deq (eq2)

Deq (eq1 and eq2)
def
= Deq (eq1) and Deq (eq2)

Deq (present (| ei → eqi)0≤i<n else eqn)
def
=

present (| ei → Deq (eqi))0≤i<n else Deq (eqn)

Dexp (const)
def
= (const, 0) Dexp (true)

def
= (+∞, 0) Dexp (not e)

def
= −Dexp (e) Dexp (e > 0)

def
= Dexp (e)

Dexp ((x1, ..., xn))
def
= (x1, dx1, ..., xn, dxn) Dexp (up e)

def
=

[
let (v, dv) = Dexp (e)

in (up v, dv)
Dexp (pre e)

def
= (pre e, 0)

Dexp (let eq in exp)
def
= let Deq (eq) in Dexp (exp) Dexp (x1, ..., xn = e))

def
= x1, dx1, ..., xn, dxn = Dexp (e)

Dexp (f (e1, ...en)))
def
=

let (v1, dv1) = Dexp (e1)

and ...

and (vn, dvn) = Dexp (en)

in df (v1, dv1, ..., vn, dvn)

Dexp (e1 && e2)
def
=


let (v1, dv1) = Dexp (e1)

and (v2, dv2) = Dexp (e2)

and if v1 − v2 > 0

then v = v2 and dv = dv2
else v = v1 and dv = dv1

in(v, dv)

Dexp (e1 on e2)
def
= Dexp (e1 || (not e2)) Dexp (e1 → e2)

def
= Dexp (e1) → Dexp (e2) Dexp (e1 || e2)

def
= Dexp (not ((not e1) && (not e2)))

Differentiation operator
Important cases

Assumption: All available combinatorial functions (+,
sin, ...) are differentiable wrt. their inputs.
⇒ during a continuous phase, all the signals are
differentiable.

Deq(der x = e1 init e2) :=

(xd , dxd) = Deq(e1)

and (x0, dx0) = Deq(e2)
and der x = xd init x0
and der dx = dxd init dx0

Leibniz integral rule
Let f be such that f (x, t) and ∂ f

∂x (x, t) are continuous
in ([0, t] ∗ X), then

∀x ∈ X
F (x) =

∫ t

0
f (x, h)dh ⇒ ∂F

∂x (x) =
∫ t

0
∂ f
∂x (x, h)dh

In our case, the program der x = f(x,y) init x0
encodes the fixpoint equation

x(y, t) = x0 +
∫ t

0
f (x, y, h)dh

so, following the Leibniz rule, its partial derivative is
∂ x
∂y (y, t) =

∫ t

0
∂ f
∂y (x, y, h)dh

that we encode as
der dx = df(x, dx, y, dy) init 0.

Dexp(pre e) := (pre e, 0)

we want the differential of pre e wrt. the current inputs
of the node. pre e does not depend on the current
inputs, so its differential is 0.

Dexp(if e then e1 else e2) :=
if istrue(e) then Dexp(e1) else Dexp(e2)

I istrue is a Zelus node that listens for the events
up(e) and up(−.e) to compute a boolean from
the value of e.
In particular, its output is constant during a
continuous phase.

I if e does not depend on the values of the
variables wrt. which we differentiate, this
differential is correct
otherwise, weird things can happen:

let node mySqr(x) = y where
if x = 5. then y = 25.
else y = x *. x

would become

let node dmySqr(x, dx) = y, dy where
if x = 5.

then y = 25. and dy = 0.
else y = x *. x

and dy = 2. *. dx *. x

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 23/30

Differentiation operator
Important cases

Assumption: All available combinatorial functions (+,
sin, ...) are differentiable wrt. their inputs.
⇒ during a continuous phase, all the signals are
differentiable.

Deq(der x = e1 init e2) :=

(xd , dxd) = Deq(e1)

and (x0, dx0) = Deq(e2)
and der x = xd init x0
and der dx = dxd init dx0

Leibniz integral rule
Let f be such that f (x, t) and ∂ f

∂x (x, t) are continuous
in ([0, t] ∗ X), then

∀x ∈ X
F (x) =

∫ t

0
f (x, h)dh ⇒ ∂F

∂x (x) =
∫ t

0
∂ f
∂x (x, h)dh

In our case, the program der x = f(x,y) init x0
encodes the fixpoint equation

x(y, t) = x0 +
∫ t

0
f (x, y, h)dh

so, following the Leibniz rule, its partial derivative is
∂ x
∂y (y, t) =

∫ t

0
∂ f
∂y (x, y, h)dh

that we encode as
der dx = df(x, dx, y, dy) init 0.

Dexp(pre e) := (pre e, 0)

we want the differential of pre e wrt. the current inputs
of the node. pre e does not depend on the current
inputs, so its differential is 0.

Dexp(if e then e1 else e2) :=
if istrue(e) then Dexp(e1) else Dexp(e2)

I istrue is a Zelus node that listens for the events
up(e) and up(−.e) to compute a boolean from
the value of e.
In particular, its output is constant during a
continuous phase.

I if e does not depend on the values of the
variables wrt. which we differentiate, this
differential is correct
otherwise, weird things can happen:

let node mySqr(x) = y where
if x = 5. then y = 25.
else y = x *. x

would become

let node dmySqr(x, dx) = y, dy where
if x = 5.

then y = 25. and dy = 0.
else y = x *. x

and dy = 2. *. dx *. x

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 23/30

Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 23/30

Falsifying a specification using differentials (WIP)
The automatic transmission benchmark [Hoxha et al., 2015]

Input: throttle, brake Output: gear, speed, rpm

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 24/30

Falsifying a specification using differentials (WIP)
The automatic transmission benchmark [Hoxha et al., 2015]

Input shape
(dim. 4)

0 5 10 15 20 tmax

v1 v3

t
% throttle brakev2

v4

ft.
lb

Specification
If the engine speed never reaches w̄ in the first 30 seconds,
then the vehicle speed never reaches v̄ in the first d seconds.

(2[0,30](w < w̄))⇒ (2[0,d](v < v̄))

Robustness ρ(w , v)(t) = max(−mint∈[0,30](w̄ − w(t)),mint∈[0,d](v̄ − v(t)))

Observer qimplies(always_timed 30 (qle (w, w_bar)), always_timed d (qle (v, v_bar)))

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 25/30

Falsifying a specification using differentials (WIP)
The automatic transmission: discrete version

Uniform Random

Gradient descent

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 26/30

Summary

Context
Hybrid systems
The falsification problem
State-of-the-art

Specification
Pattern Templates
Synchronous observers
Hybrid observers

Input Generation
FADBADml: Automatic Differentiation for OCaml
A toy language
Differentiation operator
Falsification using differentials
Switching modes using differentials

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 26/30

Falsifying a specification using differentials (WIP)
The heater (transformed by hand)

let low = 1.0
let high = 1.0
let c = 50.0
let α = 0.1
let β = 0.05
let tempext = 0.0
let temp0 = 15.0

let hybrid heater(u) = temp where
rec der temp =

if u then α *. (c -. temp)
else β *. (tempext -. temp)

init temp0

let hybrid relay (low, high, temp) = u where rec
automaton
| Low → do u = true until up(temp -. high) then High
| High → do u = false until up(low -. temp) then Low

let hybrid system(ref) = temp where
rec u = relay(ref -. low, ref +. high, temp)
and temp = heater(u)

let low_d = 0.000000
let high_d = 0.000000
let c_d = 0.000000
let α_d = 0.000000
let β_d = 0.000000
let tempext_d = 0.000000
let temp0_d = 0.000000
let h_d = 0.000000

let hybrid heater_d (u) = temp, temp_d where
rec der temp =

if u then (α *. (c -. temp))
else (β *. (tempext -. temp))

init temp0
and der temp_d =

if u then
((α_d *. (c -. temp)) +.
(α *. (c_d -. temp_d)))

else
((β_d *. (tempext -. temp)) +.
(β *. (tempext_d -. temp_d)))

init temp0_d

let hybrid relay (low, high, v) = u where rec
automaton
| Low → do u = true until up(v -. high) then High
| High → do u = false until up(low -. v) then Low

let hybrid qsystem_d (ref, ref_d) = temp, temp_d where
rec u = relay(ref -. low, ref +. high, temp)
and temp, temp_d = heater_d(u)

Problem:

˙dtemp(t) =

{
0 if t = 0
dα ∗ (c − temp(t)) + α ∗ (dc − dtemp(t)) else if u
dβ ∗ (tempext − temp(t)) + β ∗ (dtempext − dtemp(t)) else

=

{
0 if t = 0
− α ∗ dtemp(t) else if u
− β ∗ dtemp(t) else

has a unique solution ∀t, dtemp(t) = 0. If dtemp = 0, no matter what spec you define, dspec will also be 0.
⇒ differentials do not guide us

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 27/30

Falsifying a specification using differentials (WIP)
The heater (transformed by hand)

let low = 1.0
let high = 1.0
let c = 50.0
let α = 0.1
let β = 0.05
let tempext = 0.0
let temp0 = 15.0

let hybrid heater(u) = temp where
rec der temp =

if u then α *. (c -. temp)
else β *. (tempext -. temp)

init temp0

let hybrid relay (low, high, temp) = u where rec
automaton
| Low → do u = true until up(temp -. high) then High
| High → do u = false until up(low -. temp) then Low

let hybrid system(ref) = temp where
rec u = relay(ref -. low, ref +. high, temp)
and temp = heater(u)

let low_d = 0.000000
let high_d = 0.000000
let c_d = 0.000000
let α_d = 0.000000
let β_d = 0.000000
let tempext_d = 0.000000
let temp0_d = 0.000000
let h_d = 0.000000

let hybrid heater_d (u) = temp, temp_d where
rec der temp =

if u then (α *. (c -. temp))
else (β *. (tempext -. temp))

init temp0
and der temp_d =

if u then
((α_d *. (c -. temp)) +.
(α *. (c_d -. temp_d)))

else
((β_d *. (tempext -. temp)) +.
(β *. (tempext_d -. temp_d)))

init temp0_d

let hybrid relay (low, high, v) = u where rec
automaton
| Low → do u = true until up(v -. high) then High
| High → do u = false until up(low -. v) then Low

let hybrid qsystem_d (ref, ref_d) = temp, temp_d where
rec u = relay(ref -. low, ref +. high, temp)
and temp, temp_d = heater_d(u)

Problem:

˙dtemp(t) =

{
0 if t = 0
dα ∗ (c − temp(t)) + α ∗ (dc − dtemp(t)) else if u
dβ ∗ (tempext − temp(t)) + β ∗ (dtempext − dtemp(t)) else

=

{
0 if t = 0
− α ∗ dtemp(t) else if u
− β ∗ dtemp(t) else

has a unique solution ∀t, dtemp(t) = 0. If dtemp = 0, no matter what spec you define, dspec will also be 0.
⇒ differentials do not guide us

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 27/30

Switching modes using differentials (WIP)
The quantitative heater (transformed by my compiler)

Point of interest: discontinuities of u
We can compute a quantitative semantic qu for the boolean u. qu satisfies the sufficient condition because there is
no if (or present) between ref and qu.

let low = 1.0
let high = 1.0
let c = 50.0
let α = 0.1
let β = 0.05
let tempext = 0.0
let temp0 = 15.0

let hybrid heater(qu) = temp where
rec der temp =

if qu
then α *. (c -. temp)
else β *. (tempext -. temp)

init temp0

let hybrid relay (low, high, v) = qu where rec
automaton
| Low → do qu = (high -. v) until up(-.qu) then High
| High → do qu = (low -. v) until up(qu) then Low

let hybrid system(ref) = qu, temp where
rec qu = relay(ref -. low, ref +. high, temp)
and temp = heater(qu)

let low_d = 0.000000
let high_d = 0.000000
let c_d = 0.000000
let α_d = 0.000000
let β_d = 0.000000
let tempext_d = 0.000000
let temp0_d = 0.000000
let h_d = 0.000000

let hybrid heater_d (qu, qu_d) = temp, temp_d where
rec der temp =

if istrue(qu)
then (α *. (c -. temp))
else (β *. (tempext -. temp))

init temp0
and der temp_d =

if istrue(qu) then
((α_d *. (c -. temp)) +.
(α *. (c_d -. temp_d)))

else
((β_d *. (tempext -. temp)) +.
(β *. (tempext_d -. temp_d)))

init temp0_d

let hybrid qrelay_d (low, low_d, high, high_d, v, v_d) = qu, qu_d where rec
automaton
| Low → do

qu = (high -. v)
and qu_d = (high_d -. v_d)

until up(-.qu) then High
| High → do

qu = (low -. v)
and qu_d = (low_d -. v_d)

until up(qu) then Low

let hybrid qsystem_d (ref, ref_d) = qu, qu_d, temp, temp_d where
rec qu, qu_d =

qrelay_d ((ref -. low), (ref_d -. low_d),
(ref +. high), (ref_d +. high_d),
temp, temp_d)

and temp, temp_d = heater_d(qu, qu_d)

Now that we have qu_d, we can use gradient descent to make qrelay go from one state to the other and try to
find a bug this way.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 28/30

Switching modes using differentials (WIP)
The main loop

let ref0 = 19.
let α = 2.
let inp_step = 0.5 (* period of sampling of the input *)
let plot_step = 0.1 (* period of sampling of the plot *)

let node grad_descent (ref, grad) = new_ref where
rec acc_grad = grad *. grad → (pre acc_grad +. grad *. grad)
and new_ref = ref +. α *. grad /. (Pervasives.sqrt acc_grad)

let hybrid main () =
let der t = 1. init 0. in

let rec qu, qu_d, temp, temp_d = qsystem_d (ref, 1.)

and init ref = ref0
and present (period(inp_step)) →

do
next ref = grad_descent (ref, if qu > 0. then -.qu_d else qu_d)

done
in

present (period(plot_step)) →
plot (ref, t, (qu, qu_d, temp, temp_d))

else ()

Remark: we are not trying to falsify a property here, we are trying
to trigger mode switches.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 29/30

Switching modes using differentials (WIP)
The heater

Spec: Between 4s and 20s, the temperature stays between ref − 1.5 and ref + 1.5. FALSIFIED

0 2 4 6 8 10 12 14 16 18 20
15

20

25

ref temp bang-bang bounds spec bounds

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

4

qu

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 30/30

References I

Alur, R., Feder, T., and Henzinger, T. A. (1996).
The benefits of relaxing punctuality.
J. ACM, 43(1):116–146.

Annpureddy, Y., Liu, C., Fainekos, G., and Sankaranarayanan, S. (2011).
S-taliro: A tool for temporal logic falsification for hybrid systems.
In Abdulla, P. A. and Leino, K. R. M., editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 254–257, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bourke, T. and Pouzet, M. (2013).
Zélus: A Synchronous Language with ODEs.
In Belta, C. and Ivančić, F., editors, HSCC - 16th International Conference on Hybrid systems: computation
and control, Proceedings of the 16th International Conference on Hybrid systems: computation and control,
pages 113–118, Philadelphia, United States. Calin Belta and Franjo Ivančić, ACM.

Dokhanchi, A., Yaghoubi, S., Hoxha, B., Fainekos, G., Ernst, G., Zhang, Z., Arcaini, P., Hasuo, I., and
Sedwards, S. (2018).
Arch-comp18 category report: Results on the falsification benchmarks.
In Frehse, G., editor, ARCH18. 5th International Workshop on Applied Verification of Continuous and
Hybrid Systems, volume 54 of EPiC Series in Computing, pages 104–109. EasyChair.

Donzé, A. (2010).
Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In Touili, T., Cook, B., and Jackson, P., editors, Computer Aided Verification, pages 167–170, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 30/30

References II

Ernst, G., Arcaini, P., Donz\’e, A., Fainekos, G., Mathesen, L., Pedrielli, G., Yaghoubi, S., Yamagata, Y.,
and Zhang, Z. (2019).
Arch-comp 2019 category report: Falsification.
In Frehse, G. and Althoff, M., editors, ARCH19. 6th International Workshop on Applied Verification of
Continuous and Hybrid Systems, volume 61 of EPiC Series in Computing, pages 129–140. EasyChair.

Ernst, G., Sedwards, S., Zhang, Z., and Hasuo, I. (2018).
Fast falsification of hybrid systems using probabilistically adaptive input.
CoRR, abs/1812.04159.

Fainekos, G. E. and Pappas, G. J. (2009).
Robustness of temporal logic specifications for continuous-time signals.
Theoretical Computer Science, 410(42):4262 – 4291.

Frehse, G., Kekatos, N., Nickovic, D., Oehlerking, J., Schuler, S., Walsch, A., and Woehrle, M. (2018).
A toolchain for verifying safety properties of hybrid automata via pattern templates.
In 2018 Annual American Control Conference (ACC), pages 2384–2391.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software, pages 360–365.
Addison-Wesley Professional Computing Series. Addison-Wesley, Reading, MA.

Halbwachs, N., Lagnier, F., and Raymond, P. (1994).
Synchronous observers and the verification of reactive systems.
In Proceedings of the Third International Conference on Methodology and Software Technology: Algebraic
Methodology and Software Technology, AMAST ’93, pages 83–96, Berlin, Heidelberg. Springer-Verlag.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 30/30

References III

Hoxha, B., Abbas, H., and Fainekos, G. (2015).
Benchmarks for temporal logic requirements for automotive systems.
In Frehse, G. and Althoff, M., editors, ARCH14-15. 1st and 2nd International Workshop on Applied
veRification for Continuous and Hybrid Systems, volume 34 of EPiC Series in Computing, pages 25–30.
EasyChair.

Hoxha, B., Abbas, H., and Fainekos, G. E. (2014).
Benchmarks for temporal logic requirements for automotive systems.
In ARCH@CPSWeek.

Jahier, E., Halbwachs, N., and Raymond, P. (2013).
Engineering functional requirements of reactive systems using synchronous languages.
In International Symposium on Industrial Embedded Systems, 2013. SIES’13., Porto, Portugal.

Jahier, E., Raymond, P., and Baufreton, P. (2004).
Case studies with lurette v2.
In 1st International Symposium on Leveraging Applications of Formal Methods, ISoLA 2004, Paphos,
Cyprus.

Maler, O., Nickovic, D., and Pnueli, A. (2006).
From mitl to timed automata.
In Asarin, E. and Bouyer, P., editors, Formal Modeling and Analysis of Timed Systems, pages 274–289,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Raymond, P., Roux, Y., and Jahier, E. (2008).
Lutin: a language for specifying and executing reactive scenarios.
EURASIP Journal on Embedded Systems, 2008.
http://jes.eurasipjournals.com/content/2008/1/753821.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 30/30

References IV

Stauning, O. (1997).
Automatic validation of numerical solutions.
PhD thesis.

Ismail Bennani - Falsification of Hybrid Systems using Automatic Differentiation 30/30

	Context
	Hybrid systems
	The falsification problem
	State-of-the-art

	Specification
	Pattern Templates
	Synchronous observers
	Hybrid observers

	Input Generation
	FADBADml: Automatic Differentiation for OCaml
	A toy language
	Differentiation operator
	Falsification using differentials
	Switching modes using differentials

