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Guaranteed Simulation Cyber-Physical Systems
Applications : verification, parameter and/or control synthesis, safety critical
systems, reachability analysis

Example of a controller synthesis algorithm for a switched system:

ẋ(t) = fσ(t)(x(t), d(t))

Goal: from any x ∈ R, return in R while always staying in S.

Basic idea:
I Generate a covering of R
I Look for patterns (input

sequences) mapping the tiles
into R while always staying in S

I If it fails, generate another
covering.
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ẋ(t) = fσ(t)(x(t), d(t))

Goal: from any x ∈ R, return in R while always staying in S.

Basic idea:
I Generate a covering of R
I Look for patterns (input

sequences) mapping the tiles
into R while always staying in S

I If it fails, generate another
covering.

3 / 37



Guaranteed Simulation Cyber-Physical Systems
Applications : verification, parameter and/or control synthesis, safety critical
systems, reachability analysis
Example of a controller synthesis algorithm for a switched system:
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Numerical integration, reachability analysis, state-of-the-art

I Classical (non guaranteed) methods: Euler, Runge-Kutta, implicit, explicit
schemes...

I Guaranteed reachability analysis: Enclosing solutions, error bounding,
additional hypotheses

I State-of-the-art:
I Monotonicity, ISS, incremental stability [Girard, Sontag, Zamani, Tabuada...]
I Validated simulation, guaranteed integration [Moore, Lohner, Bertz, Makino,

Nedialkov, Jackson, Corliss, Chen, Ábrahám, Sankaranarayanan, Taha,
Chapoutot,...]

I Sensitivity Analysis [Donzé, Maler...]
I Data structures:

I Reachability analysis using zonotopes [Dang, Girard, Althoff...]
I Ellipsoid methods [Kurzhanski, Varaiya, Dang...]
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Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, tend]

ẋ = f (x,p) with x(0) = x0, p bounded,

for a given perturbation p(·), IVP has a unique solution x(t; y0,p) if f : Rn → Rn

is Lipschitz in y and f (·,p(·)) continuous
but for our purpose we suppose f smooth enough, i.e., of class Ck

Goal of numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = tend

I Compute a sequence of values: x0, x1, . . . , xn such that

∀` ∈ [0, n], x` ≈ x(t`; x0,p) .

I s.t. x`+1 ≈ x(t` + h; x`,p) with an error O(hp+1) where
I h is the integration step-size
I p is the order of the method
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Guaranteed solution of IVP for ODE

Goal of guaranteed numerical integration
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = tend

I Compute a sequence of values: [x0], [x1], . . . , [xn] such that

∀` ∈ [0, n], [x`] 3 x(t`; x`−1,p) .

A two-step approach

I Exact solution of ẋ = f (x,p) with
x(0) ∈ Y0

I Safe approximation at discrete time instants
I Safe approximation between time instants
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Taylor Methods, State-of-the-art

Taylor methods
They have been developed since 60’s (Moore, Lohner, Makino and Berz, Corliss
and Rhim, Neher et al., Jackson and Nedialkov, etc.)

I prove the existence and uniqueness: high order interval Picard-Lindelöf
I works very well on various kinds of problems:

I non stiff and moderately stiff linear and non-linear systems,
I with thin uncertainties on initial conditions
I with (a writing process) thin uncertainties on parameters

I very efficient with automatic differentiation techniques
I wrapping effect fighting: interval centered form and QR decomposition
I many software: AWA, COSY infinity, VNODE-LP, CAPD, etc.

Some extensions
I Taylor polynomial with Hermite-Obreskov (Jackson and Nedialkov)
I Taylor polynomial in Chebyshev basis (T. Dzetkulic)
I etc.
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One question

Why bother to define
new guaranteed numerical integration methods?
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An answer: there is no silver bullet

Numerical solutions of IVP for ODEs are produced by
I Adams-Bashworth/Moulton methods
I BDF methods
I Runge-Kutta methods
I etc.

each of these methods is adapted to a particular class of ODEs

Runge-Kutta methods
I have strong stability properties for various kinds of problems (A-stable,

L-stable, algebraic stability, etc.)
I may preserve quadratic algebraic invariant (symplectic methods)
I can produce continuous output (polynomial approximation of x(t; x0))

Can we benefit these properties in guaranteed computations?

9 / 37



History on Interval Runge-Kutta methods

I Andrzej Marciniak et al. work on this topic since 1999
“The form of ψ(t, x(t)) is very complicated and cannot be

written in a general form for an arbitrary p”

The implementation OOIRK is not freely avalaible.

I Hartmann and Petras, ICIAM 1999
No more information than an abstract of 5 lines.

I Bouissou and Martel, SCAN 2006 (only RK4 method)
Implementation GRKLib is not avaliable

I Bouissou, Chapoutot and Djoudi, NFM 2013 (any explicit RK)
Implementation is not avaliable

I Alexandre dit Sandretto and Chapoutot, 2016 (any explicit and implicit RK)
implementation DynIBEX is open-source, combine with IBEX
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Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapzoidal method (or Heun’s method)1 is defined by:

k1 = f (t`, x`) , k2 = f (t` + 1h, x` + h1k1)

xi+1 = x` + h
(

1
2k1 + 1

2k2

) 0
1 1

1
2

1
2

Intuition
I ẋ = t2 + x2

I x0 = 0.46
I h = 1.0

dotted line is the exact solution.

28 II. Numerical Integrators

II.1.1 Runge–Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

ẏ = f(t, y), y(t0) = y0. (1.1)

The integration of this equation gives y(t1) = y0 +
∫ t1

t0
f(t, y(t)) dt, and replacing

the integral by the trapezoidal rule, we obtain

y1 = y0 +
h

2

(
f(t0, y0) + f(t1, y1)

)
. (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank–Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge–Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y1-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(t0, y0)

k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h
2

(
k1 + k2

)

k1 = f(t0, y0)

k2 = f(t0 + h
2 , y0 + h

2 k1)

y1 = y0 + hk2.

(1.3)

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at y0 and assuming the various slopes kj on portions of the integration interval,
which are proportional to some given constants aij ; at the final point of each poly-
gon evaluate a new slope ki. The last of these polygons, with constants bi, deter-
mines the numerical solution y1 (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge–Kutta methods, i.e., formula (1.4) below with aij = 0
for i ≤ j.

1

1

1

1

1

1

t

y

y0

k1

1
2

k2

y1

expl. trap. rule

t

y

k1

y0 1
2

k2

y1

expl. midp. rule

t

y

y0

k1

a21
c2

a31 a32

c3

b1 b2 b3

1

k2

k3

y1

Fig. 1.2. Runge–Kutta methods for ẏ = t2 + y2, y0 = 0.46, h = 1; dotted: exact solution
1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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Examples of Runge-Kutta methods

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

k1 = f
(

t` +
(

1
2 −
√

3
6

)
h, x` + h

(
1
4k1 +

(
1
4 −
√

3
6

)
k2

))

k2 = f
(

t` +
(

1
2 +
√

3
6

)
h, x` + h

((
1
4 +
√

3
6

)
k1 + 1

4k2

))

x`+1 = x` + h
(

1
2k1 + 1

2k2

)

Remark: A non-linear system of equations must be solved at each step.

1example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau
c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′1 b′2 · · · b′s (optional)
i

j

which induces the following algorithm

ki = f
(

t` + cih`, x` + h`
s∑

j=1
aijkj

)
, x`+1 = x` + h`

s∑
i=1

bi ki

I Explicit method (ERK) if aij = 0 is i 6 j
I Diagonal Implicit method (DIRK) if aij = 0 is i 6 j and at least one aii 6= 0
I Implicit method (IRK) otherwise
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Guaranteed Runge-Kutta methods
A guaranteed algorithm

[x`+1] = [RK] (h, [x`]) + LTE .

Challenges
1. Computing with sets of values taking into account dependency problem and

wrapping effect;
2. Bounding the approximation error of Runge-Kutta formula.

Our approach
I Problem 1 is solved using affine arithmetic replacing centered form and QR

decomposition
I Problem 2 is solved by bounding the Local Truncation Error (LTE) of

Runge-Kutta methods based on B-series

We focus on Problem 2 in this talk
13 / 37



Order condition for Runge-Kutta methods

Method order of Runge-Kutta methods and Local Truncation Error (LTE)

x(t`; x`−1)− x` = C · hp+1 with C ∈ R.

we want to bound this!

Order condition
This condition states that a method of Runge-Kutta family is of order p iff

I the Taylor expansion of the exact solution
I and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence
The LTE is the difference of Lagrange remainders of two Taylor expansions
. . . but how to compute it?
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Example: building an order 2 explicit Runge-Kutta method

Consider, a scalar IVP

ẋ(t) = f (x(t)) with x(t0) = x0

Consider an explicit Runge-Kutta method of the form

0 0 0
c1 a21 0

b1 b2

i.e.,

x1 = x0 + h(b1k1 + b2k2) with
{

k1 = f (x0)
k2 = f (x0 + ha21k1)

and we want to make it of order 2
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Example: building an order 2 explicit Runge-Kutta method

Taylor expansion of the exact solution, i.e.,

ẋ(t) = f (x(t)) with x(0) = x0

We have, up to order 3

x(t0 + h) = x(t0) + hẋ(t0) + h2

2 ẍ(t0) +O(h3)

= x(t0) + hf (x(t0)) + h2

2
∂f
∂x (x(t0))f (x(t0)) +O(h3)
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Example: building an order 2 explicit Runge-Kutta method
Taylor expansion of the numerical solution, i.e.,

x1 = x0 + h(b1k1 + b2k2) with
{

k1 = f (x0)
k2 = f (x0 + ha21k1)

We have (h = t − t0)
dk1
dh = 0

dk2
dh =

(
a21k1 + ha21

dk1
dh

)
· ∂f
∂x (x0 + ha21k1) = a21f (x0)∂f

∂x (x0 + ha21f (x0))

so,
dx1
dh = b1k1 + b2k2 + h(b1dk1

dh + b2
dk2
dh )

= b1f (x0) + b2f (x0 + ha21f (x0)) + hb2a21f (x0)∂f
∂x (x0 + ha21f (x0))

When h = 0, we have
dx1
dh = b1f (x0) + b2f (x0) = (b1 + b2) f (x0)
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Example: building an order 2 explicit Runge-Kutta method

Taylor expansion of the numerical solution, i.e.,

x1 = x0 + h(b1k1 + b2k2) with
{

k1 = f (x0)
k2 = f (x0 + ha21k1)

We can pursue the process at the second order to get

d2x1
dh2 = b2a21f (x0)∂f

∂x (x0 + ha21f (x0)) + (b2a21f (x0))∂f
∂x (x0 + ha21f (x0))

+ h(b2a21f (x0))a21f (x0))∂
2f
∂x2 (x0 + ha21f (x0))

When h = 0, we have
d2x1
dh2 = 2b2a21f (x0)∂f

∂x (x0)

15 / 37



Example: building an order 2 explicit Runge-Kutta method
Hence, we get the Taylor expansion of the numerical solution

x1 = x0 + h (b1 + b2) f (x0) + h2b2a21f (x0)∂f
∂x (x0) +O(h3)

w.r.t., the Taylor expansion of the exact solution

x(t + h) = x(t0) + h1f (x(t0)) + h2 1
2 f (x(t0))∂f

∂x (x(t0)) +O(h3)

with localization assumption, i.e., x(t0) = x0, we have the constraints
b1 + b2 = 1

b2a21 = 1
2

Note: there is an infinity set of solutions of order 2 methods. Two notorious
I b1 = 0, b2 = 1 and a21 = 1

2 (Explicit midpoint method)
I b1 = 1

2 , b2 = 1
2 and a21 = 1 (Heun’s method)
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A quick view of Runge-Kutta order condition theory2

Starting from x(q) = (f (x))(q−1) and with the Chain rule, we have

High order derivatives of exact solution x

ẋ = f (x)
ẍ = f ′(x)ẋ f ′(x) is a linear map

x(3) = f ′′(x)(ẋ, ẋ) + f ′(x)ẍ f ′′(x) is a bi-linear map
x(4) = f ′′′(x)(ẋ, ẋ, ẋ) + 3f ′′(x)(ẍ, ẋ) + f ′(x)x(3) f ′′′(x) is a tri-linear map

x(5) = f (4)(x)(ẋ, ẋ, ẋ, ẋ) + 6f ′′′(x)(ẍ, ẋ, ẋ)
...

+ 4f ′′(x)(x(3), ẋ) + 3f ′′(x)(ẍ, ẍ) + f ′(x)x(4)

...

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
16 / 37



A quick view of Runge-Kutta order condition theory2

Inserting the value of ẋ, ẍ, . . . , we have:

High order derivatives of exact solution x

ẋ = f
ẍ = f ′(f )

x(3) = f ′′(f , f ) + f ′(f ′(f ))

x(4) = f ′′′(f , f , f ) + 3f ′′(f ′f , f ) + f ′(f ′′(f , f )) + f ′(f ′(f ′(f )))
...

I Elementary differentials , are denoted by F (τ)
Remark a tree structure is made apparent in these computations

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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A quick view of Runge-Kutta order condition theory2

Rooted trees: a combinatorial view of elementary differentials
I f is a leaf
I f ′ is a tree with one branch, . . . , f (k) is a tree with k branches

Example

f ′′(f ′f , f )

F (τ)
is associated to

f ′′
f f ′

f
τ

Note: τ is not unique, e.g., symmetry

Consequences
At a given order, an enumeration of all the trees is possible ⇒ all the
elementary differentials are enumerable

Order 1 2 3 4 5 6 7 8 9 10
Number of τ 1 1 2 4 9 20 48 115 286 719

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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A quick view of Runge-Kutta order condition theory2

Theorem 1 (Butcher, 1963)
The qth derivative of the exact solution is given by

x(q) =
∑

r(τ)=q

α(τ)F (τ)(x0) with r(τ) the order of τ , i.e., number of nodes
α(τ) a positive integer

We can do the same for the numerical solution

Theorem 2 (Butcher, 1963)
The qth derivative of the numerical solution is given by

x(q)
1 =

∑
r(τ)=q

γ(τ)φ(τ)α(τ)F (τ)(x0) with γ(τ) a positive integer
φ(τ) depending on a Butcher tableau

Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff φ(τ) = 1

γ(τ) ∀τ, r(τ) 6 p

2strongly inspired from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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LTE formula for explicit and implicit Runge-Kutta
From Theorem 1 and Theorem 2, if a Runge-Kutta has order p then

x(t1; x0)− x1 = hp+1

(p + 1)!
∑

r(τ)=p+1

α(τ)
[
1− γ(τ)φ(τ)

]
F (τ)(x(ξ)), ξ ∈ [t1, t0]

I α(τ) and γ(τ) are positive integer (with some combinatorial meaning)
I φ(τ) function of the coefficients of the RK method,

Example

φ
( )

is associated to
s∑

i,j=1
biaijcj with cj =

s∑
k=1

ajk

Remark
Making guaranteed Runge-Kutta is a simpler problem, i.e., for each method the
Butcher tableau and the order are already available

Note: x(ξ) can be enclosed by [x̃] using Interval Picard-Lindelöf operator
17 / 37



Implementation of LTE formula

Notations
I n the state-space dimension
I p the order of a Rung-Kutta method

Two ways of computing F (τ)
1. Symbolic differentiation : complexity O(np)

I compute all partial derivatives symbolically
I combine them following the rooted tree structures

2. Automatic differentiation : complexity O(n3p)
based on the work of Ferenc Bartha and Hans Munthe-Kaas
“Computing of B-Series by Automatic Differentiation”, 2014

18 / 37



A guaranteed numerical integration based on Runge-Kutta
A guaranteed algorithm

[x`+1] = [RK] (h, [x`]) + LTE .

Note on the implementation of [RK] (h, [x`])
I If explicit method is considered

[RK] is an inclusion function

I If implicit method is considered
[RK] is an interval contractor operator

Example: implicit midpoint

k1 = f
(

t` + h
2 , x` + h

2 k1

)
⇒ [k1] = [k1] ∩ [f ]

(
t` + h

2 , [x`] + h
2 [k1]

)
x`+1 = x` + hk1 [x`+1] = [x`] + h[k1]

Starting the contraction with [x̃] the result of interval Picard-Lindelöf operator
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RK-based of interval Picard-Lindelöf operator

Starting from the expression

ki (t) = f
(

t` + ci (t − t`), x` + (t − t`)
s∑

n=1
ainkn

)
, 1 6 i 6 s

x`+1(t, ξ) = x` + (t − t`)
s∑

i=1
bi ki (t) + LTE(t, x(ξ))

We can define an inclusion function with h = tj+1 − tj such that

P([t`, t`+1], [x̃]) := [x`] + [0, h]
s∑

i=1
bi [ki ] ([t`, t`+1]) + LTE([t`, t`+1], [x̃])

Hence, it is sufficient to have

[x̃] ⊇ P ([t`, t`+1], [x̃])

to prove the existence and uniqueness of the solution of IVP ODE.
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Interval RK methods summary

Given a RK scheme, guaranteed integration works with a two step approach:
I Prove existence and uniqueness of solution :

Picard-Lindelöf operator contraction proof
⇒ Box bounding the state over the next time interval

I Apply interval scheme with bounded LTE :
Computation and evaluation of LTE
⇒ Box bounding solution at next time step

Complexity comes from :
I Computation of the LTE

In practice :
I Dimension limited to ≈ 50
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Co-simulation
Let us suppose a decomposed dynamics :

ẋ1 ∈ f1(t, x1,u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2,u2) with x2(0) ∈ [x0
2], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm,um) with xm(0) ∈ [x0
m], um ∈ [um],

L(x1, . . . , xm,u1, . . . ,um) = 0,
where the state x is decomposed in m components x = (x1, . . . , xm), for all
i ∈ {1, . . . ,m}, xi ∈ Xi , X1 × · · · × Xm = Rd , and L is a coupling function
between the components.

Principle of co-simulation:
I Simulate subsystems in a distributed manner
I At some instants, exchange information between subsystems

Advantages:
I Faster than simulating the entire system
I Enables large scale systems
I Different solvers can be used (i.e. applications to CPS and multi-physics)
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Co-simulation
Let us suppose a decomposed dynamics :

ẋ1 ∈ f1(t, x1,u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2,u2) with x2(0) ∈ [x0
2], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm,um) with xm(0) ∈ [x0
m], um ∈ [um],

L(x1, . . . , xm,u1, . . . ,um) = 0,
where the state x is decomposed in m components x = (x1, . . . , xm), for all
i ∈ {1, . . . ,m}, xi ∈ Xi , X1 × · · · × Xm = Rd , and inputs are given by
ui = Ki (x1, . . . , xm).

Principle of co-simulation:
I Simulate subsystems in a distributed manner
I At some instants, exchange information between subsystems

Advantages:
I Faster than simulating the entire system
I Enables large scale systems
I Different solvers can be used (i.e. applications to CPS and multi-physics)
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ẋ1 ∈ f1(t, x1,u1) with x1(0) ∈ [x0
1], u1 ∈ [u1],
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Co-simulation, distributed reachability, state-of-the-art

I Co-simulation is widely used (at least 48 industrial applications reported)
[survey by C. Gomes et al.]

I Most of the tools developed rely on FMI/FMU standard [M. Arnold, E. Lee]:
Modelica, Simulink...

I No guaranteed co-simulation but some work on error bounding [M. Arnold]

I Guaranteed distributed reachability is less common
I Compositional abstractions based on hybrid automata [Chen,

Sankaranarayanan], linear arithmetic relations [Chen, Mover,
Sankaranarayanan]

I Local numerical integration with compositional splitting [Blanes, Casas,
Murua]
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Co-simulation formalism (Gomes et al.)

Continuous-time simulation unit:

Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUI 〉,
δi : R× Xi × Ui → Xi ,

λi : R× Xi × Ui → Yi , or R× Xi → Yi ,

xi (0) ∈ Xi ,

ΦUi : R× Ui × · · · × UI → Ui ,

(1)

where
I Xi is the state vector space,
I Ui is the input vector space,
I Yi is the output vector space,
I δi (t, xi (t),ui (t)) = xi (t + H) advances the simulation (using extrapolation

function ΦUi )
I λi (t, xi (t),ui (t)) = yi (t) or λi (t, xi (t)) = yi (t) is the output function; and
I xi (0) is the initial state.
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Example of composed system

m1 m2cc

dc
x2x1

c1

d1

c2

The dynamics of the system is given by the following system of equations:
ẋ1 = v1

m1v̇1 = −c1x1 − d1v1 + cc(x2 − x1) + dc(v2 − v1)
ẋ2 = v2

m2v̇2 = −cc(x2 − x1)− c2x2 − dc(v2 − v1)

with the initial conditions x1(0) = x2(0) = v1(0) = v2(0) = [1, 1] (a point
interval).
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Principle of classical co-simulation

With a simpler dynamics:

ẋ = f (x , y)
ẏ = g(y , x)

where x(0) ∈ [x0], y(0) ∈ [y0], the principle is :

Sx : xn xn+1 xn+2

Sy : yn yn+1 xn+2

xn

δx (Tn, xn, yn)

yn

δy (Tn, yn, xn)

xn+1 yn+1

δx (Tn+1, xn+1, yn+1)

δy (Tn+1, yn+1, xn+1)

I on macro-steps, sub-systems advance simulation independently
I at communication times, they exchange output values (xn and yn)
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Principle guaranteed of co-simulation
With a simpler dynamics:

ẋ = f (x , y)
ẏ = g(y , x)

where x(0) ∈ [x0], y(0) ∈ [y0], the principle is :
Sx : [xn] [xn+1] [xn+2]

Sy : [yn] [yn+1] [xn+2]

[xH
n ]

δx (Tn, [xn], [yH
n ])

[yH
n ]

δy (Tn, [yn], [xH
n ])

[xH
n+1] [yH

n+1]

δx (Tn+1, [xn+1], [yH
n+1])

δy (Tn+1, [yn+1], [xH
n+1])

with
I [xn] and [yn] interval state at communication times
I [xH

n ] and [yH
n ] over-approximation of the state over the next macro-step [Tn,Tn + H]

Question:
How to compute [xH

n ] and [yH
n ] ?
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The cross-Picard operator

Local Picard-Lindelöf operators on macro-step [Tn,Tn+1]:

Pf ([Tn,Tn+1], [x̃ ], [ỹ ]) := [xn] +
N∑

k=0
f [k]([xn], [ỹ ])[0,Hk ] + f [N+1]([x̃ ], [ỹ ])[0,HN+1].

Pg ([Tn,Tn+1], [ỹ ], [x̃ ]) := [yn]+
N∑

k=0
g [k]([yn], [x̃ ])[0,Hk ]+ f [N+1]([ỹ ], [x̃ ])[0,HN+1].

In order to prove that [xH
n ] and [yH

n ] are indeed over-approximating x(t) and y(t)
over the next macro-step, the condition to verify is:

Pf ([Tn,Tn+1], [xH
n ], [yH

n ]) ⊂ Int([xH
n ]) and Pg ([Tn,Tn+1], [yH

n ], [xH
n ]) ⊂ Int([yH

n ])

Procedure: start with an initial guess (heuristics) and contract (fixed point)
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The cross-Picard operator

Algorithm 1 Computation of the cross-Picard operator

Data: cs = 〈∅,Ycs ,D = {1, . . . ,m}, {Si}i∈D , L, ∅〉, a time interval [t, t + H],
initial intervals [xi,n] and initial guesses [rH

i,n]
Result: {[X H

i ]}i=1,...,m, a set of boxes over-approximating the global state on
[Tn,Tn + H]

for i = 1, . . . ,m (in parallel) do
[X̃ H

i ] := [rH
i,n]

[UH
i ] := Ki ([X̃ H

1,n], . . . , [X̃ H
1,n])

[X H
i ] := PH

[xi,n],[UH
i ]

while [X H
i ] * [X̃ H

i ] for all i do
for i = 1, . . . ,m (in parallel) do

[X̃ H
i ] := [X H

i ]
[UH

i ] := Ki ([X̃ H
1,n], . . . , [X̃ H

1,n])
[X H

i ] := PH
[xi,n],[UH

i ]

return [X H
i ]
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Application

Double mass-spring-damper oscillator

Heun co-Heun (H=0.05)

RK4 co-RK4 (H=0.01)
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More information exchange for more accuracy : guaranteed
extrapolation

A simulation unit Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUi 〉 can extrapolate inputs for
the next macro-step based on previous behavior:

Classical approach : interpolation polynomials

ΦUi ,n(t) =
k∑

l=0
ui (Tn−l )

k∏
p=0
p 6=l

t − Tn−p
Tn−l − Tn−p

= ui (t) + O(Hk+1) (2)

Interpolation error :

ΦUi ,n(t)− ui (t) = 1
(k + 1)!u(k+1)

i (ξ)
k∏

i=0
(t − Tn−k) ξ ∈ [Tn,Tn+1]
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More information exchange for more accuracy : guaranteed
extrapolation

A simulation unit Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),ΦUi 〉 can extrapolate inputs for
the next macro-step based on previous behavior:

Higher chain formula:

u(k)
i (t) = k! ∂

r1+···+rm Ki
∂xr1

1 . . . ∂xrmm

s∏
j=1

m∏
l=1

1
mjl !

[
1

pj !
x(pj )

i

]mjl

Guaranteed interval extrapolation :

[ΦUi ,n](t) =
k∑

l=0
[ui,n−l ]

k∏
p=0
p 6=l

t − Tn−p
Tn−l − Tn−p

+ 1
(k + 1)! [u(k),H

i,n ]
k∏

i=0
(t − Tn−k) (3)
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Application
Double mass-spring-damper oscillator

Heun co-Heun (H=0.05) co-Heun-interp (H=0.05)

RK4 co-RK4 (H=0.01) co-RK4-interp (H=0.01)
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Seluxit case study
[K.G. Larsen et al. Online and Compositional Learning of Controllers with Application to Floor
Heating, TACAS 2016.]
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Seluxit case study
[K.G. Larsen et al. Online and Compositional Learning of Controllers with Application to Floor
Heating, TACAS 2016.]

System dynamics:

d
dt Ti (t) =

n∑
j=1

Ad
i,j(Tj(t)− Ti (t)) + Bi (Tenv (t)− Ti (t)) + Hi,j .vj

I System of dimension 11
I 211 combinations of vj (not all admissible, constraint on the number of open

valves)
I Pipes heating a room may influence other rooms
I Doors opening and closing (here: average between open and closed)
I Varying external temperature (here: Tenv = 10◦C)
I Measures and switching every 15 minutes
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Seluxit case study
[K.G. Larsen et al. Online and Compositional Learning of Controllers with Application to Floor
Heating, TACAS 2016.]

Simulation over 10 switching times for a given switching sequence

Scheme Computation time (s) Final area (m2)
HEUN 7,96 0.2165

co-HEUN 5,95 0.2407
co-HEUN-interp 27,05 0.2335

RK4 27,60 0.1821
co-RK4 17,87 0.1932

co-RK4-interp 122,17 0.1854
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Towards scalable CPS design

Model-based design of cyber-physical systems :
modeling, analysis, controller synthesis, simulation, deployment

I Progress is being made in
scalability of controller synthesis
methods

I Compositional methods
Break exponential complexity
in dimension

I Optimal control methods
From exponential to linear
complexity in horizon length
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Conclusions and future work

Conclusions:
I Guaranteed RK schemes available for systems with perturbations
I Guaranteed co-simulation possible using only local computations
I Co-simulation provides some significant computation time improvements

Future work:
I Keep original coupling function formulation with DAE tools
I Parallelize computations and implement in DynIbex
I Test use in control synthesis algorithms
I More case studies (multi-physics)
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