

RINO: Robust INner and Outer Approximated Reachability of Neural Networks Controlled Systems

Eric Goubault and Sylvie Putot

June 15, 2022

Overview

- 1. Introduction: safe learning in autonomous systems
- 2. Taylor expansion based approach for outer-approximation
- 3. AE extensions for (robust) inner and outer approximations
- 4. RINO: tool and Evaluation

Introduction: safe learning in autonomous systems

Safe learning in autonomous systems: perception

Perception: objects (obstacles, traffic sign, etc.) detection should be robust to change in lighting, physical attacks, adversarial noise

Robustness issues are amenable to (post-training) reachability-based verification

Safe learning in autonomous systems: planning and control

Planning and control:

- robots need to operate in unknown, uncertain and dynamic environments
- from offline to online planning and control, in learned environments

Reach-avoid or similar properties well suited to reachability verification

The closed-loop: a time-triggered hybrid system

Given

- plant dynamic f,
- ► state x, control u, disturbance w ∈ W
- NN controller *h*
- \blacktriangleright control period Δt_u

Time-triggered (*u* computed every $\Delta_u t$) dynamical system with non-linear feedback:

$$\begin{aligned} \dot{x}(t) &= f(x(t), u(t), w(t)) \\ x(t_0) &= x_0 \in X_0 \\ u(t) &= u_k = h(y(x(\tau_k))), \text{ for } t \in [\tau_k, \tau_{k+1}), \text{ with } \tau_k = t_0 + k\Delta t_u, \ \forall k \ge 0 \end{aligned}$$

Classical reach-avoid problem: reaching target region while avoiding unsafe regions

Classical reach-avoid problem: reaching target region while avoiding unsafe regions
 Also for noisy initial conditions x₀ (robustness)

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- Also for noisy initial conditions x₀ (robustness)
 - Proven by over-approximated reachability

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- And external disturbances w(t)

Classical reach-avoid problem: reaching target region while avoiding unsafe regions

• And external disturbances w(t)

(Maximal) over-approximation unconclusive

Classical reach-avoid problem: reaching target region while avoiding unsafe regions

- And external disturbances w(t)
 - Under-approximation: $\exists x_0, \exists w(t)$ such that the trajectory is unsafe

Classical reach-avoid problem: reaching target region while avoiding unsafe regions

- And external disturbances w(t)
 - ▶ Under-approximation: $\exists x_0, \exists w(t)$ such that the trajectory is unsafe
 - ▶ Under-approximation: $\forall x$ in target, $\exists x_0, \exists w(t)$ s.t. x is reached (target covered) + some final states proven to be outside the target

Reachability problems with disturbances w

Compute inner and outer-approximating sets I(t) and O(t) such that:

Maximal reachability

$$I_{\mathcal{E}}(t) \subseteq R^{f,h}_{\mathcal{E}}(t;\mathbb{X}_0,\mathbb{W}) = \{x \mid \exists w \in \mathbb{W}, \exists x_0 \in \mathbb{X}_0, x = \varphi^{f,h}(t;x_0,w)\} \subseteq O_{\mathcal{E}}(t)$$

Minimal or robust reachability

$$I_{\mathcal{AE}}(t) \subseteq R_{\mathcal{AE}}^{f,h}(t;\mathbb{X}_0,\mathbb{W}) = \{x \mid \forall w \in \mathbb{W}, \exists x_0 \in \mathbb{X}_0, x = \varphi^{f,h}(t;x_0,w)\} \subseteq O_{\mathcal{AE}}(t)$$

We have:

$$\mathsf{R}^{f,h}_{\mathcal{AE}}(t;\mathbb{X}_0,\mathbb{W})\subseteq \mathsf{R}^{f,h}_{\mathcal{E}}(t;\mathbb{X}_0,\mathbb{W})$$

Taylor expansion based approach for outer-approximation

Taylor expansions for ODEs reachability (Berz & Makino) I

For $f \in C^k$, over-approximate the solution of $\dot{x}(t) = f(x(t)), x(t_0) \in [x_0]$ on $[t_0, T]$:

- Time grid $t_0 < t_1 < ... < t_N = T$
- Taylor-Lagrange expansion in t of the solution on each time slice $[t_j, t_{j+1}]$

$$[\mathbf{x}](t,t_j,[\mathbf{x}_j]) = [\mathbf{x}_j] + \sum_{i=1}^{k-1} \frac{(t-t_j)^i}{i!} f^{[i]}([\mathbf{x}_j]) + \frac{(t-t_j)^k}{k!} f^{[k]}([\mathbf{r}_{j+1}])$$

Evaluation of expansion at time t_{j+1} gives initial solution on next time slice

Set-valued computations: evaluation with intervals, affine forms(or zonotopes), etc.

Taylor expansions for ODEs reachability (Berz & Makino) II

▶ The *f*^[*i*] are defined inductively; can be computed by automatic differentiation:

$$f_k^{[1]} = f_k$$

$$f_k^{[i+1]} = \sum_{j=1}^n \frac{\partial f_k^{[i]}}{\partial x_j} f_j$$

▶ Bounding the remainder supposes to first compute an enclosure $[r_{j+1}]$ of solution $x(t, z_0)$ on $[t_j, t_{j+1}]$, classical by Picard iteration: find h_{j+1} , $[r_{j+1}]$ such that

 $[x_j] + [0, h_{j+1}]f([r_{j+1}]) \subseteq [r_{j+1}]$

• Initialization of next iterate $[\mathbf{x}_{j+1}] = [\mathbf{x}](t_{j+1}, t_j, [\mathbf{x}_j])$

Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:

Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:

We focus on differentiable activation functions (needed for inner-approximations)

Taylor expansions for neural network controlled system

Straightforward extension for outer-approximations in the case of a time-triggered feedforward neural network controller:

$$\begin{aligned} \dot{x}(t) &= f(x(t), h(x(\tau_k))) \text{ for } t \in [\tau_k, \tau_{k+1}), \text{ with } \tau_k = t_0 + k\Delta t_u, \ \forall k \ge 0 \\ x(t_0) &= x_0 \in X_0 \end{aligned}$$

- evaluation of $h(x(\tau_k))$ for set-valued $x(\tau_k)$ for instance with intervals or zonotopes as for any nonlinear function
- ▶ requires $\{\tau_k, k \ge 0, \tau_k < T\} \subseteq \{t_1, \ldots, t_N\}$: the stepwise constant control changes values at a subset of the points of the time grid of the Taylor expansions.

AE extensions for (robust) inner and outer approximations

Given

- $\blacktriangleright f: \mathbb{R}^m \to \mathbb{R}^n$
- ▶ a set \boldsymbol{x} in $\mathcal{P}(\mathbb{R}^m)$

we want:

$$range(f, \boldsymbol{x}) = \{f(x), x \in \boldsymbol{x}\}.$$

Given

- $\blacktriangleright f: \mathbb{R}^m \to \mathbb{R}^n$
- ▶ a set **x** in $\mathcal{P}(\mathbb{R}^m)$

we want:

$$range(f, \mathbf{x}) = \{f(x), x \in \mathbf{x}\}.$$

• Over-approximating extension of *f* (or inclusion function):

 $f_o: \mathcal{P}(\mathbb{R}^m) \to \mathcal{P}(\mathbb{R}^n)$ such that $\forall x$ in $\mathcal{P}(\mathbb{R}^m)$, range $(f, x) \subseteq f_o(x)$

Given

- $\blacktriangleright f: \mathbb{R}^m \to \mathbb{R}^n$
- ▶ a set **x** in $\mathcal{P}(\mathbb{R}^m)$

we want:

$$\mathsf{range}(f, \mathbf{x}) = \{f(x), x \in \mathbf{x}\}.$$

Over-approximating extension of f (or inclusion function):

 $f_o: \mathcal{P}(\mathbb{R}^m) \to \mathcal{P}(\mathbb{R}^n)$ such that $\forall x$ in $\mathcal{P}(\mathbb{R}^m)$, range $(f, x) \subseteq f_o(x)$

Under-approximating extension of f:

 $f_u : \mathcal{P}(\mathbb{R}^m) \to \mathcal{P}(\mathbb{R}^n)$ such that $\forall x \text{ in } \mathcal{P}(\mathbb{R}^m), f_u(x) \subseteq \operatorname{range}(f, x)$

Over-approximating extension of f (or inclusion function):

- $f_o: \mathcal{P}(\mathbb{R}^m) \to \mathcal{P}(\mathbb{R}^n)$ such that $\forall x$ in $\mathcal{P}(\mathbb{R}^m)$, range $(f, x) \subseteq f_o(x)$
- Under-approximating extension of f:
 - $f_u : \mathcal{P}(\mathbb{R}^m) \to \mathcal{P}(\mathbb{R}^n)$ such that $\forall x$ in $\mathcal{P}(\mathbb{R}^m), f_u(x) \subseteq \operatorname{range}(f, x)$

Can be interpreted as AE propositions = quantified propositions where universal quantifiers (A) precede existential quantifiers (E)

$$\operatorname{range}(f, \mathbf{x}) \subseteq \mathbf{z} = \mathbf{f}_o(\mathbf{x}) \Leftrightarrow \forall x \in \mathbf{x}, \exists z \in \mathbf{z}, f(x) = z$$
$$\mathbf{f}_u(\mathbf{x}) = \mathbf{z} \subseteq \operatorname{range}(f, \mathbf{x}) \Leftrightarrow \forall z \in \mathbf{z}, \exists x \in \mathbf{x}, f(x) = z$$

Mean-Value AE extensions (scalar-valued function)

Theorem (Generalized Interval Mean-Value Theorem, Goldsztejn 2012)

- ▶ $f : \mathbb{R}^m \to \mathbb{R}$ be a continuously differentiable function, **x** an initial box of \mathbb{R}^m ,
- ▶ $x_0 = mid(\mathbf{x})$ the center of the box x, $\mathbf{f}_0 = [\underline{f_0}, \overline{f_0}]$ such that $f(x_0) \in \mathbf{f}_0$
- $\Delta_i = [\underline{\Delta}_i, \overline{\Delta}_i]$ such that $\{|f'_i(x_{0,1}, \ldots, x_{0,i-1}, x_i, \ldots, x_m)|, x \in \mathbf{x}\} \subseteq \Delta_i$

$$range(f, oldsymbol{x}) \subseteq [\underline{f_0}, \overline{f_0}] + \sum_{i=1}^m \overline{\Delta_i} radius(oldsymbol{x}_i)[-1, 1]$$

$$[\overline{f_0} - \sum_{i=1}^m \underline{\Delta_i} radius(\mathbf{x}_i), \underline{f_0} + \sum_{i=1}^m \underline{\Delta_i} radius(\mathbf{x}_i)] \subseteq range(f, \mathbf{x})$$

- ▶ Interval abstractions over **x** of $f(x) = f(x_0) + \int_{x_0}^x f'(x) dx$, $x \in \mathbf{x}$
- For over-approximation, first proposed by Moore (as centered interval form)

Example

- $f(x) = x^2 x$ over x = [2, 3]
- ▶ f(2.5) = 3.75
- $\blacktriangleright |\mathbf{f}'([2,3])| \subseteq [3,5] = [\underline{\Delta},\overline{\Delta}].$

Then,

 $3.75 + 0.5 * 3 * [-1, 1] \subseteq \operatorname{range}(f, [2, 3]) \subseteq 3.75 + 0.5 * 5 * [-1, 1]$

from which we deduce $[2.25, 5.25] \subseteq range(f, [2, 3]) \subseteq [1.25, 6.25]$.

AE extensions when f is the flow $\varphi^{f,h}(t; x_0, w)$ of the system

Maximal reachability

 $I_{\mathcal{E}}(t) \subseteq R^{f,h}_{\mathcal{E}}(t;\mathbb{X}_0,\mathbb{W}) = \{x \mid \exists w \in \mathbb{W}, \exists x_0 \in \mathbb{X}_0, x = \varphi^{f,h}(t;x_0,w)\} \subseteq O_{\mathcal{E}}(t)$

 $\forall x \in I_{\mathcal{E}}(t), \exists w \in \mathbb{W}, \exists x_0 \in \mathbb{X}_0, x = \varphi^{f,h}(t; x_0, w)$

 $\forall w \in \mathbb{W}, \forall x_0 \in \mathbb{X}_0, \exists x \in O_{\mathcal{E}}(t), x = \varphi^{f,h}(t; x_0, w)$

Minimal or robust reachability

 $I_{\mathcal{A}\mathcal{E}}(t) \subseteq R^{f,h}_{\mathcal{A}\mathcal{E}}(t;\mathbb{X}_0,\mathbb{W}) = \{x \mid \forall w \in \mathbb{W}, \exists x_0 \in \mathbb{X}_0, x = \varphi^{f,h}(t;x_0,w)\} \subseteq O_{\mathcal{A}\mathcal{E}}(t)$

 $\forall x \in I_{\mathcal{AE}}(t), \exists w \in \mathbb{W}, \exists x_0 \in \mathbb{X}_0, x = \varphi^{f,h}(t; x_0, w)$

$$\forall x_0 \in \mathbb{X}_0, \exists w \in \mathbb{W}, \exists x \in O_{\mathcal{AE}}(t), x = \varphi^{f,h}(t; x_0, w)$$

AE extensions when f is the flow $\varphi^{f,h}(t; x_0, w)$ of the system

In order to use the generalized mean-value theorem on

$$\begin{aligned} \dot{x}(t) &= f(x(t), h(x(\tau_k))) \text{ for } t \in [\tau_k, \tau_{k+1}), \text{ with } \tau_k = t_0 + k\Delta t_u, \ \forall k \ge 0 \\ x(t_0) &= x_0 \in X_0 \end{aligned}$$

- Need bounds on the solutions of the system (trajectories)
- Need bounds on the solution of the variational equations (Jacobian of trajectories wrt initial states and uncertainties)
- ► Taylor expansions in time for vector field $f(x(t), h(x(\tau_k)))$ and its Jacobian: implies differentiating h, using $tanh'(x) = 1.0 tanh(x)^2$ and sig'(x) = sig(x)(1 sig(x)).

RINO: tool and Evaluation

RINO (Robust INner and Outer reachability)

Available from

https://github.com/cosynus-lix/RINO/

Computes Inner and Outer Approximations of Robust and Maximal Reachable sets:

- Continuous-time (possibly delayed) or discrete-time uncertain dynamical systems
- Possibly controlled by a neural network (with differentiable activation functions)
- Guaranteed computations using Taylor Expansions in time and Zonotopes in space

Relies on

- ► FILIB++ for interval arithmetic,
- aaflib for affine arithmetic,
- ► FADBAD++ for automatic differentiation.

Examples and Comparison to existing work

- Verisig and Verisig 2.0 [4, 3]: sigmoid/tanh is the solution to a differential equation: transform the neural network into an equivalent hybrid system (solved with Taylor Model based reachability Flowstar)
- ReachNN and ReachNNstar: [2, 1]: Bernstein polynomials + Taylor models (Flowstar)
- J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu. Reachnn*: A tool for reachability analysis of neural-network controlled systems. In *ATVA 2020*,. Springer, 2020.
- C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu. Reachnn: Reachability analysis of neural-network controlled systems. *ACM Trans. Embed. Comput. Syst.*, 18, 2019.
- R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee.
 Verisig 2.0: Verification of neural network controllers using taylor model preconditioning.
 In *Computer Aided Verification*, pages 249–262. Springer International Publishing, 2021.
 - R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying safety properties of hybrid systems with neural network controllers. 2019.

Benchmark examples

Name	Dynamics	Initial set	Horizon	Control step
Mountain Car	$\dot{x}_1 = x_2$	[-0.5, -0.48]	T 75	1
sigmoid 2 $ imes$ 200	$\dot{x}_2 = 0.0015u - 0.0025\cos(3x_1)$	[0, 0.001]	$r = r_5$	
discrete MC	$x_1^{n+1} = x_1^n + x_2^n$	[0.5 0.49]		
(stepsize 1)	$x_2^{n+1} = x_2^n + 0.0015u^n$	[-0.5, -0.48]	T = 75	1
sigmoid 2 $ imes$ 200	$-0.0025\cos(3x_1^n)$	[0, 0.001]		
	$\dot{x}_1 = x_2$	[-0.77, -0.75]	T — 5	0.1
TORA	$\dot{x}_2 = -x_1 + 0.1 * \sin(x_3)$	[-0.45, -0.43]		
$\tanh 3 imes 20$	$\dot{x}_3 = x_4$	[0.51, 0.54]	7 = 5	
	$\dot{x}_4 = u$	[-0.3, -0.28]		
	$\dot{x}_1 = x_2, \ \dot{x}_4 = x_5$	$x_1 = [90, 91]$		
ACC	$\dot{x}_2 = x_3, \ \dot{x}_5 = x_6$	$x_2 = [32, 32.05]$	T — 5	0.1
?	$\dot{x}_3 = -4 - 0.0001 x_2^2 - 2x_3$	$x_4 = [10, 11]$	I = 5	
	$\dot{x}_6 = 2u - 0.0001x_5^2 - 2x_6$	$x_5 = [30, 30.05]$		
B1	$\dot{x}_1 = x_2$	[0.8, 0.9]	T — 7	0.2
sigmoid 3 $ imes$ 20	$\dot{x}_2 = ux_2^2 - x_1$	[0.5, 0.6]	I = I	0.2
B2	$\dot{x}_1 = x_2 - x_1^3$	[0.7, 0.9]	T = 1.8	0.2
sigmoid 3 $ imes$ 20	$\dot{x}_2 = u$	[0.7, 0.9]	1 - 1.0	

18

Comparison results (faster for comparable precision)

	% width Verisig2	Ratio time	% width ReachNN*	Ratio time
Example	over RINO	Verisig2/RINO	over RINO	ReachNN*/RINO
TORA (tanh)	$117,\!6~\%$	38,6	Mem full	Mem full
	98,4~%			
	106,7~%			
	128,0~%			
TORA (sig)	115,7~%	43,4	Mem full	Mem full
	68,0~%			
	110,1~%			
	133,3~%			
ACC (tanh)	101,9~%	500,8	Time out	Time out
	105,6~%			
	103,3~%			
	110,1~%			
	105,1~%			
	65,8~%			
B1 (tanh)	84,9~%	88,8	96,7~%	85,1
	287,8~%		245,0~%	
B1 (sig)	112,1 %	105,4	227,8~%	86,8
	140,6~%		441,9%	
B2 (sig)	263,2%	$77,\! 6$	408,8~%	121,9
	60.4 %		513.7~%	

19

B1: sampling (purple dots) and inner/outer-approximations

(a) x₁ as function of time

- Samples show (x1, x2) becomes almost a 1-dim curve: inner-approx difficult!
- N-dim inner-approximation more difficult and imprecise than 1-dim

Safety property $x_1 < 1$ (red line):

- over-approx raises a potential alarm
- under-approx proves falsification

(b) Joint range (x_1, x_2)

B1: comparison to Verisig 2.0 and ReachNNstar

Mountain Car

Loss of accuracy for under-approximation in the continuous-time case to be investigated...

Backup Slides

From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?

- Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
- Generally false for under-approximations! Take $(z_1, z_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$ and

$$\forall z_1 \in \boldsymbol{z}_1, \exists x_1 \in \boldsymbol{x}_1, \exists x_2 \in \boldsymbol{x}_2, z_1 = f_1(x)$$

$$\forall z_2 \in \boldsymbol{z}_2, \exists x_1 \in \boldsymbol{x}_1, \exists x_2 \in \boldsymbol{x}_2, z_2 = f_2(x)$$

Does not imply $\forall z_1 \in \mathbf{z}_1$ and $\forall z_2 \in \mathbf{z}_2$, $\exists x_1 \in \mathbf{x}_1$ and $\exists x_2 \in \mathbf{x}_2$ such that z = f(x).

From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?

- Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
- Generally false for under-approximations! Take $(z_1, z_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$ and $\forall z_1 \in \mathbf{z}_1, \exists x_1 \in \mathbf{x}_1, \exists x_2 \in \mathbf{x}_2, z_1 = f_1(x)$ $\forall z_2 \in \mathbf{z}_2, \exists x_1 \in \mathbf{x}_1, \exists x_2 \in \mathbf{x}_2, z_2 = f_2(x)$

Does not imply $\forall z_1 \in \mathbf{z}_1$ and $\forall z_2 \in \mathbf{z}_2$, $\exists x_1 \in \mathbf{x}_1$ and $\exists x_2 \in \mathbf{x}_2$ such that z = f(x).

A solution (can be generalized to n-dim)

Suppose we can compute z_1 and z_2 with continuous selections x_2 and x_1 such that

 $\forall z_1 \in \boldsymbol{z}_1, \forall x_1 \in \boldsymbol{x}_1, \exists x_2 \in \boldsymbol{x}_2, \ z_1 = f_1(x) \\ \forall z_2 \in \boldsymbol{z}_2, \forall x_2 \in \boldsymbol{x}_2, \exists x_1 \in \boldsymbol{x}_1, \ z_2 = f_2(x)$

From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?

- Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
- Generally false for under-approximations! Take $(z_1, z_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$ and $\forall z_1 \in \mathbf{z}_1, \exists x_1 \in \mathbf{x}_1, \exists x_2 \in \mathbf{x}_2, z_1 = f_1(x)$ $\forall z_2 \in \mathbf{z}_2, \exists x_1 \in \mathbf{x}_1, \exists x_2 \in \mathbf{x}_2, z_2 = f_2(x)$

Does not imply $\forall z_1 \in \mathbf{z}_1$ and $\forall z_2 \in \mathbf{z}_2$, $\exists x_1 \in \mathbf{x}_1$ and $\exists x_2 \in \mathbf{x}_2$ such that z = f(x).

A solution (can be generalized to n-dim)

Suppose we can compute z_1 and z_2 with continuous selections x_2 and x_1 such that

 $\forall z_1 \in \mathbf{z}_1, \forall x_1 \in \mathbf{x}_1, \exists x_2 \in \mathbf{x}_2, z_1 = f_1(x)$ under-approx of robust (to x_1) range of f_1

 $\forall z_2 \in \mathbf{z}_2, \forall x_2 \in \mathbf{x}_2, \exists x_1 \in \mathbf{x}_1, z_2 = f_2(x)$ under-approx of robust (to x_2) range of f_2

By Brouwer fixpoint thm: $|\mathbf{z}_1 \times \mathbf{z}_2 \subseteq range(f, \mathbf{x}_1 \times \mathbf{x}_2)|$ (box / parallelepiped by preconditioning)

Robustly reachable sets

Robust range: states reachable whatever the disturbances on components $w \in \mathbf{x}_A$

$$\mathsf{range}_{\mathcal{AE}}(f, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}) = \{ z \, | \, \forall w \in \boldsymbol{x}_{\mathcal{A}}, \exists u \in \boldsymbol{x}_{\mathcal{E}}, \, z = f(w, u) \} \subseteq \mathsf{range}(f, \boldsymbol{x})$$

Robustly reachable sets

Robust range: states reachable whatever the disturbances on components $w \in x_A$

$$\mathsf{range}_{\mathcal{AE}}(f, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}) = \{ z \, | \, \forall w \in \boldsymbol{x}_{\mathcal{A}}, \exists u \in \boldsymbol{x}_{\mathcal{E}}, \, z = f(w, u) \} \subseteq \mathsf{range}(f, \boldsymbol{x})$$

A particular case of robust reachability for dynamical systems with disturbances/inputs

$$(S_c) \begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ x(0) \in \mathbf{x}_0, u(t) \in \mathbb{U} \subseteq \mathbb{R}^p \end{cases} \quad (S_d) \begin{cases} x^{k+1} = f(x^k, u^k) & \text{flow } \varphi^f(t; x_0, u) \\ x^0 \in \mathbf{x}^0, u(k) \in \mathbb{U} \subseteq \mathbb{R}^p \end{cases}$$

Sets reachable robustly to disturbances on components u_A :

 $R^{f}_{\mathcal{AE}}(t; \boldsymbol{x}_{0}, \mathbb{U}) = \{ x \in \mathcal{D} \mid \forall u_{A} \in \mathbb{U}_{\mathbb{A}}, \exists u_{E} \in \mathbb{U}_{\mathbb{E}}, \exists x_{0} \in \boldsymbol{x}_{0}, x = \varphi^{f}(t; x_{0}, u_{A}, u_{E}) \}$

- *u_A* can be seen as disturbance, *u_E* as control
- ▶ (classical) maximal reachability for $\mathbb{U}_{\mathbb{A}} = \emptyset$, minimal reachability for $\mathbb{U}_{\mathbb{E}} = \emptyset$

Robust Mean Value theorem

Similar to the generalized interval mean-value theorem, but with adversarial terms

▶ $f : \mathbb{R}^m \to \mathbb{R}$ be continuously differentiable, $\mathbf{x} = \mathbf{x}_A \times \mathbf{x}_E$ initial box

▶
$$\{ |\nabla_u f(w, u)| , w \in \mathbf{x}_{\mathcal{A}}, u \in \mathbf{x}_{\mathcal{E}} \} \subseteq \mathbf{\nabla}_u \text{ and } \{ \left| \nabla_w f(w, x_{\mathcal{E}}^0) \right| , w \in \mathbf{x}_{\mathcal{A}} \} \subseteq \mathbf{\nabla}_w$$

Then:

 $\operatorname{range}_{\mathcal{A}\mathcal{E}}(f, \mathbf{x}_{\mathcal{A}}, \mathbf{x}_{\mathcal{E}}) \subseteq [\underline{f^{0}} - \langle \overline{\nabla}_{u}, r(\mathbf{x}_{\mathcal{E}}) \rangle + \langle \underline{\nabla}_{w}, r(\mathbf{x}_{\mathcal{A}}) \rangle, \overline{f^{0}} + \langle \overline{\nabla}_{u}, r(\mathbf{x}_{\mathcal{E}}) \rangle - \langle \underline{\nabla}_{w}, r(\mathbf{x}_{\mathcal{A}}) \rangle] \\ [\overline{f^{0}} - \langle \underline{\nabla}_{u}, r(\mathbf{x}_{\mathcal{E}}) \rangle + \langle \overline{\nabla}_{w}, r(\mathbf{x}_{\mathcal{A}}) \rangle, \underline{f^{0}} + \langle \underline{\nabla}_{u}, r(\mathbf{x}_{\mathcal{E}}) \rangle - \langle \overline{\nabla}_{w}, r(\mathbf{x}_{\mathcal{A}}) \rangle] \subseteq \operatorname{range}_{\mathcal{A}\mathcal{E}}(f, \mathbf{x}_{\mathcal{A}}, \mathbf{x}_{\mathcal{E}})$

Intuition:

- ► Control $u \in \mathbf{x}_{\mathcal{E}}$ acts positively on the (exact) range width : widens the over (resp. under) approximation by $\langle \overline{\nabla}_u, r(\mathbf{x}_{\mathcal{E}} \rangle)[-1, 1]$ (resp. $\langle \underline{\nabla}_u, r(\mathbf{x}_{\mathcal{E}} \rangle)[-1, 1]$)
- ▶ Disturbance $w \in \mathbf{x}_{\mathcal{A}}$ acts as an adversary: shrinks down the over (resp. under) approximation by $\langle \nabla_w, r(\mathbf{x}_{\mathcal{A}}) \rangle [-1, 1]$ (resp. by $\langle \nabla_w, r(\mathbf{x}_{\mathcal{A}}) \rangle [-1, 1]$)

Example in 2-D

$$f(\mathbf{x}) = (5x_1^2 + x_2^2 - 2x_1x_2 - 4, x_1^2 + 5x_2^2 - 2x_1x_2 - 4)^{\mathsf{T}} \text{ for } \mathbf{x} = [0.9, 1.1]^2$$

Using $f(1,1) = 0, \nabla f(\mathbf{x}) \subseteq \begin{pmatrix} [6.8, 9.2] & [-0.4, 0.4] \\ [-0.4, 0.4] & [6.8, 9.2] \end{pmatrix}$ thus $|\nabla f(\mathbf{x})| \subseteq \begin{pmatrix} [6.8, 9.2] & [0, 0.4] \\ [0, 0.4] & [6.8, 9.2] \end{pmatrix}$

Example in 2-D

$$f(\mathbf{x}) = (5x_1^2 + x_2^2 - 2x_1x_2 - 4, x_1^2 + 5x_2^2 - 2x_1x_2 - 4)^{\mathsf{T}} \text{ for } \mathbf{x} = [0.9, 1.1]^2$$

Using $f(1,1) = 0, \nabla f(\mathbf{x}) \subseteq \begin{pmatrix} [6.8, 9.2] & [-0.4, 0.4] \\ [-0.4, 0.4] & [6.8, 9.2] \end{pmatrix}$ thus $|\nabla f(\mathbf{x})| \subseteq \begin{pmatrix} [6.8, 9.2] & [0, 0.4] \\ [0, 0.4] & [6.8, 9.2] \end{pmatrix}$

1-D mean-value approximations range(f, x) \subseteq [-0.96, 0.96]² e.g. range(f_1, x) \subseteq 0 + (9.2 × 0.1 + 0.4 × 0.1)[-1, 1] [-0.68, 0.68] \subseteq range(f_1, x) as (0 + 0.68 × 0.1 + 0 × 0.1)[-1, 1] \subseteq range(f_1, x) [-0.68, 0.68] \subseteq range(f_2, x) similarly

Example in 2-D

$$f(\mathbf{x}) = (5x_1^2 + x_2^2 - 2x_1x_2 - 4, x_1^2 + 5x_2^2 - 2x_1x_2 - 4)^{\mathsf{T}} \text{ for } \mathbf{x} = [0.9, 1.1]^2$$

Using $f(1, 1) = 0, \nabla f(\mathbf{x}) \subseteq \begin{pmatrix} [6.8, 9.2] & [-0.4, 0.4] \\ [-0.4, 0.4] & [6.8, 9.2] \end{pmatrix}$ thus $|\nabla f(\mathbf{x})| \subseteq \begin{pmatrix} [6.8, 9.2] & [0, 0.4] \\ [0, 0.4] & [6.8, 9.2] \end{pmatrix}$
2-D under-approximation by robust range

1-D mean-value approximations

 $\operatorname{range}(f, \mathbf{x}) \subseteq [-0.96, 0.96]^2$ $\boxed{[-0.68, 0.68] \subseteq \operatorname{range}(f_1, \mathbf{x})}$

 $[-0.68, 0.68] \subseteq \mathsf{range}(f_2, \boldsymbol{x})$

• We obtain $[-0.64, 0.64]^2 \subseteq \operatorname{range}(f, \mathbf{x})$ by

 $\forall z_1 \in \mathbf{z}_1, \forall x_2 \in \mathbf{x}_2, \exists x_1 \in \mathbf{x}_1, z_1 = f_1(\mathbf{x}) \\ \forall z_2 \in \mathbf{z}_2, \forall x_1 \in \mathbf{x}_1, \exists x_2 \in \mathbf{x}_2, z_2 = f_2(\mathbf{x}) \end{cases}$

• e.g. for z_1 (similar for z_2): $f_1(1,1) + [-6.8 \times 0.1 + 0.4 \times 0.1, 6.8 \times 0.1 - 0.4 \times 0.1] = [-0.64, 0.64] \subseteq \operatorname{range}_{AE}(f_1, \mathbf{x}, 2)$

Approximating the range of the sigmoid function

range(f,[-4,4])?

Approximating the range of the sigmoid function

- Not so accurate/satisfying...
- First natural idea: input domain partition? Costly and convex union of the under-approximating boxes is in general not an under-approximation of range(f, x)

Refinement by local quadrature

Mean-value extension is an interval abstraction of $f(x) = f(x_0) + \int_{x_0}^{x} f'(x) dx$ Use a partition $\mathbf{x} = \mathbf{x}_1 \cup \mathbf{x}_2$ to refine: $f^0 + \langle \underline{\nabla}^1, dx^1 \rangle [-1, 1] + \langle \underline{\nabla}^2, dx^2 \rangle [-1, 1] \subseteq \operatorname{range}(f, \mathbf{x}^1 \cup \mathbf{x}^2)$ $\operatorname{range}(f, \mathbf{x}^1 \cup \mathbf{x}^2) \subseteq f^0 + \langle \overline{\nabla}^1, dx^1 \rangle [-1, 1] + \langle \overline{\nabla}^2, dx^2 \rangle [-1, 1]$

Refinement by local quadrature

Higher-order AE extensions

Theorem

Let g be an elementary¹ approximation function for f, s.t.

$$\forall w \in \mathbf{x}_{\mathcal{A}}, \ \forall u \in \mathbf{x}_{\mathcal{E}}, \ \exists \xi \in \mathbf{e}, \ f(w, u) = g(w, u, \xi)$$

Then any under-approx \mathcal{I}_g (resp. over-approx \mathcal{O}_g) of the range of g robust to x_A and ξ is an under-approx (resp. over-approx) of the range of f robust to x_A , i.e.

$$\mathcal{I}_g \subseteq range_{\mathcal{AE}}(f, \mathbf{x}_{\mathcal{A}}, \mathbf{x}_{\mathcal{E}}) \subseteq \mathcal{O}_g$$

Typically, $g(w, u, \xi)$ Taylor expansion of f (with x = (w, u) and ξ from Lagrange remainder):

$$g(x,\xi) = f(x^{0}) + \sum_{i=1}^{n} \frac{(x-x^{0})^{i}}{i!} D^{i}f(x^{0}) + D^{n+1}f(\xi) \frac{(x-x^{0})^{n+1}}{(n+1)!}$$

Higher-order AE extensions

Theorem

• Let g be an elementary function $g(w, u, \xi) = \alpha(w, u) + \beta(w, u, \xi)$

 $\blacktriangleright I_{\alpha}$ under-approx of the range of α robust to w, \mathcal{O}_{β} over-approx of the range of β

Then the range of g robust with to $w \in \mathbf{x}_{\mathcal{A}}$ and $\xi \in \mathbf{x}$ is under-approximated by $\mathcal{I}_{g} = [\underline{\mathcal{I}}_{\alpha} + \overline{\mathcal{O}}_{\beta}, \overline{\mathcal{I}}_{\alpha} + \underline{\mathcal{O}}_{\beta}] \subseteq range_{\mathcal{AE}}(f, \mathbf{x}_{\mathcal{A}}, \mathbf{x}_{\mathcal{E}})u$

Typically, $g(w, u, \xi)$ Taylor expansion of f:

$$g(x,\xi) = \underbrace{f(x^{0}) + \sum_{i=1}^{n} \frac{(x-x^{0})^{i}}{i!} D^{i}f(x^{0})}_{\alpha(x)} + \underbrace{D^{n+1}f(\xi) \frac{(x-x^{0})^{n+1}}{(n+1)!}}_{\beta(x,\xi)}$$

Easily applicable for n = 1 (linear expression can be exactly evaluated)

.

Application to the reachability of discrete-time systems

Application to reachability of discrete-time systems

Algorithm 1: requires propagating n-dim under-approx. at each step

Iteratively compute function image, with as input, the previously computed approximations (under and over-approximations I^k and O^k of the reachable set \mathbf{z}^k):

$$\begin{cases} I^{0} = \mathbf{z}^{0}, \ O^{0} = \mathbf{z}^{0} \\ I^{k+1} = \mathcal{I}(f, I^{k}, \pi), \ O^{k+1} = \mathcal{O}(f, O^{k}, \pi) \end{cases}$$

n-dimensional range under-approximation can be source of loss of precision

Algorithm 2: propagates only over-approx. of range and Jacobian of iterated loop body f

for k from 0 to K - 1 do $I^{k+1} := \mathcal{I}(f^{k+1}, \mathbf{z}^0, \pi), O^{k+1} := \mathcal{O}(f^{k+1}, \mathbf{z}^0, \pi)$ end for

generally more costly and more precise than Algo 1 (differentiation of the iterated function)

Test model

Model

$$x_1^{k+1} = x_1^k + (0.5(x_1^k)^2 - 0.5(x_2^k)^2)\Delta$$
$$x_2^{k+1} = x_2^k + 2x_1^k x_2^k \Delta$$

with $x_1^0 \in [0.05, 0.1]$, $x_2^0 \in [0.99, 1.00]$ and $\Delta = 0.01$.

Under- (yellow) and over-approximated (green) reachable sets over time up to 25 steps with Algorithm 1, skewed boxes (0.02s computation time)

Honeybees Site Choice Model [Dreossi et al. (2016)]

1. 1..

$$\begin{aligned} x_1^{k+1} &= x_1^k - (\beta_1 x_1^k x_2^k + \beta_2 x_1^k x_3^k) \Delta \\ x_2^{k+1} &= x_2^k + (\beta_1 x_1^k x_2^k - \gamma x_2^k + \delta \beta_1 x_2^k x_4^k \\ x_3^{k+1} &= x_3^k + (\beta_2 x_1^k x_3^k - \gamma x_3^k + \delta \beta_2 x_3^k x_5^k \\ x_4^{k+1} &= x_4^k + (\gamma x_2^k - \delta \beta_1 x_2^k x_4^k - \alpha \beta_2 x_3^k, \\ x_5^{k+1} &= x_5^k + (\gamma x_3^k - \delta \beta_2 x_3^k x_5^k - \alpha \beta_1 x_2^k, \end{aligned}$$

 $x_1^0 = 500, x_2^0 \in [390, 400], x_3^0 \in [90, -100]$ $x_4^0 = x_5^0 = 0 \text{ and } \beta_1 = \beta_2 = 0.001, \gamma$ $\delta = 0.5, \alpha = 0.7, \text{ and } \Delta = 0.01.$

Algorithm 1

Only 1.7s analysis time, but imprecise (800 steps here, later diverges))

Honeybees Site Choice Model [Dreossi et al. (2016)]

Algorithm 2 (57s analysis time, 1500 steps)

Joint range $(x_1, x_2)(k)$

Projected approximations (filled region is under-approx, plain black line is over-approx)

(slightly faster and tighter than Dreossi 2016 for over-approx while also providing under-approx)