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Introduction: safe learning in
autonomous systems



Safe learning in autonomous systems: perception

Perception: objects (obstacles, traffic sign, etc.) detection should be robust to change in
lighting, physical attacks, adversarial noise

Robustness issues are amenable to (post-training) reachability-based verification



Safe learning in autonomous systems: planning and control

Planning and control:

» robots need to operate in unknown, uncertain and dynamic environments
» from offline to online planning and control, in learned environments

Plant model
>| (vehicle + physical world) "
dx/dt = f(x,u.w) Sensors
commands (camera, lidar, etc)

to actuators

Planning and control

. object detj‘rction/classiﬁcaﬁon

Reach-avoid or similar properties well suited to reachability verification 3



The closed-loop: a time-triggered hybrid system

Given

» plantdynamicf,

> statex, control u,
disturbancew € W

i Measurements y Controls & i
| | :
F Sensors |
> NN controller h Em,imegmb-
» control period At, | States x Controls u |

Time-triggered (u computed every A, t) dynamical system with non-linear feedback:

x(t)
x(to)

u(t)

F(x(t), u(t), w(t))
Xo € Xo
ux = h(y(x(7x))), fort € [, Tk+1), with 7 = to + kAt,, Vk >0



Reachability analysis for safety and robustness verification

w(t)
|
X x(t) = f(x(t), ux, w(t))
Uk

Xk

uk = h(xe)

» Classical reach-avoid problem: reaching target region while avoiding unsafe regions



Reachability analysis for safety and robustness verification

w(t)
|
X x(t) = f(x(t), ux, w(t))
Uk

Xk

uk = h(xe)

» Classical reach-avoid problem: reaching target region while avoiding unsafe regions
» Also for noisy initial conditions x, (robustness)



Reachability analysis for safety and robustness verification

w(t)
|
20 5(t) = FOx(t), e wie))
Ug

Xk

uk = h(xe)

» Classical reach-avoid problem: reaching target region while avoiding unsafe regions
» Also for noisy initial conditions xq (robustness)
» Proven by over-approximated reachability



Reachability analysis for safety and robustness verification

w(t)
|
_Xo | x(t) = F(x(t), ug, w(t))
Uy

Xk

uk = h(xe) UNSAFE

» Classical reach-avoid problem: reaching target region while avoiding unsafe regions
» And external disturbances w(t)



Reachability analysis for safety and robustness verification

w(t)
|

x(t) = F(x(t), u, w(t))

Xo Xk

Uk

Uy = h(Xk)

UNSAFE

» Classical reach-avoid problem: reaching target region while avoiding unsafe regions
» And external disturbances w(t)
> (Maximal) over-approximation unconclusive



Reachability analysis for safety and robustness verification

w(®)
|

Xo

() = F(x(t), ug, w(t))

Uk

Uk = h(x)

Xk

UNSAFE

» Classical reach-avoid problem: reaching target region while avoiding unsafe regions

» And external disturbances w(t)

» Under-approximation: 3x, 3w(t) such that the trajectory is unsafe



Reachability analysis for safety and robustness verification

Xo

U

w(®)
|

x(t) = F(x(), u, w(t))

u = h(xe)

Xk

UNSAFE

> Classical reach-avoid problem: reaching target region while avoiding unsafe regions

» And external disturbances w(t)

> Under-approximation: 3xp, 3w(t) such that the trajectory is unsafe

» Under-approximation: Vx in target, 3xo, 3w(t) s.t. x is reached (target covered) + some
final states proven to be outside the target



Reachability problems with disturbances w

Compute inner and outer-approximating sets /(t) and O(t) such that:

> Maximal reachability

le(t) C RE"(t; Xo, W) = {x| 3w € W,3xo € Xo, x = ¢"(t;x0,w)} C O¢(t)

Lag(t) C RL(t: X0, W) = {x| , 3o € Xo, x = @ (t; x0, W)} C 04e(t)

We have:
f



Taylor expansion based approach for
outer-approximation



Taylor expansions for ODEs reachability (Berz & Makino) |

For f € CK, over-approximate the solution of x(t) = f(x(t)), x(to) € [xo] on [to, T]:

> Timegridtp <t <...<ty=T

» Taylor-Lagrange expansion in t of the solution on each time slice [t;, tj;1]

e i) = il + 3 D iy + € 2 g

i=1

» Evaluation of expansion at time t;;; gives initial solution on next time slice

Set-valued computations: evaluation with intervals, affine forms(or zonotopes), etc.



Taylor expansions for ODEs reachability (Berz & Makino) Il

» The fl1 are defined inductively; can be computed by automatic differentiation:

1 —
n ol
[+ _ ot
it =) o
j=r
» Bounding the remainder supposes to first compute an enclosure of solution
x(t,zo) on [t;, tj4], classical by Picard iteration: find h;4, such that

] + [0, hialf(lr;1]) €

> Initialization of next iterate [x; ;| = [X](ti11, t;, [x/])



Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:

Leaky ReLU )
max(0.1z, z)

Inputs  Layer of S Neurons

Sigmoid

U(ﬂf):ﬁ

tanh Maxout
tanh(z) 0 ° max(wz + by, wiz + by)
ReLU ELU
max (0, z) {I ©20
Y ale®*—1) <0 7 i

a=f(Wp+b)



Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:

Inputs  Layer of S Neurons

Sigmoid

tanh
tanh(x)

o(e) = o=

T

RelLU
max(0, z)

a=f(Wp+b)

Leaky ReLU .
max(U. 1z, )

Maxout .
max(w] T + by, wi x + bs)

ELU '"
T x>0
ale* —=1) =<0 ' ]

We focus on differentiable activation functions (needed for
inner-approximations)



Taylor expansions for neural network controlled system

Straightforward extension for outer-approximations in the case of a time-triggered
feedforward neural network controller:

x(t) = f(x(t),h(x(7))) fort € [, Tk41), with 7 = to + kAt,, Vk >0
X(to) = Xo € Xo
> evaluation of h(x(7x)) for set-valued x(7) for instance with intervals or zonotopes as
for any nonlinear function

> requires {7y, k > 0,7 < T} C {ty,...,ty}: the stepwise constant control changes
values at a subset of the points of the time grid of the Taylor expansions.



AE extensions for (robust) inner and outer
approximations



AE extensions for function image computation

Given )
> f:R" - R"
» asetxinP(R™) @

we want: f(X)

range(f,x) = {f(x),x € x}. K \—/J



AE extensions for function image computation

Given
» f:R" - R

> asetxinP(R™) 0
we want:

range(f,x) = {f(x),x € x}.

» Over-approximating extension of f (or inclusion function):
fo : P(R™) — P(R") such that Vx in P(R™), range(f, x) C f,(x)



AE extensions for function image computation

Given
» f:R" - R

> asetxinP(R™) 0
we want:

range(f,x) = {f(x),x € x}.

» Over-approximating extension of f (or inclusion function):

fo : P(R™) — P(R") such that Vx in P(R™), range(f, x) C f,(x)
> extension of f:

f, : P(R™) — P(R") such that Vx in P(R™), f,(x) C range(f, x)



AE extensions for function image computation

» Over-approximating extension of f (or inclusion function):

fo : P(R™) — P(R") such that Vx in P(R™), range(f, x) C f,(x)
> extension of f:

f, : P(R™) — P(R") such that Vx in P(R™), f,(x) C range(f,x)

Can be interpreted as AE propositions = quantified propositions where universal
quantifiers (A) precede existential quantifiers (E)

range(f,x) Cz="f,(x) & Vxex,qzez f(x) =z

fu(x) =z Crange(f,x) & Vze z,Ixex, f(x) =z



Mean-Value AE extensions (scalar-valued function)

Theorem (Generalized Interval Mean-Value Theorem,Goldsztejn 2012)
> f:R™ — R be a continuously differentiable function, x an initial box of R,
> xo = mid(x) the center of the box x, fo = [fo, fo] such that f(xo) € fq
> A; = [A;, Aj)suchthat {|f!(Xo1, - -, X0,i—1,Xis - - - s Xm)|, X € X} C A

range(f,x) C [fo, fo] + ZA radius(x;)[—1,1]

i=1

m m
[fo — Z&mdius(x,’), fo+ Z&radius(x,)] C range(f, x)

i=1 i=1

> Interval abstractions over x of f(x) = f(xo) + f f'(x)dx, x € x
» For over-approximation, first proposed by Moore (as centered interval form)



Example

» f(x) =x* — xoverx = [2,3] AR TETE /

> f(2.5) =3.75
> |f'([2,3])] € [3.5] = [A, Al

= f(r0) +058[-L1]

25 flr)=1ra-1

15 175 2.25 25 275
|

Then,
3754 0.5+3+[ 1.1 Crange(f, [2,3]) € 3.75+ 0.5 5% [-1,1]

from which we deduce [2.25,5.25] C range(f, [2,3]) C [1.25,6.25].



AE extensions when f is the flow ¢"/(t; xo, w) of the system

> Maximal reachability
le(t) € RE(t:Xo, W) = {x|Iw € W, 3xo € Xo, x = ¢"(t; xo, w)} C Og(t)
Vx € Ig(t),Iw € W, 3xo € Xo, x = pf’h(t; Xo, W)

Yw € W,Vxo € Xo, 3x € Og(t),x = (pf’h(t;XO, w)

f
Lag(t) € Rt X0, W) = {x]| , 3o € Xo, x = "Mt x0, W)} C 04e(t)
Vx € 14¢(t),Iw € W, 3xo € Xo, x = @f’h(t;xo,w)

Vxo € Xo, Iw € W, EIXGOAg(t),x:gof’h(t;xo,w) 14



AE extensions when f is the flow ¢"/(t; xo, w) of the system

In order to use the generalized mean-value theorem on

X(t) = F(x(t), h(x(r))) for t € [r, Tks), With 7 = to + kAty, Yk > 0
X(to) = Xo € Xo

» Need bounds on the solutions of the system (trajectories)

» Need bounds on the solution of the variational equations (Jacobian of trajectories
wrt initial states and uncertainties)

> Taylor expansions in time for vector field f(x(t), h(x(7x))) and its Jacobian: implies
differentiating h, using tanh’(x) = 1.0 — tanh(x)? and sig’(x) = sig(x)(1 — sig(x)).



RINO: tool and Evaluation



RINO (Robust INner and Outer reachability)

Available from
https://github.com/cosynus-1ix/RINO/

Computes Inner and Outer Approximations of Robust and Maximal Reachable sets:

» Continuous-time (possibly delayed) or discrete-time uncertain dynamical systems
» Possibly controlled by a neural network (with differentiable activation functions)
» Guaranteed computations using Taylor Expansions in time and Zonotopes in space

Relies on

» FILIB++ for interval arithmetic,
» aaflib for affine arithmetic,
» FADBAD++ for automatic differentiation.


https://github.com/cosynus-lix/RINO/
http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
http://www.fadbad.com/fadbad.html

Examples and Comparison to existing work

> Verisig and Verisig 2.0 [4, 3]: sigmoid/tanh is the solution to a differential equation: transform the neural network into

an equivalent hybrid system (solved with Taylor Model based reachability Flowstar)

» ReachNN and ReachNNstar: [2, 1] : Bernstein polynomials + Taylor models (Flowstar)

[3

[3

J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu.

Reachnn*: A tool for reachability analysis of neural-network controlled systems.
In ATVA 2020,. Springer, 2020.

C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu.

Reachnn: Reachability analysis of neural-network controlled systems.

ACM Trans. Embed. Comput. Syst., 18, 2019.

R. lvanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee.

Verisig 2.0: Verification of neural network controllers using taylor model preconditioning.

In Computer Aided Verification, pages 249-262. Springer International Publishing, 2021.

R. lvanov, J. Weimer, R. Alur, G. J. Pappas, and |. Lee.
Verisig: verifying safety properties of hybrid systems with neural network controllers.
2019.



Benchmark examples

Name Dynamics Initial set Horizon Control step
Mountain Car X1 =X [—0.5,—0.48] - ]
sigmoid 2 x 200 %; = 0.0015u — 0.0025 cos(3x1) [0,0.001]
; A
dlscret.e MC X}]L = X1: + x5 ’ [~ 0.5, —0.4g]
(stepsize 1) Xy = x§ 4+ 0.0015u [0,0.001] T=175 1
sigmoid 2 x 200 —0.0025 cos(3x!") ’
=X [—0.77,—0.75]
TORA X2 = —x1 4 0.1% sin(x3) [ — 0.45,—0.43] F_s o1
tanh 3 x 20 X3 = X4 [0.51,0.54]
Ya=u [—0.3,-0.28]
X = X2, X4 =Xs x = [90,91]
ACC )'(2 = X3, )-(5 = Xg X2 = [32,32.05] T—5 01
? X3 = —4 — 0.0001x3 — 2x3 x4 = [10,11] '
X6 = 2u — 0.0001x2 — 2xg xs = [30,30.05]
) .B'| ):(1 = X2 [0.87 09] T—7 0.2
sigmoid 3 x 20 X = uxt —x [0.5,0.6]
. 'BZ ):(1 =x,— X [0.7,0.9] 18 0.2
sigmoid 3 x 20 X =u [0.7,0.9]




Comparison results (faster for comparable precision)

% width Verisig2 Ratio time 9% width ReachININ* Ratio time

over RINO Verisig2/RINO over RINO ReachNIN* /RINO
TORA (tanh) 117,6 % 38,6 Mem full Mem full
98,4 % |
106,7 %
128,0 % |
TORA (sig) 115,7 % 43,4 Mem full Mem full
68,0 % |
110,1 %
133,3 % |
ACC (tanh) 101,9 % 500,8 Time out Time out
105,6 % |
103,3 %
110,1 % |
105,1 %
65,8 % |
B1 (tanh) 84,9 % 88,8 96,7 % 85,1
287,8 % | 245,0 %
B1 (sig) 112,1 % 105,4 227.8 % 86,8
140,6 % | 441,9 %
B2 (sig) 263,2 % 77,6 408,8 % 121,9
a0 A4 o7 | 512 7 9%




B1: sampling (purple dots) and inner/outer-anproximations

(a) xq as function of time (b) Joint range (x1, x2)
» Over-approximation is very tight

» Samples show (x1,x2) becomes almost

Safet ty x; < 1(red line):
a 1-dim curve: inner-approx difficult! alety propertyx (redline)

o . . > over-approx raises a potential alarm
» N-dim inner-approximation more

difficult and imprecise than 1-dim » under-approx proves falsification 20



B1: comparison to Verisig 2.0 and ReachNNstar

as o . . .
as
0
o2 -
02 0z v
) .
o 0o
oz, )
a2 s 3
o4 o I
o8
i
as, as : l
T w2 o @2 o o5 o8 : 12 e @ w @ e

(a) Verisig 2.0 (b) ReachNNStar (c) RINO

Figure 2: B1 sigmoid

21



Mountain Car

ooooo

(@) Mountain car problem (b) Continuous-time MC (c) Discrete-time MC

Loss of accuracy for under-approximation in the continuous-time case to be investigated...

22
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From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?

» Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
> Generally false for under-approximations! Take (z,2z,) = (fi(x1, X2), f2(x1, %)) and
Vz1 € 1,3 € X7, Iy € X, 7y = fi(X)

Yz, € 25, 3% € X1, 3x; € Xa, 2 = FH(X)

Does notimply Vz; € z; and Vz, € z;, 3x € x; and 3x, € X, such thatz = f(x).



From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?
» Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
> Generally false for under-approximations! Take (z1,z,) = (fi(x1,X2), f2(x1, %)) and
Vz1 € 1,3 € X1, Ixy € X, 71 = fi(X)

Yz, € 25, 3% € X1, 3x; € Xa, 2 = FH(X)
Does not imply Vz; € z; and Vz, € z,, 3x; € x; and 3x; € x; such thatz = f(x).

A solution (can be generalized to n-dim)
Suppose we can compute z; and z, with continuous selections x, and x; such that
Vz; € zy, I, € X2, 7y = fi(x)

Vz, € Z,, dx, € X1, Z; = fz(X)



From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?

» Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
> Generally false for under-approximations! Take (z1,z,) = (fi(x1,X2), f2(x1, %)) and
Vz1 € 1,3 € X1, Ixy € X, 71 = fi(X)

Yz, € 25, 3% € X1, 3x; € Xa, 2 = FH(X)
Does not imply Vz; € z; and Vz, € z,, 3x; € x; and 3x; € x; such thatz = f(x).

A solution (can be generalized to n-dim)
Suppose we can compute z; and z, with continuous selections x, and x; such that
Vzi € zy, I, € X5, z1 = fi(x)under-approx of

Vz, € z5, A € X1, z, = f(x)under-approx of

By Brouwer fixpoint thm: | z; x z, C range(f,x; X X3) ‘(box/ parallelepiped by preconditioning)




Robustly reachable sets
states reachable whatever the disturbances on components w € x4

range 4o (f,X4,Xg) = {z|Yw € x4,3u € x¢, z = f(w,u)} C range(f, x)



Robustly reachable sets

states reachable whatever the disturbances on components w € x,

range 4o (f,X4,Xg) = {z|Yw € x4,3u € x¢, z = f(w,u)} C range(f, x)
A particular case of robust reachability for dynamical systems with disturbances/inputs

(s.) x(t) = f(x(t), u(t)) (s,) XK = f(xk, uk)

flow of (t; xo, U)
x(0) € xo,u(t) € UC RP x® e x® u(k) e UCRP

Sets reachable robustly to disturbances on components uy:

Rgg(t;xo,U) ={x € D|Vus € Uy, Jug € Ug,Ixo € X0, X = <pf(t;x0, Up, Ug)}
» uy, can be seen as disturbance, ug as control

> (classical) maximal reachability for Uy = (), minimal reachability for Ug = ()



Robust Mean Value theorem

Similar to the generalized interval mean-value theorem, but with adversarial terms
> f:R™ — R be continuously differentiable, x = x 4 x x¢ initial box

> {|Vuf(w,u)] ,w e xy, ucxe} CVyand {|[Viuf(w,x2)| , wexy} SV,

Then:
range 4 (f, X4, Xe) C [[°—(Vy, r(xe)) , PO+ (Vu, r(xe)) ]
[f707<zu.,l’(Xg)> ’ﬂ+<zu3r(xf)> ] c rangeAg(faXAaXE)
Intuition:

> Controlu € x¢ acts positively on the (exact) range width : widens the over (resp. under)
approximation by (V,, r(xg))[—1,1] (resp. (V,,, r(x))[~1,1])

> : shrinks down the over (resp. under) approximation
by (resp. by )



Examplein 2-D

f(x) = (5x2 + X2 — 2%, — 4, X + 5x3 — 2x1x, — 4)T forx = [0.9, 1.1]?

. B [6.8,9.2] [-0.4,0.4] [6.8,9.2] [0,0.4]
Using f(1,1) = 0, Vf(x) € ([—0.4,0.4] [6.8,9.2] )thus Vi) | < [0,0.4] [6.8,9.2])



Examplein 2-D

f(x) = (5x2 + X2 — 2%, — 4, X + 5x3 — 2x1x, — 4)T forx = [0.9, 1.1]?

. B [6.8,9.2] [-0.4,0.4] [6.8,9.2] [0,0.4]
Using f(1,1) = 0, Vf(x) € ([—0.4,0.4] [6.8,9.2] )thus Vi) | < [0,0.4] [6.8,9.2])

1-D mean-value approximations

range(f,x) C [—0.96,0.96]? e.g. range(f;,x) C
0+(9.2x0.140.4 x0.1)[-1,1]
|[-0.68,0.68] C range(f;, x) |

as(0+0.68 x 0.1+ 0 x 0.1)[-1,1] C
range(fy, x)

|[-0.68,0.68] C range(,, x) | similarly




Examplein 2-D

f(x) = (5x2 + X2 — 2%, — 4, X + 5x3 — 2x1x, — 4)T forx = [0.9, 1.1]?

: B [6.8,9.2] [-0.4,0.4] [6.8,9.2] o,
Using f(1.1) = 0, Vi{x) € ([—0.4,0.4] [6.8,9.2] )thus Vi) I ( [0,0.4] [6.8,9.2])

2-D under-approximation by robust range

1-D mean-value approximations > We obtain| [—0.64,0.64]* C range(f, x) | by
range(f, x) C [-0.96,0.96]° Vzi € zy, , Xy € X9,20 = fi(x)
‘ [—0.68,0.68] C range(f],x)‘ Vzy € 23,Vx1 € X1,3x2 € X3, 2, = F(X)
» e.g. forz (similar for z):
|[-0.68,0.68] C range(, x) | £(1,1) +
[~6.8 x 0.1 ,6.8 % 0.1 ] =

[—0.64,0.64] C range,.(fi, X, 2)



Approximating the range of the sigmoid function
range(f,[-4,4])?

1
4L

/‘

f(z) = sigmoid(z) = ; mL(_E




Approximating the range of the sigmoid function

» Not so accurate/satisfying...

o] » First natural idea: input domain partition? Costly and
/ convex union of the under-approximating boxes is in
N | R general not an under-approximation of range(f, x)




Refinement by local quadrature

;‘\la‘,
Mean-value extension is an interval abstraction of
T LT fx) = o) + [ F(x)dx
8 = Use a partition x = x; U x5, to refine:
y, O+ (V' dx")[1,1] + (V2 dx®)[~1,1] C range(f, x' Ux?)
PZ range(f, X' Ux2) C O+ (V' dx")[-1,1] + (V°, dx®)[~1,1]
L )l—/—’ C | | g )] fl— 9 M M )
-6 -4 - 2 4 6




Refinement by local quadrature

Generalizes to more partitions and n dimensions.

1 %/_—

0.5
- 0 b T
Xz <<<<<<<< AXO <<<<<<<<<

—"-‘" / 444444444444
l /% | J X;k P .0 ; k
. XX Xq




Higher-order AE extensions

Theorem

Let g be an elementary' approximation function for f, s.t.
Yw € x4, Yu € xg, 3¢ € e, f(w,u) = g(w,u,f)

Then any under-approx Iy (resp. over-approx Og) of the range of g robust to x 4 and { is an
under-approx (resp. over-approx) of the range of f robust to x 4, i.e.

Ty C range 4¢(f,x4,Xg) € Oy

Typically, g(w, u, &) Taylor expansion of f (With x = (w,u) and £ from Lagrange remainder):
(x — x0)rH

9(x,§) = f(x° +ZX v D’ )+ D7) (n+1)!



Higher-order AE extensions

Theorem
> Let g be an elementary function g(w,u,§) = + B(w,u, &)

> under-approx of the range of «: robust to w, O 3 over-approx of the range of /3

Then the range of g robust with tow € x4 and & € x is under-approximated by
Ig = [, + Op, 7. + Op] C range 4¢(f, X 4, X )u

Typically, g(w, u, &) Taylor expansion of f:

(X o XO)n+1
(n+1)!

B(x,€)

9(x, &) = +D"f(g)

> Easily applicable for n = 1 (linear expression can be exactly evaluated)



Application to the reachability of
discrete-time systems



Application to reachability of discrete-time systems

Algorithm 1: at each step

Iteratively compute function image, with as input, the previously computed approximations
(under and over-approximations /¥ and O of the reachable set z¥):

0 — 20 00— 20
1 = Z(f, Ik, 1), O = O(f, O, )
» n-dimensional range under-approximation can be source of loss of precision

Algorithm 2: of range and Jacobian of iterated loop body f
for k from 0 to K — 1do

= T(FH 20 ), OF+ .= O(F*1, 20, )
end for

> generally more costly and more precise than Algo 1 (differentiation of the iterated function)



Test model

Model
X = Xk 4+ (0.5(x)% — 0.5(x6)2)A
X = Xk 4 2k A

with x? € [0.05,0.1],xY € [0.99,1.00]
and A = 0.01.

|
’1016

o 11008 )
o ,
00, f1.000
xP00Y 0.992

\

0,04

\ 0.984
0.08 5

0 5 10 steps 13 2

Under- (yellow) and over-approximated (green)
reachable sets over time up to 25 steps with
Algorithm 1, skewed boxes (0.02s computation
time)



Honeybees Site Choice Model [Dreossi et al. (2016)]

Algorithm 1
o Only 1.7s analysis time, but imprecise

XLH X = (Boaxs + Bxixg) A o (800 steps here, later diverges))

X5 = X5+ (B — x5 + 6B,

X = X5+ (Bins — 16+ 0axsxe

Xg =+ (0 — 58X — afs;

XETT = XE 4 (px& — 5 BoxixE — apixk.

X% = 500,x% € [390,400],x% € [90," X;Bzoo\\

x§ =x2=0and B = 5, =0.001,y 336000

6=0.5,a=0.7and A =0.01. 240

100 00 300

#0500 6o 10 a0




Honeybees Site Choice Model [Dreossi et al. (2016)]

Algorithm 2 (57s analysis time, 1500 steps)

300-

400-

|
T
| 0-
T

|

a0 -

b‘”” 0-

0 Bgep

15
I 0 v
50 0

0 m  & @0 w0 WD DO M0
step

Projected approximations (filled region is

Jointirange (x1,x2) (k) under-approx, plain black line is over-approx)

(slichtlv faster and tichter than Dreossi 2016 for over-anprox while also providine under-aporox)
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