RINO: Robust INner and Outer Approximated Reachability of Neural Networks Controlled Systems

Eric Goubault and Sylvie Putot

Overview

1. Introduction: safe learning in autonomous systems
2. Taylor expansion based approach for outer-approximation
3. AE extensions for (robust) inner and outer approximations
4. RINO: tool and Evaluation

Introduction: safe learning in autonomous systems

Safe learning in autonomous systems: perception

Perception: objects (obstacles, traffic sign, etc.) detection should be robust to change in lighting, physical attacks, adversarial noise

Robustness issues are amenable to (post-training) reachability-based verification

Safe learning in autonomous systems: planning and control

Planning and control:

- robots need to operate in unknown, uncertain and dynamic environments
- from offline to online planning and control, in learned environments

Reach-avoid or similar properties well suited to reachability verification

The closed-loop: a time-triggered hybrid system

Given

- plant dynamic f,
- state x, control u, disturbance $w \in W$
- NN controller h
- control period Δt_{u}

Time-triggered (u computed every $\Delta_{u} t$) dynamical system with non-linear feedback:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t), w(t)) \\
x\left(t_{0}\right) & =x_{0} \in X_{0} \\
u(t) & =u_{k}=h\left(y\left(x\left(\tau_{k}\right)\right)\right), \text { for } t \in\left[\tau_{k}, \tau_{k+1}\right), \text { with } \tau_{k}=t_{0}+k \Delta t_{u}, \forall k \geq 0
\end{aligned}
$$

Reachability analysis for safety and robustness verification

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions

Reachability analysis for safety and robustness verification

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- Also for noisy initial conditions x_{0} (robustness)

Reachability analysis for safety and robustness verification

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- Also for noisy initial conditions x_{0} (robustness)
- Proven by over-approximated reachability

Reachability analysis for safety and robustness verification

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- And external disturbances $w(t)$

Reachability analysis for safety and robustness verification

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- And external disturbances $w(t)$
- (Maximal) over-approximation unconclusive

Reachability analysis for safety and robustness verification

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- And external disturbances $w(t)$
- Under-approximation: $\exists x_{0}, \exists w(t)$ such that the trajectory is unsafe

Reachability analysis for safety and robustness verification

- Classical reach-avoid problem: reaching target region while avoiding unsafe regions
- And external disturbances $w(t)$
- Under-approximation: $\exists x_{0}, \exists w(t)$ such that the trajectory is unsafe
- Under-approximation: $\forall x$ in target, $\exists x_{0}, \exists w(t)$ s.t. x is reached (target covered) + some final states proven to be outside the target

Reachability problems with disturbances w

Compute inner and outer-approximating sets $I(t)$ and $O(t)$ such that:

- Maximal reachability

$$
I_{\mathcal{E}}(t) \subseteq R_{\mathcal{E}}^{f, h}\left(t ; \mathbb{X}_{0}, \mathbb{W}\right)=\left\{x \mid \exists w \in \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, x=\varphi^{f, h}\left(t ; x_{0}, w\right)\right\} \subseteq O_{\mathcal{E}}(t)
$$

- Minimal or robust reachability

$$
I_{\mathcal{A E}}(t) \subseteq R_{\mathcal{A} \mathcal{E}}^{f, h}\left(t ; \mathbb{X}_{0}, \mathbb{W}\right)=\left\{x \mid \forall w \in \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, x=\varphi^{f, h}\left(t ; x_{0}, w\right)\right\} \subseteq O_{\mathcal{A E}}(t)
$$

We have:

$$
R_{\mathcal{A E}}^{f, h}\left(t ; \mathbb{X}_{0}, \mathbb{W}\right) \subseteq R_{\mathcal{E}}^{f, h}\left(t ; \mathbb{X}_{0}, \mathbb{W}\right)
$$

Taylor expansion based approach for outer-approximation

Taylor expansions for ODEs reachability (Berz \& Makino) I

For $f \in C^{k}$, over-approximate the solution of $\dot{x}(t)=f(x(t)), x\left(t_{0}\right) \in\left[x_{0}\right]$ on $\left[t_{0}, T\right]:$

- Time grid $t_{0}<t_{1}<\ldots<t_{N}=T$
- Taylor-Lagrange expansion in t of the solution on each time slice $\left[t_{j}, t_{j+1}\right]$

$$
[\boldsymbol{x}]\left(t, t_{j},\left[x_{j}\right]\right)=\left[x_{j}\right]+\sum_{i=1}^{k-1} \frac{\left(t-t_{j}\right)^{i}}{i!} f^{[i]}\left(\left[x_{j}\right]\right)+\frac{\left(t-t_{j}\right)^{k}}{k!} f^{[k]}\left(\left[r_{j+1}\right]\right)
$$

- Evaluation of expansion at time t_{j+1} gives initial solution on next time slice

Set-valued computations: evaluation with intervals, affine forms(or zonotopes), etc.

Taylor expansions for ODEs reachability (Berz \& Makino) II

- The $f f^{[i]}$ are defined inductively; can be computed by automatic differentiation:

$$
\begin{aligned}
f_{k}^{[1]} & =f_{k} \\
f_{k}^{[i+1]} & =\sum_{j=1}^{n} \frac{\partial f_{k}^{[i]}}{\partial x_{j}} f_{j}
\end{aligned}
$$

- Bounding the remainder supposes to first compute an enclosure $\left[r_{j+1}\right]$ of solution $x\left(t, z_{0}\right)$ on $\left[t_{j}, t_{j+1}\right]$, classical by Picard iteration: find $h_{j+1},\left[r_{j+1}\right]$ such that

$$
\left[x_{j}\right]+\left[0, h_{j+1}\right] f\left(\left[r_{j+1}\right]\right) \subseteq\left[r_{j+1}\right]
$$

- Initialization of next iterate $\left[x_{j+1}\right]=[\boldsymbol{x}]\left(t_{j+1}, t_{j},\left[x_{j}\right]\right)$

Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:
Inputs Layer of S Neurons

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

\tanh

ReLU

$\max (0, x)$

Leaky ReLU

 $\max (0.1 x, x)$

Maxout

$$
\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)
$$

$$
\begin{aligned}
& \text { ELU } \\
& \begin{cases}x & x \geq 0 \\
\alpha\left(e^{x}-1\right) & x<0\end{cases}
\end{aligned}
$$

Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:

Leaky ReLU
$\max (0.1 x, x)$

Maxout

$$
\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)
$$

$$
\begin{aligned}
& \text { ELU } \\
& \begin{cases}x & x \geq 0 \\
\alpha\left(e^{x}-1\right) & x<0\end{cases}
\end{aligned}
$$

We focus on differentiable activation functions (needed for inner-approximations)

Taylor expansions for neural network controlled system

Straightforward extension for outer-approximations in the case of a time-triggered feedforward neural network controller:

$$
\begin{aligned}
\dot{x}(t) & =f\left(x(t), h\left(x\left(\tau_{k}\right)\right)\right) \text { for } t \in\left[\tau_{k}, \tau_{k+1}\right), \text { with } \tau_{k}=t_{0}+k \Delta t_{u}, \forall k \geq 0 \\
x\left(t_{0}\right) & =x_{0} \in X_{0}
\end{aligned}
$$

- evaluation of $h\left(x\left(\tau_{k}\right)\right)$ for set-valued $x\left(\tau_{k}\right)$ for instance with intervals or zonotopes as for any nonlinear function
- requires $\left\{\tau_{k}, k \geq 0, \tau_{k}<T\right\} \subseteq\left\{t_{1}, \ldots, t_{N}\right\}$: the stepwise constant control changes values at a subset of the points of the time grid of the Taylor expansions.

AE extensions for (robust) inner and outer approximations

AE extensions for function image computation

Given

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
- a set $\boldsymbol{x} \operatorname{in} \mathcal{P}\left(\mathbb{R}^{m}\right)$
we want:
$\operatorname{range}(f, \boldsymbol{x})=\{f(x), x \in \boldsymbol{x}\}$.

AE extensions for function image computation

Given

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
- a set \boldsymbol{x} in $\mathcal{P}\left(\mathbb{R}^{m}\right)$
we want: $\operatorname{range}(f, \boldsymbol{x})=\{f(x), x \in \boldsymbol{x}\}$.

- Over-approximating extension of f (or inclusion function):

$$
\boldsymbol{f}_{o}: \mathcal{P}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right) \text { such that } \forall \boldsymbol{x} \text { in } \mathcal{P}\left(\mathbb{R}^{m}\right) \text {, range }(f, \boldsymbol{x}) \subseteq \boldsymbol{f}_{o}(\boldsymbol{x})
$$

AE extensions for function image computation

Given

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
- a set $\boldsymbol{x} \operatorname{in} \mathcal{P}\left(\mathbb{R}^{m}\right)$
we want:

$$
\operatorname{range}(f, \boldsymbol{x})=\{f(x), x \in \boldsymbol{x}\} .
$$

- Over-approximating extension of f (or inclusion function):

$$
\boldsymbol{f}_{o}: \mathcal{P}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right) \text { such that } \forall \boldsymbol{x} \text { in } \mathcal{P}\left(\mathbb{R}^{m}\right) \text {, range }(f, \boldsymbol{x}) \subseteq \boldsymbol{f}_{o}(\boldsymbol{x})
$$

- Under-approximating extension of f :

$$
\boldsymbol{f}_{u}: \mathcal{P}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right) \text { such that } \forall \boldsymbol{x} \text { in } \mathcal{P}\left(\mathbb{R}^{m}\right), \boldsymbol{f}_{u}(\boldsymbol{x}) \subseteq \operatorname{range}(f, \boldsymbol{x})
$$

AE extensions for function image computation

- Over-approximating extension of f (or inclusion function): $\boldsymbol{f}_{o}: \mathcal{P}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ such that $\forall \boldsymbol{x}$ in $\mathcal{P}\left(\mathbb{R}^{m}\right)$, range $(f, \boldsymbol{x}) \subseteq \boldsymbol{f}_{o}(\boldsymbol{x})$
- Under-approximating extension of f :

$$
\boldsymbol{f}_{u}: \mathcal{P}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right) \text { such that } \forall \boldsymbol{x} \text { in } \mathcal{P}\left(\mathbb{R}^{m}\right), \boldsymbol{f}_{u}(\boldsymbol{x}) \subseteq \operatorname{range}(f, \boldsymbol{x})
$$

Can be interpreted as $A E$ propositions = quantified propositions where universal quantifiers (A) precede existential quantifiers (E)

$$
\begin{aligned}
& \operatorname{range}(f, \boldsymbol{x}) \subseteq \boldsymbol{z}=\boldsymbol{f}_{o}(\boldsymbol{x}) \Leftrightarrow \forall x \in \boldsymbol{x}, \exists z \in \mathbf{z}, f(x)=z \\
& \boldsymbol{f}_{u}(\boldsymbol{x})=\boldsymbol{z} \subseteq \operatorname{range}(f, \boldsymbol{x}) \Leftrightarrow \forall z \in \boldsymbol{z}, \exists x \in \boldsymbol{x}, f(x)=z
\end{aligned}
$$

Mean-Value AE extensions (scalar-valued function)

Theorem (Generalized Interval Mean-Value Theorem,Goldsztejn 2012)

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a continuously differentiable function, \boldsymbol{x} an initial box of \mathbb{R}^{m},
- $x_{0}=\operatorname{mid}(\boldsymbol{x})$ the center of the boxx, $\boldsymbol{f}_{0}=\left[f_{0}, \overline{f_{0}}\right]$ such that $f\left(x_{0}\right) \in \boldsymbol{f}_{0}$
- $\Delta_{i}=\left[\underline{\Delta_{i}}, \overline{\Delta_{i}}\right]$ such that $\left\{\left|f_{i}^{\prime}\left(x_{0,1}, \ldots, x_{0, i-1}, x_{i}, \ldots, x_{m}\right)\right|, x \in \boldsymbol{x}\right\} \subseteq \Delta_{i}$

$$
\begin{array}{r}
\operatorname{range}(f, \boldsymbol{x}) \subseteq\left[\underline{f_{0}}, \overline{f_{0}}\right]+\sum_{i=1}^{m} \overline{\Delta_{i}} \operatorname{radius}\left(\boldsymbol{x}_{i}\right)[-1,1] \\
{\left[\overline{f_{0}}-\sum_{i=1}^{m} \underline{\Delta_{i}} \operatorname{radius}\left(\boldsymbol{x}_{i}\right), \underline{f_{0}}+\sum_{i=1}^{m} \underline{\Delta_{i}} \operatorname{radius}\left(\boldsymbol{x}_{i}\right)\right] \subseteq \operatorname{range}(f, \boldsymbol{x})}
\end{array}
$$

- Interval abstractions over \boldsymbol{x} of $f(x)=f\left(x_{0}\right)+\int_{x_{0}}^{x} f^{\prime}(x) d x, x \in \boldsymbol{x}$
- For over-approximation, first proposed by Moore (as centered interval form)

Example

- $f(x)=x^{2}-x$ over $\boldsymbol{x}=[2,3]$
- $f(2.5)=3.75$
- $\left|\boldsymbol{f}^{\prime}([2,3])\right| \subseteq[3,5]=[\Delta, \bar{\Delta}]$.

Then,

$$
3.75+0.5 * 3 *[-1,1] \subseteq \operatorname{range}(f,[2,3]) \subseteq 3.75+0.5 * 5 *[-1,1]
$$

from which we deduce $[2.25,5.25] \subseteq \operatorname{range}(f,[2,3]) \subseteq[1.25,6.25]$.

AE extensions when f is the flow $\varphi^{f, h}\left(t ; x_{0}, w\right)$ of the system

- Maximal reachability

$$
\begin{gathered}
I_{\mathcal{E}}(t) \subseteq R_{\mathcal{E}}^{f, h}\left(t ; \mathbb{X}_{0}, \mathbb{W}\right)=\left\{x \mid \exists w \in \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, x=\varphi^{f, h}\left(t ; x_{0}, w\right)\right\} \subseteq O_{\mathcal{E}}(t) \\
\forall x \in I_{\mathcal{E}}(t), \exists w \in \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, x=\varphi^{f, h}\left(t ; x_{0}, w\right) \\
\forall w \in \mathbb{W}, \forall x_{0} \in \mathbb{X}_{0}, \exists x \in o_{\mathcal{E}}(t), x=\varphi^{f, h}\left(t ; x_{0}, w\right)
\end{gathered}
$$

- Minimal or robust reachability

$$
\begin{gathered}
I_{\mathcal{A E}}(t) \subseteq R_{\mathcal{A E}}^{f, h}\left(t ; \mathbb{X}_{0}, \mathbb{W}\right)=\left\{x \mid \forall w \in \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, x=\varphi^{f, h}\left(t ; x_{0}, w\right)\right\} \subseteq O_{\mathcal{A} \mathcal{E}}(t) \\
\forall x \in I_{\mathcal{A} \mathcal{E}}(t), \exists w \in \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, x=\varphi^{f, h}\left(t ; x_{0}, w\right) \\
\forall x_{0} \in \mathbb{X}_{0}, \exists w \in \mathbb{W}, \exists x \in O_{\mathcal{A E}}(t), x=\varphi^{f, h}\left(t ; x_{0}, w\right)
\end{gathered}
$$

AE extensions when f is the flow $\varphi^{f, h}\left(t ; x_{0}, w\right)$ of the system

In order to use the generalized mean-value theorem on

$$
\begin{aligned}
\dot{x}(t) & =f\left(x(t), h\left(x\left(\tau_{k}\right)\right)\right) \text { for } t \in\left[\tau_{k}, \tau_{k+1}\right), \text { with } \tau_{k}=t_{0}+k \Delta t_{u}, \forall k \geq 0 \\
x\left(t_{0}\right) & =x_{0} \in x_{0}
\end{aligned}
$$

- Need bounds on the solutions of the system (trajectories)
- Need bounds on the solution of the variational equations (Jacobian of trajectories wrt initial states and uncertainties)
- Taylor expansions in time for vector field $f\left(x(t), h\left(x\left(\tau_{k}\right)\right)\right)$ and its Jacobian: implies differentiating h, using $\tanh ^{\prime}(x)=1.0-\tanh (x)^{2}$ and $\operatorname{sig}^{\prime}(x)=\operatorname{sig}(x)(1-\operatorname{sig}(x))$.

RINO: tool and Evaluation

RINO (Robust INner and Outer reachability)

Available from
https://github.com/cosynus-lix/RINO/

Computes Inner and Outer Approximations of Robust and Maximal Reachable sets:

- Continuous-time (possibly delayed) or discrete-time uncertain dynamical systems
- Possibly controlled by a neural network (with differentiable activation functions)
- Guaranteed computations using Taylor Expansions in time and Zonotopes in space

Relies on

- FILIB++ for interval arithmetic,
- aaflib for affine arithmetic,
- FADBAD++ for automatic differentiation.

Examples and Comparison to existing work

- Verisig and Verisig 2.0 [4, 3]: sigmoid/tanh is the solution to a differential equation: transform the neural network into an equivalent hybrid system (solved with Taylor Model based reachability Flowstar)
- ReachNN and ReachNNstar: [2, 1] : Bernstein polynomials + Taylor models (Flowstar)
J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu.

Reachnn*: A tool for reachability analysis of neural-network controlled systems.
In ATVA 2020,. Springer, 2020.
C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu.

Reachnn: Reachability analysis of neural-network controlled systems.
ACM Trans. Embed. Comput. Syst., 18, 2019.

R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee.

Verisig 2.0: Verification of neural network controllers using taylor model preconditioning.
In Computer Aided Verification, pages 249-262. Springer International Publishing, 2021.
R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee.

Verisig: verifying safety properties of hybrid systems with neural network controllers.
2019.

Benchmark examples

Name	Dynamics	Initial set	Horizon	Control step
Mountain Car sigmoid 2×200	$\begin{aligned} & \dot{x}_{1}=x_{2} \\ & \dot{x}_{2}=0.0015 u-0.0025 \cos \left(3 x_{1}\right) \end{aligned}$	$\begin{gathered} {[-0.5,-0.48]} \\ {[0,0.001]} \end{gathered}$	$T=75$	1
$\begin{gathered} \text { discrete MC } \\ \text { (stepsize 1) } \\ \text { sigmoid } 2 \times 200 \end{gathered}$	$\begin{aligned} & x_{1}^{n+1}=x_{1}^{n}+x_{2}^{n} \\ & x_{2}^{n+1}=x_{2}^{n}+0.0015 u^{n} \\ & -0.0025 \cos \left(3 x_{1}^{n}\right) \end{aligned}$	$\begin{gathered} {[-0.5,-0.48]} \\ {[0,0.001]} \end{gathered}$	$T=75$	1
TORA $\tanh 3 \times 20$	$\begin{aligned} & \dot{x}_{1}=x_{2} \\ & \dot{x}_{2}=-x_{1}+0.1 * \sin \left(x_{3}\right) \\ & \dot{x}_{3}=x_{4} \\ & \dot{x}_{4}=u \end{aligned}$	$\begin{gathered} {[-0.77,-0.75]} \\ {[-0.45,-0.43]} \\ {[0.51,0.54]} \\ {[-0.3,-0.28]} \end{gathered}$	$T=5$	0.1
$\begin{gathered} \text { ACC } \\ ? \end{gathered}$	$\begin{aligned} & \dot{x}_{1}=x_{2}, \quad \dot{x}_{4}=x_{5} \\ & \dot{x}_{2}=x_{3}, \quad \dot{x}_{5}=x_{6} \\ & \dot{x}_{3}=-4-0.0001 x_{2}^{2}-2 x_{3} \\ & \dot{x}_{6}=2 u-0.0001 x_{5}^{2}-2 x_{6} \end{aligned}$	$\begin{gathered} x_{1}=[90,91] \\ x_{2}=[32,32.05] \\ x_{4}=[10,11] \\ x_{5}=[30,30.05] \end{gathered}$	$T=5$	0.1
$\begin{gathered} B 1 \\ \text { sigmoid } 3 \times 20 \end{gathered}$	$\begin{aligned} & \dot{x}_{1}=x_{2} \\ & \dot{x}_{2}=u x_{2}^{2}-x_{1} \end{aligned}$	$\begin{aligned} & {[0.8,0.9]} \\ & {[0.5,0.6]} \end{aligned}$	$T=7$	0.2
$\begin{gathered} B 2 \\ \text { sigmoid } 3 \times 20 \end{gathered}$	$\begin{aligned} & \dot{x}_{1}=x_{2}-x_{1}^{3} \\ & \dot{x}_{2}=u \end{aligned}$	$\begin{aligned} & {[0.7,0.9]} \\ & {[0.7,0.9]} \end{aligned}$	$T=1.8$	0.2

Comparison results (faster for comparable precision)

	\% width Verisig2	Ratio time	\% width ReachNN*	Ratio time
Example	over RINO	Verisig2/RINO	over RINO	ReachNN*/RINO
TORA (tanh)	117,6 \%	38,6	Mem full	Mem full
	98,4 \%			
	106,7 \%			
	128,0 \%			
TORA (sig)	115,7 \%	43,4	Mem full	Mem full
	68,0 \%			
	110,1 \%			
	133,3 \%			
ACC (tanh)	101,9 \%	500,8	Time out	Time out
	105,6 \%			
	103,3 \%			
	110,1 \%			
	105,1 \%			
	65,8\%			
B1 (tanh)	84,9 \%	88,8	96,7\%	85,1
	287,8 \%		245,0 \%	
B1 (sig)	112,1 \%	105,4	227,8 \%	86,8
	140,6 \%		441,9 \%	
B2 (sig)	263,2 \%	77,6	408,8 \%	121,9
	60.4 \%		513.7 \%	

B1: sampling (purple dots) and inner/outer-approximations

(a) x_{1} as function of time

(b) Joint range $\left(x_{1}, x_{2}\right)$

- Over-approximation is very tight
- Samples show $(x 1, x 2)$ becomes almost a 1-dim curve: inner-approx difficult!
- N-dim inner-approximation more difficult and imprecise than 1-dim

Safety property $x_{1}<1$ (red line):

- over-approx raises a potential alarm
- under-approx proves falsification

B1: comparison to Verisig 2.0 and ReachNNstar

(a) Verisig 2.0

(b) ReachNNStar

(c) RINO

Figure 2: B1 sigmoid

Mountain Car

Loss of accuracy for under-approximation in the continuous-time case to be investigated...

Backup Slides

From range projection to joint inner range

Product of 1-dim approximations as n -dim approximation?

- Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
- Generally false for under-approximations! Take $\left(z_{1}, z_{2}\right)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$ and

$$
\begin{aligned}
& \forall z_{1} \in \mathbf{z}_{1}, \exists x_{1} \in \boldsymbol{x}_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{1}=f_{1}(x) \\
& \forall z_{2} \in \mathbf{z}_{2}, \exists x_{1} \in \boldsymbol{x}_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{2}=f_{2}(x)
\end{aligned}
$$

Does not imply $\forall z_{1} \in \mathbf{z}_{1}$ and $\forall z_{2} \in \mathbf{z}_{2}, \exists x_{1} \in \boldsymbol{x}_{1}$ and $\exists x_{2} \in \boldsymbol{x}_{2}$ such that $z=f(x)$.

From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?

- Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
- Generally false for under-approximations! Take $\left(z_{1}, z_{2}\right)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$ and

$$
\begin{aligned}
& \forall z_{1} \in \mathbf{z}_{1}, \exists x_{1} \in \boldsymbol{x}_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{1}=f_{1}(x) \\
& \forall z_{2} \in \boldsymbol{z}_{2}, \exists x_{1} \in \boldsymbol{x}_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{2}=f_{2}(x)
\end{aligned}
$$

Does not imply $\forall z_{1} \in \mathbf{z}_{1}$ and $\forall z_{2} \in \mathbf{z}_{2}, \exists x_{1} \in \boldsymbol{x}_{1}$ and $\exists x_{2} \in \boldsymbol{x}_{2}$ such that $z=f(x)$.

A solution (can be generalized to n-dim)

Suppose we can compute \boldsymbol{z}_{1} and \boldsymbol{z}_{2} with continuous selections x_{2} and x_{1} such that

$$
\begin{aligned}
& \forall z_{1} \in \mathbf{z}_{1}, \forall x_{1} \in x_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{1}=f_{1}(x) \\
& \forall z_{2} \in \mathbf{z}_{2}, \forall x_{2} \in x_{2}, \exists x_{1} \in \boldsymbol{x}_{1}, z_{2}=f_{2}(x)
\end{aligned}
$$

From range projection to joint inner range

Product of 1-dim approximations as n -dim approximation?

- Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
- Generally false for under-approximations! Take $\left(z_{1}, z_{2}\right)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$ and

$$
\begin{aligned}
& \forall z_{1} \in \mathbf{z}_{1}, \exists x_{1} \in \boldsymbol{x}_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{1}=f_{1}(x) \\
& \forall z_{2} \in \boldsymbol{z}_{2}, \exists x_{1} \in \boldsymbol{x}_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{2}=f_{2}(x)
\end{aligned}
$$

Does not imply $\forall z_{1} \in \mathbf{z}_{1}$ and $\forall z_{2} \in \mathbf{z}_{2}, \exists x_{1} \in \boldsymbol{x}_{1}$ and $\exists x_{2} \in \boldsymbol{x}_{2}$ such that $z=f(x)$.

A solution (can be generalized to n-dim)

Suppose we can compute \boldsymbol{z}_{1} and \boldsymbol{z}_{2} with continuous selections x_{2} and x_{1} such that $\forall z_{1} \in \mathbf{z}_{1}, \forall x_{1} \in x_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{1}=f_{1}(x)$ under-approx of robust (to x_{1}) range of f_{1} $\forall z_{2} \in \boldsymbol{z}_{2}, \forall x_{2} \in x_{2}, \exists x_{1} \in \boldsymbol{x}_{1}, z_{2}=f_{2}(x)$ under-approx of robust (to x_{2}) range of f_{2}

By Brouwer fixpoint thm: $\mathbf{z}_{1} \times \mathbf{z}_{2} \subseteq \operatorname{range}\left(f, \boldsymbol{x}_{1} \times \boldsymbol{x}_{2}\right)$ (box / parallelepiped by preconditioning)

Robustly reachable sets

Robust range: states reachable whatever the disturbances on components $w \in \boldsymbol{x}_{A}$

$$
\operatorname{range}_{\mathcal{A} \mathcal{E}}\left(f, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}\right)=\left\{z \mid \forall w \in \boldsymbol{x}_{\mathcal{A}}, \exists u \in \boldsymbol{x}_{\mathcal{E}}, z=f(w, u)\right\} \subseteq \operatorname{range}(f, \boldsymbol{x})
$$

Robustly reachable sets

Robust range: states reachable whatever the disturbances on components $w \in \boldsymbol{x}_{A}$

$$
\operatorname{range}_{\mathcal{A E}}\left(f, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}\right)=\left\{z \mid \forall w \in \boldsymbol{x}_{\mathcal{A}}, \exists u \in \boldsymbol{x}_{\mathcal{E}}, z=f(w, u)\right\} \subseteq \operatorname{range}(f, \boldsymbol{x})
$$

A particular case of robust reachability for dynamical systems with disturbances/inputs
$\left(S_{c}\right)\left\{\begin{array}{l}\dot{x}(t)=f(x(t), u(t)) \\ x(0) \in \boldsymbol{x}_{0}, u(t) \in \mathbb{U} \subseteq \mathbb{R}^{p}\end{array} \quad\left(S_{d}\right)\left\{\begin{array}{l}x^{k+1}=f\left(x^{k}, u^{k}\right) \\ x^{0} \in \boldsymbol{x}^{0}, u(k) \in \mathbb{U} \subseteq \mathbb{R}^{p}\end{array} \quad\right.\right.$ flow $\varphi^{f}\left(t ; x_{0}, u\right)$
Sets reachable robustly to disturbances on components u_{A} :

$$
R_{\mathcal{A E}}^{f}\left(t ; \boldsymbol{x}_{0}, \mathbb{U}\right)=\left\{x \in \mathcal{D} \mid \forall u_{A} \in \mathbb{U}_{\mathbb{A}}, \exists u_{E} \in \mathbb{U}_{\mathbb{E}}, \exists x_{0} \in \boldsymbol{x}_{0}, x=\varphi^{f}\left(t ; x_{0}, u_{A}, u_{E}\right)\right\}
$$

- u_{A} can be seen as disturbance, u_{E} as control
- (classical) maximal reachability for $\mathbb{U}_{\mathbb{A}}=\emptyset$, minimal reachability for $\mathbb{U}_{\mathbb{E}}=\emptyset$

Robust Mean Value theorem

Similar to the generalized interval mean-value theorem, but with adversarial terms

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be continuously differentiable, $\boldsymbol{x}=\boldsymbol{x}_{\mathcal{A}} \times \boldsymbol{x}_{\mathcal{E}}$ initial box
- $\left\{\left|\nabla_{u} f(w, u)\right|, w \in \boldsymbol{x}_{\mathcal{A}}, u \in \boldsymbol{x}_{\mathcal{E}}\right\} \subseteq \nabla_{u}$ and $\left\{\left|\nabla_{w} f\left(w, x_{\mathcal{E}}^{0}\right)\right|, w \in \boldsymbol{x}_{\mathcal{A}}\right\} \subseteq \nabla_{w}$

Then:

$$
\begin{aligned}
& \operatorname{range}_{\mathcal{A} \mathcal{E}}\left(f, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}\right) \subseteq\left[\underline{f}^{0}-\left\langle\bar{\nabla}_{u}, r\left(\boldsymbol{x}_{\mathcal{E}}\right)\right\rangle+\left\langle\nabla_{w}, r\left(\boldsymbol{x}_{\mathcal{A}}\right)\right\rangle, \overline{f^{0}}+\left\langle\bar{\nabla}_{u}, r\left(\boldsymbol{x}_{\mathcal{E}}\right)\right\rangle-\left\langle\nabla_{w}, r\left(\boldsymbol{x}_{\mathcal{A}}\right)\right\rangle\right] \\
& {\left[\bar{f}^{0}-\left\langle\underline{\nabla}_{u}, r\left(\boldsymbol{x}_{\mathcal{E}}\right)\right\rangle+\left\langle\bar{\nabla}_{w}, r\left(\boldsymbol{x}_{\mathcal{A}}\right)\right\rangle, \underline{f}^{0}+\left\langle\underline{\nabla}_{u}, r\left(\boldsymbol{x}_{\mathcal{E}}\right)\right\rangle-\left\langle\bar{\nabla}_{w}, r\left(\boldsymbol{x}_{\mathcal{A}}\right)\right\rangle\right] \subseteq \operatorname{range}_{\mathcal{A E}}\left(f, \boldsymbol{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}\right)}
\end{aligned}
$$

Intuition:

- Control $u \in \boldsymbol{x}_{\mathcal{E}}$ acts positively on the (exact) range width : widens the over (resp. under) approximation by $\left\langle\bar{\nabla}_{u}, r\left(\boldsymbol{x}_{\mathcal{E}}\right\rangle\right)[-1,1]\left(\right.$ resp. $\left.\left\langle\bar{\nabla}_{u}, r\left(\boldsymbol{x}_{\mathcal{E}}\right\rangle\right)[-1,1]\right)$
- Disturbance $w \in x_{\mathcal{A}}$ acts as an adversary: shrinks down the over (resp. under) approximation by $\left\langle\underline{\nabla}_{W}, r\left(x_{\mathcal{A}}\right\rangle\right)[-1,1]$ (resp. by $\left.\left\langle\bar{\nabla}_{W}, r\left(x_{\mathcal{A}}\right\rangle\right)[-1,1]\right)$

Example in 2-D

$$
f(x)=\left(5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}-4, x_{1}^{2}+5 x_{2}^{2}-2 x_{1} x_{2}-4\right)^{\top} \text { for } \boldsymbol{x}=[0.9,1.1]^{2}
$$

Using $f(1,1)=0, \nabla f(\boldsymbol{x}) \subseteq\left(\begin{array}{cc}{[6.8,9.2]} & {[-0.4,0.4]} \\ {[-0.4,0.4]} & {[6.8,9.2]}\end{array}\right)$ thus $|\nabla f(\boldsymbol{x})| \subseteq\left(\begin{array}{cc}{[6.8,9.2]} & {[0,0.4]} \\ {[0,0.4]} & {[6.8,9.2]}\end{array}\right)$

Example in 2-D

$$
f(x)=\left(5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}-4, x_{1}^{2}+5 x_{2}^{2}-2 x_{1} x_{2}-4\right)^{\top} \text { for } \boldsymbol{x}=[0.9,1.1]^{2}
$$

Using $f(1,1)=0, \nabla f(\boldsymbol{x}) \subseteq\left(\begin{array}{cc}{[6.8,9.2]} & {[-0.4,0.4]} \\ {[-0.4,0.4]} & {[6.8,9.2]}\end{array}\right)$ thus $|\nabla f(\boldsymbol{x})| \subseteq\left(\begin{array}{cc}{[6.8,9.2]} & {[0,0.4]} \\ {[0,0.4]} & {[6.8,9.2]}\end{array}\right)$

1-D mean-value approximations

$$
\begin{aligned}
& \text { range }(f, \boldsymbol{x}) \subseteq[-0.96,0.96]^{2} \text { e.g. } \operatorname{range}\left(f_{1}, \boldsymbol{x}\right) \subseteq \\
& 0+(9.2 \times 0.1+0.4 \times 0.1)[-1,1] \\
& {[-0.68,0.68] \subseteq \operatorname{range}\left(f_{1}, \boldsymbol{x}\right)} \\
& \text { as }(0+0.68 \times 0.1+0 \times 0.1)[-1,1] \subseteq \\
& \operatorname{range}\left(f_{1}, \boldsymbol{x}\right) \\
& {[-0.68,0.68] \subseteq \operatorname{range}\left(f_{2}, \boldsymbol{x}\right) \text { similarly }}
\end{aligned}
$$

Example in 2-D

$$
f(x)=\left(5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}-4, x_{1}^{2}+5 x_{2}^{2}-2 x_{1} x_{2}-4\right)^{\top} \text { for } \boldsymbol{x}=[0.9,1.1]^{2}
$$

Using $f(1,1)=0, \nabla f(\boldsymbol{x}) \subseteq\left(\begin{array}{cc}{[6.8,9.2]} & {[-0.4,0.4]} \\ {[-0.4,0.4]} & {[6.8,9.2]}\end{array}\right)$ thus $|\nabla f(\boldsymbol{x})| \subseteq\left(\begin{array}{cc}{[6.8,9.2]} & {[0,0.4]} \\ {[0,0.4]} & {[6.8,9.2]}\end{array}\right)$

2-D under-approximation by robust range

1-D mean-value approximations

$$
\begin{aligned}
& \operatorname{range}(f, \boldsymbol{x}) \subseteq[-0.96,0.96]^{2} \\
& {[-0.68,0.68] \subseteq \operatorname{range}\left(f_{1}, \boldsymbol{x}\right)}
\end{aligned}
$$

$$
[-0.68,0.68] \subseteq \operatorname{range}\left(f_{2}, \boldsymbol{x}\right)
$$

- We obtain $[-0.64,0.64]^{2} \subseteq \operatorname{range}(f, \boldsymbol{x})$ by

$$
\begin{aligned}
& \forall z_{1} \in \mathbf{z}_{1}, \forall x_{2} \in x_{2}, \exists x_{1} \in \boldsymbol{x}_{1}, z_{1}=f_{1}(\boldsymbol{x}) \\
& \forall z_{2} \in \mathbf{z}_{2}, \forall x_{1} \in \boldsymbol{x}_{1}, \exists x_{2} \in \boldsymbol{x}_{2}, z_{2}=f_{2}(\boldsymbol{x})
\end{aligned}
$$

- e.g. for z_{1} (similar for z_{2}):
$f_{1}(1,1)+$
$[-6.8 \times 0.1+0.4 \times 0.1,6.8 \times 0.1-0.4 \times 0.1]=$ $[-0.64,0.64] \subseteq \operatorname{range}_{A E}\left(f_{1}, \boldsymbol{x}, 2\right)$

Approximating the range of the sigmoid function range $(f,[-4,4])$?

Approximating the range of the sigmoid function

- Not so accurate/satisfying...
- First natural idea: input domain partition? Costly and convex union of the under-approximating boxes is in general not an under-approximation of range (f, \boldsymbol{x})

Refinement by local quadrature

Refinement by local quadrature

Generalizes to more partitions and n dimensions.

Higher-order AE extensions

Theorem

Let g be an elementary ${ }^{1}$ approximation function for f, s.t.

$$
\forall w \in \mathbf{x}_{\mathcal{A}}, \forall u \in \mathbf{x}_{\mathcal{E}}, \exists \xi \in \mathbf{e}, f(w, u)=g(w, u, \xi)
$$

Then any under-approx $\mathcal{I}_{g}\left(\right.$ resp. over-approx \mathcal{O}_{g}) of the range of g robust to $x_{\mathcal{A}}$ and ξ is an under-approx (resp. over-approx) of the range of f robust to $x_{\mathcal{A}}$, i.e.

$$
\mathcal{I}_{g} \subseteq \operatorname{range}_{\mathcal{A} \mathcal{E}}\left(f, \mathbf{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}\right) \subseteq \mathcal{O}_{g}
$$

Typically, $g(w, u, \xi)$ Taylor expansion of f (with $x=(w, u)$ and ξ from Lagrange remainder):

$$
g(x, \xi)=f\left(x^{0}\right)+\sum_{i=1}^{n} \frac{\left(x-x^{0}\right)^{i}}{i!} D^{i} f\left(x^{0}\right)+D^{n+1} f(\xi) \frac{\left(x-x^{0}\right)^{n+1}}{(n+1)!}
$$

Higher-order AE extensions

Theorem

- Let g be an elementary function $g(w, u, \xi)=\alpha(w, u)+\beta(w, u, \xi)$
- I_{α} under-approx of the range of α robust to w, \mathcal{O}_{β} over-approx of the range of β

Then the range of g robust with to $w \in \mathbf{x}_{\mathcal{A}}$ and $\xi \in \mathbf{x}$ is under-approximated by

$$
\mathcal{I}_{g}=\left[\mathcal{I}_{\alpha}+\overline{\mathcal{O}}_{\beta}, \overline{\mathcal{I}}_{\alpha}+\underline{\mathcal{O}}_{\beta}\right] \subseteq \operatorname{range}_{\mathcal{A} \mathcal{E}}\left(f, \mathbf{x}_{\mathcal{A}}, \boldsymbol{x}_{\mathcal{E}}\right) u
$$

Typically, $g(w, u, \xi)$ Taylor expansion of f :

$$
g(x, \xi)=\underbrace{f\left(x^{0}\right)+\sum_{i=1}^{n} \frac{\left(x-x^{0}\right)^{i}}{i!} D^{i} f\left(x^{0}\right)}_{\alpha(x)}+\underbrace{D^{n+1} f(\xi) \frac{\left(x-x^{0}\right)^{n+1}}{(n+1)!}}_{\beta(x, \xi)}
$$

- Easily applicable for $n=1$ (linear expression can be exactly evaluated)

Application to the reachability of discrete-time systems

Application to reachability of discrete-time systems

Algorithm 1: requires propagating n-dim under-approx. at each step

Iteratively compute function image, with as input, the previously computed approximations (under and over-approximations l^{k} and O^{k} of the reachable set \boldsymbol{z}^{k}):

$$
\left\{\begin{array}{l}
1^{0}=z^{0}, O^{0}=\boldsymbol{z}^{0} \\
I^{k+1}=\mathcal{I}\left(f, l^{k}, \pi\right), O^{k+1}=\mathcal{O}\left(f, O^{k}, \pi\right)
\end{array}\right.
$$

- n-dimensional range under-approximation can be source of loss of precision

Algorithm 2: propagates only over-approx. of range and Jacobian of iterated loop body f

$$
\text { for } k \text { from } 0 \text { to } K-1 \text { do }
$$

$$
I^{k+1}:=\mathcal{I}\left(f^{k+1}, z^{0}, \pi\right), o^{k+1}:=\mathcal{O}\left(f^{k+1}, z^{0}, \pi\right)
$$

end for

- generally more costly and more precise than Algo 1 (differentiation of the iterated function)

Test model

Model

$$
\begin{aligned}
& x_{1}^{k+1}=x_{1}^{k}+\left(0.5\left(x_{1}^{k}\right)^{2}-0.5\left(x_{2}^{k}\right)^{2}\right) \Delta \\
& x_{2}^{k+1}=x_{2}^{k}+2 x_{1}^{k} x_{2}^{k} \Delta
\end{aligned}
$$

with $x_{1}^{0} \in[0.05,0.1], x_{2}^{0} \in[0.99,1.00]$ and $\Delta=0.01$.

Under- (yellow) and over-approximated (green) reachable sets over time up to 25 steps with Algorithm 1, skewed boxes (0.02 s computation time)

Honeybees Site Choice Model [Dreossi et al. (2016)]

$x_{1}^{k+1}=x_{1}^{k}-\left(\beta_{1} x_{1}^{k} x_{2}^{k}+\beta_{2} x_{1}^{k} x_{3}^{k}\right) \Delta$
$x_{2}^{k+1}=x_{2}^{k}+\left(\beta_{1} x_{1}^{k} x_{2}^{k}-\gamma x_{2}^{k}+\delta \beta_{1} x_{2}^{k} x_{4}^{k}\right.$
$x_{3}^{k+1}=x_{3}^{k}+\left(\beta_{2} x_{1}^{k} x_{3}^{k}-\gamma x_{3}^{k}+\delta \beta_{2} x_{3}^{k} x_{5}^{k}\right.$
$x_{4}^{k+1}=x_{4}^{k}+\left(\gamma x_{2}^{k}-\delta \beta_{1} x_{2}^{k} x_{4}^{k}-\alpha \beta_{2} x_{3}^{k}\right.$.
$x_{5}^{k+1}=x_{5}^{k}+\left(\gamma x_{3}^{k}-\delta \beta_{2} x_{3}^{k} x_{5}^{k}-\alpha \beta_{1} x_{2}^{k}\right.$,
$x_{1}^{0}=500, x_{2}^{0} \in[390,400], x_{3}^{0} \in[90$,
$x_{4}^{0}=x_{5}^{0}=0$ and $\beta_{1}=\beta_{2}=0.001, \gamma$
$\delta=0.5, \alpha=0.7$, and $\Delta=0.01$.

Algorithm 1

Only 1.7 s analysis time, but imprecise (800 steps here, later diverges))

Honeybees Site Choice Model [Dreossi et al. (2016)]

Algorithm 2 (57s analysis time, 1500 steps)

Joint range $\left(x_{1}, x 2\right)(k)$

Projected approximations (filled region is under-approx, plain black line is over-approx)
(slightly faster and tighter than Dreossi 2016 for over-approx while also providing under-approx)

