
Guaranteed co-simulation of continuous-time
dynamical systems

Adrien Le Coënt

joint work with Julien Alexandre dit Sandretto and Alexandre Chapoutot
U2IS, ENSTA Paris, Palaiseau, France

Journée scientifique conjointe Chaire ISC et projet DGA AID
March 13, 2020



Context : Cyber-Physical Systems

Model-based design of cyber-physical systems :
modeling, analysis, controller synthesis, simulation, deployment

2 / 37



Context : Cyber-Physical Systems

Model-based design of cyber-physical systems :
modeling, analysis, controller synthesis, simulation, deployment

2 / 37



Guaranteed Simulation Cyber-Physical Systems
Applications : verification, parameter and/or control synthesis, safety critical
systems, reachability analysis

Example of a controller synthesis algorithm for a switched system:

ẋ(t) = fσ(t)(x(t), d(t))

Goal: from any x ∈ R, return in R while always staying in S.

Basic idea:
I Generate a covering of R
I Look for patterns (input

sequences) mapping the tiles
into R while always staying in S

I If it fails, generate another
covering.

3 / 37



Guaranteed Simulation Cyber-Physical Systems
Applications : verification, parameter and/or control synthesis, safety critical
systems, reachability analysis
Example of a controller synthesis algorithm for a switched system:

ẋ(t) = fσ(t)(x(t), d(t))

Goal: from any x ∈ R, return in R while always staying in S.

Basic idea:
I Generate a covering of R

I Look for patterns (input
sequences) mapping the tiles
into R while always staying in S

I If it fails, generate another
covering.

3 / 37



Guaranteed Simulation Cyber-Physical Systems
Applications : verification, parameter and/or control synthesis, safety critical
systems, reachability analysis
Example of a controller synthesis algorithm for a switched system:

ẋ(t) = fσ(t)(x(t), d(t))

Goal: from any x ∈ R, return in R while always staying in S.

Basic idea:
I Generate a covering of R
I Look for patterns (input

sequences) mapping the tiles
into R while always staying in S

I If it fails, generate another
covering.

3 / 37



Guaranteed Simulation Cyber-Physical Systems
Applications : verification, parameter and/or control synthesis, safety critical
systems, reachability analysis
Example of a controller synthesis algorithm for a switched system:

ẋ(t) = fσ(t)(x(t), d(t))

Goal: from any x ∈ R, return in R while always staying in S.

Basic idea:
I Generate a covering of R
I Look for patterns (input

sequences) mapping the tiles
into R while always staying in S

I If it fails,

generate another
covering.

3 / 37



Guaranteed Simulation Cyber-Physical Systems
Applications : verification, parameter and/or control synthesis, safety critical
systems, reachability analysis
Example of a controller synthesis algorithm for a switched system:

ẋ(t) = fσ(t)(x(t), d(t))

Goal: from any x ∈ R, return in R while always staying in S.

Basic idea:
I Generate a covering of R
I Look for patterns (input

sequences) mapping the tiles
into R while always staying in S

I If it fails, generate another
covering.

3 / 37



Numerical integration, reachability analysis, state-of-the-art

I Classical (non guaranteed) methods: Euler, Runge-Kutta, implicit, explicit
schemes...

I Guaranteed reachability analysis: Enclosing solutions, error bounding,
additional hypotheses

I State-of-the-art:
I Monotonicity, ISS, incremental stability [Girard, Sontag, Zamani, Tabuada...]
I Validated simulation, guaranteed integration [Moore, Lohner, Bertz, Makino,

Nedialkov, Jackson, Corliss, Chen, Ábrahám, Sankaranarayanan, Taha,
Chapoutot,...]

I Sensitivity Analysis [Donzé, Maler...]
I Data structures:

I Reachability analysis using zonotopes [Dang, Girard, Althoff...]
I Ellipsoid methods [Kurzhanski, Varaiya, Dang...]

4 / 37



Numerical integration, reachability analysis, state-of-the-art

I Classical (non guaranteed) methods: Euler, Runge-Kutta, implicit, explicit
schemes...

I Guaranteed reachability analysis: Enclosing solutions, error bounding,
additional hypotheses

I State-of-the-art:
I Monotonicity, ISS, incremental stability [Girard, Sontag, Zamani, Tabuada...]
I Validated simulation, guaranteed integration [Moore, Lohner, Bertz, Makino,

Nedialkov, Jackson, Corliss, Chen, Ábrahám, Sankaranarayanan, Taha,
Chapoutot,...]

I Sensitivity Analysis [Donzé, Maler...]

I Data structures:
I Reachability analysis using zonotopes [Dang, Girard, Althoff...]
I Ellipsoid methods [Kurzhanski, Varaiya, Dang...]

4 / 37



Numerical integration, reachability analysis, state-of-the-art

I Classical (non guaranteed) methods: Euler, Runge-Kutta, implicit, explicit
schemes...

I Guaranteed reachability analysis: Enclosing solutions, error bounding,
additional hypotheses

I State-of-the-art:
I Monotonicity, ISS, incremental stability [Girard, Sontag, Zamani, Tabuada...]
I Validated simulation, guaranteed integration [Moore, Lohner, Bertz, Makino,

Nedialkov, Jackson, Corliss, Chen, Ábrahám, Sankaranarayanan, Taha,
Chapoutot,...]

I Sensitivity Analysis [Donzé, Maler...]
I Data structures:

I Reachability analysis using zonotopes [Dang, Girard, Althoff...]
I Ellipsoid methods [Kurzhanski, Varaiya, Dang...]

4 / 37



Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, tend]

ẋ = f (x,p) with x(0) = x0, p bounded,

for a given perturbation p(·), IVP has a unique solution x(t; y0,p) if f : Rn → Rn

is Lipschitz in y and f (·,p(·)) continuous
but for our purpose we suppose f smooth enough, i.e., of class Ck

Goal of numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = tend

I Compute a sequence of values: x0, x1, . . . , xn such that

∀` ∈ [0, n], x` ≈ x(t`; x0,p) .

I s.t. x`+1 ≈ x(t` + h; x`,p) with an error O(hp+1) where
I h is the integration step-size
I p is the order of the method

5 / 37



Guaranteed solution of IVP for ODE

Goal of guaranteed numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = tend

I Compute a sequence of values: [x0], [x1], . . . , [xn] such that

∀` ∈ [0, n], [x`] 3 x(t`; x`−1,p) .

A two-step approach

I Exact solution of ẋ = f (x,p) with
x(0) ∈ Y0

I Safe approximation at discrete time instants
I Safe approximation between time instants

6 / 37



Taylor Methods, State-of-the-art

Taylor methods
They have been developed since 60’s (Moore, Lohner, Makino and Berz, Corliss
and Rhim, Neher et al., Jackson and Nedialkov, etc.)

I prove the existence and uniqueness: high order interval Picard-Lindelöf
I works very well on various kinds of problems:

I non stiff and moderately stiff linear and non-linear systems,
I with thin uncertainties on initial conditions
I with (a writing process) thin uncertainties on parameters

I very efficient with automatic differentiation techniques
I wrapping effect fighting: interval centered form and QR decomposition
I many software: AWA, COSY infinity, VNODE-LP, CAPD, etc.

Some extensions
I Taylor polynomial with Hermite-Obreskov (Jackson and Nedialkov)
I Taylor polynomial in Chebyshev basis (T. Dzetkulic)
I etc.

7 / 37



One question

Why bother to define
new guaranteed numerical integration methods?

8 / 37



An answer: there is no silver bullet

Numerical solutions of IVP for ODEs are produced by
I Adams-Bashworth/Moulton methods
I BDF methods
I Runge-Kutta methods
I etc.

each of these methods is adapted to a particular class of ODEs

Runge-Kutta methods
I have strong stability properties for various kinds of problems (A-stable,

L-stable, algebraic stability, etc.)
I may preserve quadratic algebraic invariant (symplectic methods)
I can produce continuous output (polynomial approximation of x(t; x0))

Can we benefit these properties in guaranteed computations?

9 / 37



History on Interval Runge-Kutta methods

I Andrzej Marciniak et al. work on this topic since 1999
“The form of ψ(t, x(t)) is very complicated and cannot be

written in a general form for an arbitrary p”

The implementation OOIRK is not freely avalaible.

I Hartmann and Petras, ICIAM 1999
No more information than an abstract of 5 lines.

I Bouissou and Martel, SCAN 2006 (only RK4 method)
Implementation GRKLib is not avaliable

I Bouissou, Chapoutot and Djoudi, NFM 2013 (any explicit RK)
Implementation is not avaliable

I Alexandre dit Sandretto and Chapoutot, 2016 (any explicit and implicit RK)
implementation DynIBEX is open-source, combine with IBEX

10 / 37



Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapzoidal method (or Heun’s method)1 is defined by:

k1 = f (t`, x`) , k2 = f (t` + 1h, x` + h1k1)

xi+1 = x` + h
(

1
2k1 + 1

2k2

) 0
1 1

1
2

1
2

Intuition
I ẋ = t2 + x2

I x0 = 0.46
I h = 1.0

dotted line is the exact solution.

28 II. Numerical Integrators

II.1.1 Runge–Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

ẏ = f(t, y), y(t0) = y0. (1.1)

The integration of this equation gives y(t1) = y0 +
∫ t1

t0
f(t, y(t)) dt, and replacing

the integral by the trapezoidal rule, we obtain

y1 = y0 +
h

2

(
f(t0, y0) + f(t1, y1)

)
. (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank–Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge–Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y1-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(t0, y0)

k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h
2

(
k1 + k2

)

k1 = f(t0, y0)

k2 = f(t0 + h
2 , y0 + h

2 k1)

y1 = y0 + hk2.

(1.3)

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at y0 and assuming the various slopes kj on portions of the integration interval,
which are proportional to some given constants aij ; at the final point of each poly-
gon evaluate a new slope ki. The last of these polygons, with constants bi, deter-
mines the numerical solution y1 (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge–Kutta methods, i.e., formula (1.4) below with aij = 0
for i ≤ j.

1

1

1

1

1

1

t

y

y0

k1

1
2

k2

y1

expl. trap. rule

t

y

k1

y0 1
2

k2

y1

expl. midp. rule

t

y

y0

k1

a21
c2

a31 a32

c3

b1 b2 b3

1

k2

k3

y1

Fig. 1.2. Runge–Kutta methods for ẏ = t2 + y2, y0 = 0.46, h = 1; dotted: exact solution
1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.

11 / 37



Examples of Runge-Kutta methods

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

k1 = f
(

t` +
(

1
2 −
√

3
6

)
h, x` + h

(
1
4k1 +

(
1
4 −
√

3
6

)
k2

))

k2 = f
(

t` +
(

1
2 +
√

3
6

)
h, x` + h

((
1
4 +
√

3
6

)
k1 + 1

4k2

))

x`+1 = x` + h
(

1
2k1 + 1

2k2

)

Remark: A non-linear system of equations must be solved at each step.

1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.

11 / 37



Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau
c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′1 b′2 · · · b′s (optional)
i

j

which induces the following algorithm

ki = f
(

t` + cih`, x` + h`
s∑

j=1
aijkj

)
, x`+1 = x` + h`

s∑
i=1

bi ki

I Explicit method (ERK) if aij = 0 is i 6 j
I Diagonal Implicit method (DIRK) if aij = 0 is i 6 j and at least one aii 6= 0
I Implicit method (IRK) otherwise

12 / 37



Guaranteed Runge-Kutta methods
A guaranteed algorithm

[x`+1] = [RK] (h, [x`]) + LTE .

Challenges
1. Computing with sets of values taking into account dependency problem and

wrapping effect;
2. Bounding the approximation error of Runge-Kutta formula.

Our approach
I Problem 1 is solved using affine arithmetic replacing centered form and QR

decomposition
I Problem 2 is solved by bounding the Local Truncation Error (LTE) of

Runge-Kutta methods based on B-series

We focus on Problem 2 in this talk
13 / 37



Order condition for Runge-Kutta methods

Method order of Runge-Kutta methods and Local Truncation Error (LTE)

x(t`; x`−1)− x` = C · hp+1 with C ∈ R.

we want to bound this!

Order condition
This condition states that a method of Runge-Kutta family is of order p iff

I the Taylor expansion of the exact solution
I and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence
The LTE is the difference of Lagrange remainders of two Taylor expansions
. . . but how to compute it?

14 / 37



Example: building an order 2 explicit Runge-Kutta method

Consider, a scalar IVP

ẋ(t) = f (x(t)) with x(t0) = x0

Consider an explicit Runge-Kutta method of the form

0 0 0
c1 a21 0

b1 b2

i.e.,

x1 = x0 + h(b1k1 + b2k2) with
{

k1 = f (x0)
k2 = f (x0 + ha21k1)

and we want to make it of order 2

15 / 37



Example: building an order 2 explicit Runge-Kutta method

Taylor expansion of the exact solution, i.e.,

ẋ(t) = f (x(t)) with x(0) = x0

We have, up to order 3

x(t0 + h) = x(t0) + hẋ(t0) + h2

2 ẍ(t0) +O(h3)

= x(t0) + hf (x(t0)) + h2

2
∂f
∂x (x(t0))f (x(t0)) +O(h3)

15 / 37



Example: building an order 2 explicit Runge-Kutta method
Taylor expansion of the numerical solution, i.e.,

x1 = x0 + h(b1k1 + b2k2) with
{

k1 = f (x0)
k2 = f (x0 + ha21k1)

We have (h = t − t0)
dk1
dh = 0

dk2
dh =

(
a21k1 + ha21

dk1
dh

)
· ∂f
∂x (x0 + ha21k1) = a21f (x0)∂f

∂x (x0 + ha21f (x0))

so,
dx1
dh = b1k1 + b2k2 + h(b1dk1

dh + b2
dk2
dh )

= b1f (x0) + b2f (x0 + ha21f (x0)) + hb2a21f (x0)∂f
∂x (x0 + ha21f (x0))

When h = 0, we have
dx1
dh = b1f (x0) + b2f (x0) = (b1 + b2) f (x0)

15 / 37



Example: building an order 2 explicit Runge-Kutta method

Taylor expansion of the numerical solution, i.e.,

x1 = x0 + h(b1k1 + b2k2) with
{

k1 = f (x0)
k2 = f (x0 + ha21k1)

We can pursue the process at the second order to get

d2x1
dh2 = b2a21f (x0)∂f

∂x (x0 + ha21f (x0)) + (b2a21f (x0))∂f
∂x (x0 + ha21f (x0))

+ h(b2a21f (x0))a21f (x0))∂
2f
∂x2 (x0 + ha21f (x0))

When h = 0, we have
d2x1
dh2 = 2b2a21f (x0)∂f

∂x (x0)

15 / 37



Example: building an order 2 explicit Runge-Kutta method
Hence, we get the Taylor expansion of the numerical solution

x1 = x0 + h (b1 + b2) f (x0) + h2b2a21f (x0)∂f
∂x (x0) +O(h3)

w.r.t., the Taylor expansion of the exact solution

x(t + h) = x(t0) + h1f (x(t0)) + h2 1
2 f (x(t0))∂f

∂x (x(t0)) +O(h3)

with localization assumption, i.e., x(t0) = x0, we have the constraints
b1 + b2 = 1

b2a21 = 1
2

Note: there is an infinity set of solutions of order 2 methods. Two notorious
I b1 = 0, b2 = 1 and a21 = 1

2 (Explicit midpoint method)
I b1 = 1

2 , b2 = 1
2 and a21 = 1 (Heun’s method)

15 / 37



A quick view of Runge-Kutta order condition theory2

Starting from x(q) = (f (x))(q−1) and with the Chain rule, we have

High order derivatives of exact solution x

ẋ = f (x)
ẍ = f ′(x)ẋ f ′(x) is a linear map

x(3) = f ′′(x)(ẋ, ẋ) + f ′(x)ẍ f ′′(x) is a bi-linear map
x(4) = f ′′′(x)(ẋ, ẋ, ẋ) + 3f ′′(x)(ẍ, ẋ) + f ′(x)x(3) f ′′′(x) is a tri-linear map

x(5) = f (4)(x)(ẋ, ẋ, ẋ, ẋ) + 6f ′′′(x)(ẍ, ẋ, ẋ)
...

+ 4f ′′(x)(x(3), ẋ) + 3f ′′(x)(ẍ, ẍ) + f ′(x)x(4)

...

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
16 / 37



A quick view of Runge-Kutta order condition theory2

Inserting the value of ẋ, ẍ, . . . , we have:

High order derivatives of exact solution x

ẋ = f
ẍ = f ′(f )

x(3) = f ′′(f , f ) + f ′(f ′(f ))

x(4) = f ′′′(f , f , f ) + 3f ′′(f ′f , f ) + f ′(f ′′(f , f )) + f ′(f ′(f ′(f )))
...

I Elementary differentials , are denoted by F (τ)
Remark a tree structure is made apparent in these computations

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
16 / 37



A quick view of Runge-Kutta order condition theory2

Rooted trees: a combinatorial view of elementary differentials
I f is a leaf
I f ′ is a tree with one branch, . . . , f (k) is a tree with k branches

Example

f ′′(f ′f , f )

F (τ)
is associated to

f ′′
f f ′

f
τ

Note: τ is not unique, e.g., symmetry

Consequences
At a given order, an enumeration of all the trees is possible ⇒ all the
elementary differentials are enumerable

Order 1 2 3 4 5 6 7 8 9 10
Number of τ 1 1 2 4 9 20 48 115 286 719

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.

16 / 37



A quick view of Runge-Kutta order condition theory2

Theorem 1 (Butcher, 1963)
The qth derivative of the exact solution is given by

x(q) =
∑

r(τ)=q

α(τ)F (τ)(x0) with r(τ) the order of τ , i.e., number of nodes
α(τ) a positive integer

We can do the same for the numerical solution

Theorem 2 (Butcher, 1963)
The qth derivative of the numerical solution is given by

x(q)
1 =

∑
r(τ)=q

γ(τ)φ(τ)α(τ)F (τ)(x0) with γ(τ) a positive integer
φ(τ) depending on a Butcher tableau

Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff φ(τ) = 1

γ(τ) ∀τ, r(τ) 6 p

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.

16 / 37



LTE formula for explicit and implicit Runge-Kutta
From Theorem 1 and Theorem 2, if a Runge-Kutta has order p then

x(t1; x0)− x1 = hp+1

(p + 1)!
∑

r(τ)=p+1

α(τ)
[
1− γ(τ)φ(τ)

]
F (τ)(x(ξ)), ξ ∈ [t1, t0]

I α(τ) and γ(τ) are positive integer (with some combinatorial meaning)
I φ(τ) function of the coefficients of the RK method,

Example

φ
( )

is associated to
s∑

i,j=1
biaijcj with cj =

s∑
k=1

ajk

Remark
Making guaranteed Runge-Kutta is a simpler problem, i.e., for each method the
Butcher tableau and the order are already available

Note: x(ξ) can be enclosed by [x̃] using Interval Picard-Lindelöf operator
17 / 37



Implementation of LTE formula

Notations
I n the state-space dimension
I p the order of a Rung-Kutta method

Two ways of computing F (τ)
1. Symbolic differentiation : complexity O(np)

I compute all partial derivatives symbolically
I combine them following the rooted tree structures

2. Automatic differentiation : complexity O(n3p)
based on the work of Ferenc Bartha and Hans Munthe-Kaas
“Computing of B-Series by Automatic Differentiation”, 2014

18 / 37



A guaranteed numerical integration based on Runge-Kutta
A guaranteed algorithm

[x`+1] = [RK] (h, [x`]) + LTE .

Note on the implementation of [RK] (h, [x`])
I If explicit method is considered

[RK] is an inclusion function

I If implicit method is considered
[RK] is an interval contractor operator

Example: implicit midpoint

k1 = f
(

t` + h
2 , x` + h

2 k1

)
⇒ [k1] = [k1] ∩ [f ]

(
t` + h

2 , [x`] + h
2 [k1]

)
x`+1 = x` + hk1 [x`+1] = [x`] + h[k1]

Starting the contraction with [x̃] the result of interval Picard-Lindelöf operator
19 / 37



RK-based of interval Picard-Lindelöf operator

Starting from the expression

ki (t) = f
(

t` + ci (t − t`), x` + (t − t`)
s∑

n=1
ainkn

)
, 1 6 i 6 s

x`+1(t, ξ) = x` + (t − t`)
s∑

i=1
bi ki (t) + LTE(t, x(ξ))

We can define an inclusion function with h = tj+1 − tj such that

P([t`, t`+1], [x̃]) := [x`] + [0, h]
s∑

i=1
bi [ki ] ([t`, t`+1]) + LTE([t`, t`+1], [x̃])

Hence, it is sufficient to have

[x̃] ⊇ P ([t`, t`+1], [x̃])

to prove the existence and uniqueness of the solution of IVP ODE.

20 / 37



Interval RK methods summary

Given a RK scheme, guaranteed integration works with a two step approach:
I Prove existence and uniqueness of solution :

Picard-Lindelöf operator contraction proof
⇒ Box bounding the state over the next time interval

I Apply interval scheme with bounded LTE :
Computation and evaluation of LTE
⇒ Box bounding solution at next time step

Complexity comes from :
I Computation of the LTE

In practice :
I Dimension limited to ≈ 50

21 / 37



Interval RK methods summary

Given a RK scheme, guaranteed integration works with a two step approach:
I Prove existence and uniqueness of solution :

Picard-Lindelöf operator contraction proof
⇒ Box bounding the state over the next time interval

I Apply interval scheme with bounded LTE :
Computation and evaluation of LTE
⇒ Box bounding solution at next time step

Complexity comes from :
I Computation of the LTE

In practice :
I Dimension limited to ≈ 50

21 / 37



Interval RK methods summary

Given a RK scheme, guaranteed integration works with a two step approach:
I Prove existence and uniqueness of solution :

Picard-Lindelöf operator contraction proof
⇒ Box bounding the state over the next time interval

I Apply interval scheme with bounded LTE :
Computation and evaluation of LTE
⇒ Box bounding solution at next time step

Complexity comes from :
I Computation of the LTE

In practice :
I Dimension limited to ≈ 50

21 / 37



Co-simulation
Let us suppose a decomposed dynamics :

ẋ1 ∈ f1(t, x1,u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2,u2) with x2(0) ∈ [x0
2], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm,um) with xm(0) ∈ [x0
m], um ∈ [um],

L(x1, . . . , xm,u1, . . . ,um) = 0,
where the state x is decomposed in m components x = (x1, . . . , xm), for all
i ∈ {1, . . . ,m}, xi ∈ Xi , X1 × · · · × Xm = Rd , and L is a coupling function
between the components.

Principle of co-simulation:
I Simulate subsystems in a distributed manner
I At some instants, exchange information between subsystems

Advantages:
I Faster than simulating the entire system
I Enables large scale systems
I Different solvers can be used (i.e. applications to CPS and multi-physics)

22 / 37



Co-simulation
Let us suppose a decomposed dynamics :

ẋ1 ∈ f1(t, x1,u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2,u2) with x2(0) ∈ [x0
2], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm,um) with xm(0) ∈ [x0
m], um ∈ [um],

L(x1, . . . , xm,u1, . . . ,um) = 0,
where the state x is decomposed in m components x = (x1, . . . , xm), for all
i ∈ {1, . . . ,m}, xi ∈ Xi , X1 × · · · × Xm = Rd , and inputs are given by
ui = Ki (x1, . . . , xm).

Principle of co-simulation:
I Simulate subsystems in a distributed manner
I At some instants, exchange information between subsystems

Advantages:
I Faster than simulating the entire system
I Enables large scale systems
I Different solvers can be used (i.e. applications to CPS and multi-physics)

22 / 37



Co-simulation
Let us suppose a decomposed dynamics :

ẋ1 ∈ f1(t, x1,u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2,u2) with x2(0) ∈ [x0
2], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm,um) with xm(0) ∈ [x0
m], um ∈ [um],

L(x1, . . . , xm,u1, . . . ,um) = 0,
where the state x is decomposed in m components x = (x1, . . . , xm), for all
i ∈ {1, . . . ,m}, xi ∈ Xi , X1 × · · · × Xm = Rd , and inputs are given by
ui = Ki (x1, . . . , xm).

Principle of co-simulation:
I Simulate subsystems in a distributed manner
I At some instants, exchange information between subsystems

Advantages:
I Faster than simulating the entire system
I Enables large scale systems
I Different solvers can be used (i.e. applications to CPS and multi-physics)

22 / 37



Co-simulation, distributed reachability, state-of-the-art

I Co-simulation is widely used (at least 48 industrial applications reported)
[survey by C. Gomes et al.]

I Most of the tools developed rely on FMI/FMU standard [M. Arnold, E. Lee]:
Modelica, Simulink...

I No guaranteed co-simulation but some work on error bounding [M. Arnold]

I Guaranteed distributed reachability is less common
I Compositional abstractions based on hybrid automata [Chen,

Sankaranarayanan], linear arithmetic relations [Chen, Mover,
Sankaranarayanan]

I Local numerical integration with compositional splitting [Blanes, Casas,
Murua]

23 / 37



Co-simulation formalism (Gomes et al.)

Continuous-time simulation unit:

Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUI 〉,
δi : R× Xi × Ui → Xi ,

λi : R× Xi × Ui → Yi , or R× Xi → Yi ,

xi (0) ∈ Xi ,

ΦUi : R× Ui × · · · × UI → Ui ,

(1)

where
I Xi is the state vector space,
I Ui is the input vector space,
I Yi is the output vector space,
I δi (t, xi (t),ui (t)) = xi (t + H) advances the simulation (using extrapolation

function ΦUi )
I λi (t, xi (t),ui (t)) = yi (t) or λi (t, xi (t)) = yi (t) is the output function; and
I xi (0) is the initial state.

24 / 37



Co-simulation formalism (Gomes et al.)

Continuous-time simulation unit:

Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUI 〉,
δi : R× Xi × Ui → Xi ,

λi : R× Xi × Ui → Yi , or R× Xi → Yi ,

xi (0) ∈ Xi ,

ΦUi : R× Ui × · · · × UI → Ui ,

(1)

where
I Xi is the state vector space,
I Ui is the input vector space,
I Yi is the output vector space,
I δi ([t, t ′], [xi ], [ui ]) = ([xi ]′, {[xk

i ]′}k) advances the simulation (using
extrapolation function ΦUi )

I λi (t, xi (t),ui (t)) = yi (t) or λi (t, xi (t)) = yi (t) is the output function; and
I xi (0) is the initial state.

24 / 37



Example of composed system

m1 m2cc

dc
x2x1

c1

d1

c2

The dynamics of the system is given by the following system of equations:
ẋ1 = v1

m1v̇1 = −c1x1 − d1v1 + cc(x2 − x1) + dc(v2 − v1)
ẋ2 = v2

m2v̇2 = −cc(x2 − x1)− c2x2 − dc(v2 − v1)

with the initial conditions x1(0) = x2(0) = v1(0) = v2(0) = [1, 1] (a point
interval).

25 / 37



Principle of classical co-simulation

With a simpler dynamics:

ẋ = f (x , y)
ẏ = g(y , x)

where x(0) ∈ [x0], y(0) ∈ [y0], the principle is :

Sx : xn xn+1 xn+2

Sy : yn yn+1 xn+2

xn

δx (Tn, xn, yn)

yn

δy (Tn, yn, xn)

xn+1 yn+1

δx (Tn+1, xn+1, yn+1)

δy (Tn+1, yn+1, xn+1)

I on macro-steps, sub-systems advance simulation independently
I at communication times, they exchange output values (xn and yn)

26 / 37



Principle guaranteed of co-simulation
With a simpler dynamics:

ẋ = f (x , y)
ẏ = g(y , x)

where x(0) ∈ [x0], y(0) ∈ [y0], the principle is :
Sx : [xn] [xn+1] [xn+2]

Sy : [yn] [yn+1] [xn+2]

[xH
n ]

δx (Tn, [xn], [yH
n ])

[yH
n ]

δy (Tn, [yn], [xH
n ])

[xH
n+1] [yH

n+1]

δx (Tn+1, [xn+1], [yH
n+1])

δy (Tn+1, [yn+1], [xH
n+1])

with
I [xn] and [yn] interval state at communication times
I [xH

n ] and [yH
n ] over-approximation of the state over the next macro-step [Tn,Tn + H]

Question:
How to compute [xH

n ] and [yH
n ] ?

27 / 37



Principle guaranteed of co-simulation
With a simpler dynamics:

ẋ = f (x , y)
ẏ = g(y , x)

where x(0) ∈ [x0], y(0) ∈ [y0], the principle is :
Sx : [xn] [xn+1] [xn+2]

Sy : [yn] [yn+1] [xn+2]

[xH
n ]

δx (Tn, [xn], [yH
n ])

[yH
n ]

δy (Tn, [yn], [xH
n ])

[xH
n+1] [yH

n+1]

δx (Tn+1, [xn+1], [yH
n+1])

δy (Tn+1, [yn+1], [xH
n+1])

with
I [xn] and [yn] interval state at communication times
I [xH

n ] and [yH
n ] over-approximation of the state over the next macro-step [Tn,Tn + H]

Question:
How to compute [xH

n ] and [yH
n ] ?

27 / 37



The cross-Picard operator

Local Picard-Lindelöf operators on macro-step [Tn,Tn+1]:

Pf ([Tn,Tn+1], [x̃ ], [ỹ ]) := [xn] +
N∑

k=0
f [k]([xn], [ỹ ])[0,Hk ] + f [N+1]([x̃ ], [ỹ ])[0,HN+1].

Pg ([Tn,Tn+1], [ỹ ], [x̃ ]) := [yn]+
N∑

k=0
g [k]([yn], [x̃ ])[0,Hk ]+ f [N+1]([ỹ ], [x̃ ])[0,HN+1].

In order to prove that [xH
n ] and [yH

n ] are indeed over-approximating x(t) and y(t)
over the next macro-step, the condition to verify is:

Pf ([Tn,Tn+1], [xH
n ], [yH

n ]) ⊂ Int([xH
n ]) and Pg ([Tn,Tn+1], [yH

n ], [xH
n ]) ⊂ Int([yH

n ])

Procedure: start with an initial guess (heuristics) and contract (fixed point)

28 / 37



The cross-Picard operator

Local Picard-Lindelöf operators on macro-step [Tn,Tn+1]:

Pf ([Tn,Tn+1], [x̃ ], [ỹ ]) := [xn] +
N∑

k=0
f [k]([xn], [ỹ ])[0,Hk ] + f [N+1]([x̃ ], [ỹ ])[0,HN+1].

Pg ([Tn,Tn+1], [ỹ ], [x̃ ]) := [yn]+
N∑

k=0
g [k]([yn], [x̃ ])[0,Hk ]+ f [N+1]([ỹ ], [x̃ ])[0,HN+1].

In order to prove that [xH
n ] and [yH

n ] are indeed over-approximating x(t) and y(t)
over the next macro-step, the condition to verify is:

Pf ([Tn,Tn+1], [xH
n ], [yH

n ]) ⊂ Int([xH
n ]) and Pg ([Tn,Tn+1], [yH

n ], [xH
n ]) ⊂ Int([yH

n ])

Procedure: start with an initial guess (heuristics) and contract (fixed point)

28 / 37



The cross-Picard operator

Local Picard-Lindelöf operators on macro-step [Tn,Tn+1]:

Pf ([Tn,Tn+1], [x̃ ], [ỹ ]) := [xn] +
N∑

k=0
f [k]([xn], [ỹ ])[0,Hk ] + f [N+1]([x̃ ], [ỹ ])[0,HN+1].

Pg ([Tn,Tn+1], [ỹ ], [x̃ ]) := [yn]+
N∑

k=0
g [k]([yn], [x̃ ])[0,Hk ]+ f [N+1]([ỹ ], [x̃ ])[0,HN+1].

In order to prove that [xH
n ] and [yH

n ] are indeed over-approximating x(t) and y(t)
over the next macro-step, the condition to verify is:

Pf ([Tn,Tn+1], [xH
n ], [yH

n ]) ⊂ Int([xH
n ]) and Pg ([Tn,Tn+1], [yH

n ], [xH
n ]) ⊂ Int([yH

n ])

Procedure: start with an initial guess (heuristics) and contract (fixed point)

28 / 37



The cross-Picard operator

Algorithm 1 Computation of the cross-Picard operator

Data: cs = 〈∅,Ycs ,D = {1, . . . ,m}, {Si}i∈D , L, ∅〉, a time interval [t, t + H],
initial intervals [xi,n] and initial guesses [rH

i,n]
Result: {[X H

i ]}i=1,...,m, a set of boxes over-approximating the global state on
[Tn,Tn + H]

for i = 1, . . . ,m (in parallel) do
[X̃ H

i ] := [rH
i,n]

[UH
i ] := Ki ([X̃ H

1,n], . . . , [X̃ H
1,n])

[X H
i ] := PH

[xi,n],[UH
i ]

while [X H
i ] * [X̃ H

i ] for all i do
for i = 1, . . . ,m (in parallel) do

[X̃ H
i ] := [X H

i ]
[UH

i ] := Ki ([X̃ H
1,n], . . . , [X̃ H

1,n])
[X H

i ] := PH
[xi,n],[UH

i ]

return [X H
i ]

29 / 37



Application

Double mass-spring-damper oscillator

Heun co-Heun (H=0.05)

RK4 co-RK4 (H=0.01)

30 / 37



More information exchange for more accuracy : guaranteed
extrapolation

A simulation unit Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUi 〉 can extrapolate inputs for
the next macro-step based on previous behavior:

Classical approach : interpolation polynomials

ΦUi ,n(t) =
k∑

l=0
ui (Tn−l )

k∏
p=0
p 6=l

t − Tn−p
Tn−l − Tn−p

= ui (t) + O(Hk+1) (2)

Interpolation error :

ΦUi ,n(t)− ui (t) = 1
(k + 1)!u(k+1)

i (ξ)
k∏

i=0
(t − Tn−k) ξ ∈ [Tn,Tn+1]

31 / 37



More information exchange for more accuracy : guaranteed
extrapolation

A simulation unit Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUi 〉 can extrapolate inputs for
the next macro-step based on previous behavior:

Classical approach : interpolation polynomials

ΦUi ,n(t) =
k∑

l=0
ui (Tn−l )

k∏
p=0
p 6=l

t − Tn−p
Tn−l − Tn−p

= ui (t) + O(Hk+1) (2)

Interpolation error :

ΦUi ,n(t)− ui (t) = 1
(k + 1)!u(k+1)

i (ξ)
k∏

i=0
(t − Tn−k) ξ ∈ [Tn,Tn+1]

31 / 37



More information exchange for more accuracy : guaranteed
extrapolation

A simulation unit Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUi 〉 can extrapolate inputs for
the next macro-step based on previous behavior:

Higher chain formula:

u(k)
i (t) = k! ∂

r1+···+rm Ki
∂xr1

1 . . . ∂xrmm

s∏
j=1

m∏
l=1

1
mjl !

[
1

pj !
x(pj )

i

]mjl

Guaranteed interval extrapolation :

[ΦUi ,n](t) =
k∑

l=0
[ui,n−l ]

k∏
p=0
p 6=l

t − Tn−p
Tn−l − Tn−p

+ 1
(k + 1)! [u(k),H

i,n ]
k∏

i=0
(t − Tn−k) (3)

32 / 37



More information exchange for more accuracy : guaranteed
extrapolation

A simulation unit Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUi 〉 can extrapolate inputs for
the next macro-step based on previous behavior:

Higher chain formula:

u(k)
i (t) = k! ∂

r1+···+rm Ki
∂xr1

1 . . . ∂xrmm

s∏
j=1

m∏
l=1

1
mjl !

[
1

pj !
x(pj )

i

]mjl

Guaranteed interval extrapolation :

[ΦUi ,n](t) =
k∑

l=0
[ui,n−l ]

k∏
p=0
p 6=l

t − Tn−p
Tn−l − Tn−p

+ 1
(k + 1)! [u(k),H

i,n ]
k∏

i=0
(t − Tn−k) (3)

32 / 37



Application
Double mass-spring-damper oscillator

Heun co-Heun (H=0.05) co-Heun-interp (H=0.05)

RK4 co-RK4 (H=0.01) co-RK4-interp (H=0.01)

33 / 37



Seluxit case study
[K.G. Larsen et al. Online and Compositional Learning of Controllers with Application to Floor
Heating, TACAS 2016.]

34 / 37



Seluxit case study
[K.G. Larsen et al. Online and Compositional Learning of Controllers with Application to Floor
Heating, TACAS 2016.]

System dynamics:

d
dt Ti (t) =

n∑
j=1

Ad
i,j(Tj(t)− Ti (t)) + Bi (Tenv (t)− Ti (t)) + Hi,j .vj

I System of dimension 11
I 211 combinations of vj (not all admissible, constraint on the number of open

valves)
I Pipes heating a room may influence other rooms
I Doors opening and closing (here: average between open and closed)
I Varying external temperature (here: Tenv = 10◦C)
I Measures and switching every 15 minutes

34 / 37



Seluxit case study
[K.G. Larsen et al. Online and Compositional Learning of Controllers with Application to Floor
Heating, TACAS 2016.]

Simulation over 10 switching times for a given switching sequence

Scheme Computation time (s) Final area (m2)
HEUN 7,96 0.2165

co-HEUN 5,95 0.2407
co-HEUN-interp 27,05 0.2335

RK4 27,60 0.1821
co-RK4 17,87 0.1932

co-RK4-interp 122,17 0.1854

34 / 37



Towards scalable CPS design

Model-based design of cyber-physical systems :
modeling, analysis, controller synthesis, simulation, deployment

I Progress is being made in
scalability of controller synthesis
methods

I Compositional methods
Break exponential complexity
in dimension

I Optimal control methods
From exponential to linear
complexity in horizon length

35 / 37



Towards scalable CPS design

Model-based design of cyber-physical systems :
modeling, analysis, controller synthesis, simulation, deployment

I Progress is being made in
scalability of controller synthesis
methods

I Compositional methods
Break exponential complexity
in dimension

I Optimal control methods
From exponential to linear
complexity in horizon length

35 / 37



Conclusions and future work

Conclusions:
I Guaranteed RK schemes available for systems with perturbations
I Guaranteed co-simulation possible using only local computations
I Co-simulation provides some significant computation time improvements

Future work:
I Keep original coupling function formulation with DAE tools
I Parallelize computations and implement in DynIbex
I Test use in control synthesis algorithms
I More case studies (multi-physics)

36 / 37



Conclusions and future work

Conclusions:
I Guaranteed RK schemes available for systems with perturbations
I Guaranteed co-simulation possible using only local computations
I Co-simulation provides some significant computation time improvements

Future work:
I Keep original coupling function formulation with DAE tools
I Parallelize computations and implement in DynIbex
I Test use in control synthesis algorithms
I More case studies (multi-physics)

36 / 37



Bibliography

I Interval Runge-Kutta methods
[Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated explicit and
implicit runge-kutta methods, Reliable Computing, 2016]

I Automatic differentiation
[Olivier Mullier, Alexandre Chapoutot, and Julien Alexandre Dit Sandretto,
Validated computation of the local truncation error of runge-kutta methods with
automatic differentiation, Optimization Methods and Software, 2018]

I Differential Algebraic Equations
[Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated simulation of
differential algebraic equations with runge-kutta methods, Reliable Computing,
2016]

I Guaranteed co-simulation
[Adrien Le Coënt, Julien Alexandre Dit Sandretto, Alexandre Chapoutot.
Guaranteed cosimulation of Cyber-Physical Systems, 2020]

37 / 37


