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Introduction: safe learning in
autonomous systems



Safe learning in autonomous systems: perception

Perception: objects (obstacles, tra�ic sign, etc.) detection should be robust to change in
lighting, physical attacks, adversarial noise

Robustness issues are amenable to (post-training) reachability-based verification
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Safe learning in autonomous systems: planning and control

Planning and control:

I robots need to operate in unknown, uncertain and dynamic environments
I from o�line to online planning and control, in learned environments

Reach-avoid or similar properties well suited to reachability verification 3



The closed-loop: a time-triggered hybrid system
Given

I plant dynamic f ,

I state x, control u,
disturbancew ∈ W

I NN controller h

I control period∆tu

Time-triggered (u computed every∆ut) dynamical systemwith non-linear feedback:

ẋ(t) = f(x(t), u(t),w(t))

x(t0) = x0 ∈ X0
u(t) = uk = h(y(x(τk))), for t ∈ [τk, τk+1), with τk = t0 + k∆tu, ∀k ≥ 0 4



Reachability analysis for safety and robustness verification

ẋ(t) = f(x(t), uk,w(t))

w(t)

uk = h(xk)

x0 xk

uk

I Classical reach-avoid problem: reaching target region while avoiding unsafe regions
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Reachability analysis for safety and robustness verification

ẋ(t) = f(x(t), uk,w(t))

w(t)

uk = h(xk)

x0 xk

uk

I Classical reach-avoid problem: reaching target region while avoiding unsafe regions
I Also for noisy initial conditions x0 (robustness)
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Reachability analysis for safety and robustness verification

ẋ(t) = f(x(t), uk,w(t))

w(t)

uk = h(xk)

x0 xk

uk

I Classical reach-avoid problem: reaching target region while avoiding unsafe regions
I Also for noisy initial conditions x0 (robustness)

I Proven by over-approximated reachability
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Reachability analysis for safety and robustness verification

ẋ(t) = f(x(t), uk,w(t))

w(t)

uk = h(xk)

x0 xk

uk

I Classical reach-avoid problem: reaching target region while avoiding unsafe regions
I And external disturbancesw(t)
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Reachability analysis for safety and robustness verification

ẋ(t) = f(x(t), uk,w(t))

w(t)

uk = h(xk)

x0 xk

uk

I Classical reach-avoid problem: reaching target region while avoiding unsafe regions
I And external disturbancesw(t)

I (Maximal) over-approximation unconclusive
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Reachability analysis for safety and robustness verification

ẋ(t) = f(x(t), uk,w(t))

w(t)

uk = h(xk)

x0 xk

uk

I Classical reach-avoid problem: reaching target region while avoiding unsafe regions
I And external disturbancesw(t)

I Under-approximation: ∃x0,∃w(t) such that the trajectory is unsafe
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Reachability analysis for safety and robustness verification

ẋ(t) = f(x(t), uk,w(t))

w(t)

uk = h(xk)

x0 xk

uk

I Classical reach-avoid problem: reaching target region while avoiding unsafe regions
I And external disturbancesw(t)

I Under-approximation: ∃x0,∃w(t) such that the trajectory is unsafe
I Under-approximation: ∀x in target, ∃x0,∃w(t) s.t. x is reached (target covered) + some

final states proven to be outside the target
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Reachability problems with disturbancesw

Compute inner and outer-approximating sets I(t) and O(t) such that:

I Maximal reachability

IE(t) ⊆ Rf ,hE (t;X0,W) = {x | ∃w ∈W,∃x0 ∈ X0, x = ϕf ,h(t; x0,w)} ⊆ OE(t)

I Minimal or robust reachability

IAE(t) ⊆ Rf ,hAE(t;X0,W) = {x | ∀w ∈W,∃x0 ∈ X0, x = ϕf ,h(t; x0,w)} ⊆ OAE(t)

We have:
Rf ,hAE(t;X0,W) ⊆ Rf ,hE (t;X0,W)

6



Taylor expansion based approach for
outer-approximation



Taylor expansions for ODEs reachability (Berz & Makino) I

For f ∈ Ck, over-approximate the solution of ẋ(t) = f(x(t)), x(t0) ∈ [x0] on [t0, T]:

I Time grid t0 < t1 < . . . < tN = T

I Taylor-Lagrange expansion in t of the solution on each time slice [tj, tj+1]

[x](t, tj, [xj]) = [xj] +
k−1∑
i=1

(t − tj)i

i!
f [i]([xj]) +

(t − tj)k

k!
f [k]([rj+1])

I Evaluation of expansion at time tj+1 gives initial solution on next time slice

Set-valued computations: evaluation with intervals, a�ine forms(or zonotopes), etc.
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Taylor expansions for ODEs reachability (Berz & Makino) II
I The f [i] are defined inductively; can be computed by automatic di�erentiation:

f [1]k = fk

f [i+1]k =
n∑
j=1

∂f [i]k
∂xj

fj

I Bounding the remainder supposes to first compute an enclosure [rj+1] of solution
x(t, z0) on [tj, tj+1], classical by Picard iteration: find hj+1, [rj+1] such that

[xj] + [0, hj+1]f([rj+1]) ⊆ [rj+1]

I Initialization of next iterate [xj+1] = [x](tj+1, tj, [xj])
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Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:
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Feedforward neural network controlled system

Each layer consists in a linear transform followed by a non linear activation function:

We focus on di�erentiable activation functions (needed for
inner-approximations)
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Taylor expansions for neural network controlled system

Straightforward extension for outer-approximations in the case of a time-triggered
feedforward neural network controller:

ẋ(t) = f(x(t), h(x(τk))) for t ∈ [τk, τk+1), with τk = t0 + k∆tu, ∀k ≥ 0
x(t0) = x0 ∈ X0

I evaluation of h(x(τk)) for set-valued x(τk) for instance with intervals or zonotopes as
for any nonlinear function

I requires {τk, k ≥ 0, τk < T} ⊆ {t1, . . . , tN}: the stepwise constant control changes
values at a subset of the points of the time grid of the Taylor expansions.
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AE extensions for (robust) inner and outer
approximations



AE extensions for function image computation

Given

I f : Rm → Rn

I a set x inP(Rm)

we want:
range(f , x) = {f(x), x ∈ x}.

I Over-approximating extension of f (or inclusion function):
f o : P(Rm)→ P(Rn) such that ∀x inP(Rm), range(f , x) ⊆ f o(x)

I Under-approximating extension of f :
fu : P(Rm)→ P(Rn) such that ∀x inP(Rm), fu(x) ⊆ range(f , x)

Can be interpreted as AE propositions = quantified propositions where universal
quantifiers (A) precede existential quantifiers (E)

range(f , x) ⊆ z = f o(x)⇔ ∀x ∈ x, ∃z ∈ z, f(x) = z

fu(x) = z ⊆ range(f , x)⇔ ∀z ∈ z, ∃x ∈ x, f(x) = z
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Mean-Value AE extensions (scalar-valued function)
Theorem (Generalized Interval Mean-Value Theorem,Goldsztejn 2012)

I f : Rm → R be a continuously di�erentiable function, x an initial box ofRm,

I x0 = mid(x) the center of the box x, f0 = [f0, f0] such that f(x0) ∈ f0
I ∆i = [∆i,∆i] such that {|f ′i (x0,1, . . . , x0,i−1, xi, . . . , xm)|, x ∈ x} ⊆ ∆i

range(f , x) ⊆ [f0, f0] +
m∑
i=1

∆iradius(xi)[−1, 1]

[f0 −
m∑
i=1

∆iradius(xi), f0 +
m∑
i=1

∆iradius(xi)] ⊆ range(f , x)

I Interval abstractions over x of f(x) = f(x0) +
∫ x
x0 f
′(x)dx, x ∈ x

I For over-approximation, first proposed by Moore (as centered interval form) 12



Example

I f(x) = x2 − x over x = [2, 3]

I f(2.5) = 3.75

I |f ′([2, 3])| ⊆ [3, 5] = [∆,∆].

Then,
3.75+ 0.5 ∗ 3 ∗ [−1, 1] ⊆ range(f , [2, 3]) ⊆ 3.75+ 0.5 ∗ 5 ∗ [−1, 1]

fromwhich we deduce [2.25, 5.25] ⊆ range(f , [2, 3]) ⊆ [1.25, 6.25].
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AE extensions when f is the flow ϕf ,h(t; x0,w) of the system

I Maximal reachability

IE(t) ⊆ Rf ,hE (t;X0,W) = {x | ∃w ∈W,∃x0 ∈ X0, x = ϕf ,h(t; x0,w)} ⊆ OE(t)

∀x ∈ IE(t), ∃w ∈W, ∃x0 ∈ X0, x = ϕf ,h(t; x0,w)

∀w ∈W, ∀x0 ∈ X0, ∃x ∈ OE(t), x = ϕf ,h(t; x0,w)

I Minimal or robust reachability

IAE(t) ⊆ Rf ,hAE(t;X0,W) = {x | ∀w ∈W,∃x0 ∈ X0, x = ϕf ,h(t; x0,w)} ⊆ OAE(t)

∀x ∈ IAE(t), ∃w ∈W, ∃x0 ∈ X0, x = ϕf ,h(t; x0,w)

∀x0 ∈ X0, ∃w ∈W, ∃x ∈ OAE(t), x = ϕf ,h(t; x0,w) 14



AE extensions when f is the flow ϕf ,h(t; x0,w) of the system

In order to use the generalized mean-value theorem on

ẋ(t) = f(x(t), h(x(τk))) for t ∈ [τk, τk+1), with τk = t0 + k∆tu, ∀k ≥ 0
x(t0) = x0 ∈ X0

I Need bounds on the solutions of the system (trajectories)

I Need bounds on the solution of the variational equations (Jacobian of trajectories
wrt initial states and uncertainties)

I Taylor expansions in time for vector field f(x(t), h(x(τk))) and its Jacobian: implies
di�erentiating h, using tanh′(x) = 1.0− tanh(x)2 and sig′(x) = sig(x)(1− sig(x)).
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RINO: tool and Evaluation



RINO (Robust INner and Outer reachability)

Available from

https://github.com/cosynus-lix/RINO/

Computes Inner and Outer Approximations of Robust and Maximal Reachable sets:

I Continuous-time (possibly delayed) or discrete-time uncertain dynamical systems
I Possibly controlled by a neural network (with di�erentiable activation functions)
I Guaranteed computations using Taylor Expansions in time and Zonotopes in space

Relies on

I FILIB++ for interval arithmetic,
I aaflib for a�ine arithmetic,
I FADBAD++ for automatic di�erentiation.

Computes inner and outer-approximations of robust andmaximal reachable sets using
Taylor expansions with set-based coe�icients (a�ine forms) of the system trajectories and
their Jacobian with respect to initial conditions and disturbances.
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Examples and Comparison to existing work
I Verisig and Verisig 2.0 [4, 3]: sigmoid/tanh is the solution to a di�erential equation: transform the neural network into

an equivalent hybrid system (solved with Taylor Model based reachability Flowstar)
I ReachNN and ReachNNstar: [2, 1] : Bernstein polynomials + Taylor models (Flowstar)

J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu.
Reachnn*: A tool for reachability analysis of neural-network controlled systems.
In ATVA 2020,. Springer, 2020.

C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu.
Reachnn: Reachability analysis of neural-network controlled systems.
ACM Trans. Embed. Comput. Syst., 18, 2019.

R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee.
Verisig 2.0: Verification of neural network controllers using taylor model preconditioning.
In Computer Aided Verification, pages 249–262. Springer International Publishing, 2021.

R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee.
Verisig: verifying safety properties of hybrid systems with neural network controllers.
2019.
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Benchmark examples

Name Dynamics Initial set Horizon Control step
Mountain Car

sigmoid 2× 200
ẋ1 = x2
ẋ2 = 0.0015u− 0.0025 cos(3x1)

[− 0.5,−0.48]
[0, 0.001]

T = 75 1

discrete MC
(stepsize 1)

sigmoid 2× 200

xn+11 = xn1 + xn2
xn+12 = xn2 + 0.0015un

−0.0025 cos(3xn1 )

[− 0.5,−0.48]
[0, 0.001]

T = 75 1

TORA
tanh 3× 20

ẋ1 = x2
ẋ2 = −x1 + 0.1 ∗ sin(x3)
ẋ3 = x4
ẋ4 = u

[− 0.77,−0.75]
[− 0.45,−0.43]

[0.51, 0.54]
[− 0.3,−0.28]

T = 5 0.1

ACC
?

ẋ1 = x2, ẋ4 = x5
ẋ2 = x3, ẋ5 = x6
ẋ3 = −4− 0.0001x22 − 2x3
ẋ6 = 2u− 0.0001x25 − 2x6

x1 = [90, 91]
x2 = [32, 32.05]
x4 = [10, 11]

x5 = [30, 30.05]

T = 5 0.1

B1
sigmoid 3× 20

ẋ1 = x2
ẋ2 = ux22 − x1

[0.8, 0.9]
[0.5, 0.6]

T = 7 0.2

B2
sigmoid 3× 20

ẋ1 = x2 − x31
ẋ2 = u

[0.7, 0.9]
[0.7, 0.9]

T = 1.8 0.2 18



Comparison results (faster for comparable precision)
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B1: sampling (purple dots) and inner/outer-approximations

(a) x1 as function of time (b) Joint range (x1, x2)

I Over-approximation is very tight

I Samples show (x1, x2) becomes almost
a 1-dim curve: inner-approx di�icult!

I N-dim inner-approximation more
di�icult and imprecise than 1-dim
inner-approx

Safety property x1 < 1 (red line):

I over-approx raises a potential alarm

I under-approx proves falsification 20



B1: comparison to Verisig 2.0 and ReachNNstar

(a) Verisig 2.0 (b) ReachNNStar (c) RINO

Figure 2: B1 sigmoid
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Mountain Car

(a)Mountain car problem (b) Continuous-time MC (c) Discrete-time MC

Loss of accuracy for under-approximation in the continuous-time case to be investigated...
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From range projection to joint inner range

Product of 1-dim approximations as n-dim approximation?

I Products of 1-dim over-approx. are (possibly imprecise) n-dim over-approx.
I Generally false for under-approximations! Take (z1, z2) = (f1(x1, x2), f2(x1, x2)) and

∀z1 ∈ z1,∃x1 ∈ x1, ∃x2 ∈ x2, z1 = f1(x)

∀z2 ∈ z2,∃x1 ∈ x1, ∃x2 ∈ x2, z2 = f2(x)

Does not imply ∀z1 ∈ z1 and ∀z2 ∈ z2, ∃x1 ∈ x1 and ∃x2 ∈ x2 such that z = f(x).

A solution (can be generalized to n-dim)
Suppose we can compute z1 and z2 with continuous selections x2 and x1 such that
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− under-approx of robust (to x1) range of f1
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under-approx of robust (to x2) range of f2



From range projection to joint inner range
Product of 1-dim approximations as n-dim approximation?
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A solution (can be generalized to n-dim)
Suppose we can compute z1 and z2 with continuous selections x2 and x1 such that
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Robustly reachable sets
Robust range: states reachable whatever the disturbances on componentsw ∈ xA

rangeAE(f , xA, xE) = {z | ∀w ∈ xA,∃u ∈ xE , z = f(w, u)} ⊆ range(f , x)

Aparticular caseof robust reachability for dynamical systemswithdisturbances/inputs

(Sc)

ẋ(t) = f(x(t), u(t))

x(0) ∈ x0, u(t) ∈ U ⊆ Rp
(Sd)

xk+1 = f(xk, uk)

x0 ∈ x0, u(k) ∈ U ⊆ Rp
flow ϕf (t; x0, u)

Sets reachable robustly to disturbances on components uA:

RfAE(t; x0,U) = {x ∈ D | ∀uA ∈ UA,∃uE ∈ UE,∃x0 ∈ x0, x = ϕf (t; x0, uA, uE)}

I uA can be seen as disturbance, uE as control

I (classical) maximal reachability forUA = ∅, minimal reachability forUE = ∅
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Robust Mean Value theorem
Similar to the generalized interval mean-value theorem, but with adversarial terms

I f : Rm → R be continuously di�erentiable, x = xA × xE initial box
I {|∇uf(w, u)| ,w ∈ xA, u ∈ xE} ⊆∇u and {

∣∣∇wf(w, x0E)
∣∣ , w ∈ xA} ⊆∇w

Then:
rangeAE(f , xA, xE) ⊆ [f 0−〈∇u, r(xE)〉+〈∇w, r(xA)〉, f 0+〈∇u, r(xE)〉−〈∇w, r(xA)〉]
[f 0−〈∇u, r(xE)〉+〈∇w, r(xA)〉, f 0+〈∇u, r(xE)〉−〈∇w, r(xA)〉] ⊆ rangeAE(f , xA, xE)

Intuition:

I Control u ∈ xE acts positively on the (exact) range width : widens the over (resp. under)
approximation by 〈∇u, r(xE〉)[−1, 1] (resp. 〈∇u, r(xE〉)[−1, 1])

I Disturbancew ∈ xA acts as an adversary: shrinks down the over (resp. under) approximation
by 〈∇w, r(xA〉)[−1, 1] (resp. by 〈∇w, r(xA〉)[−1, 1])



Example in 2-D

f(x) = (5x21 + x22 − 2x1x2 − 4, x21 + 5x22 − 2x1x2 − 4)ᵀ for x = [0.9, 1.1]2

Using f(1, 1) = 0,∇f(x) ⊆

(
[6.8, 9.2] [−0.4, 0.4]

[−0.4, 0.4] [6.8, 9.2]

)
thus | ∇f(x) |⊆

(
[6.8, 9.2] [0, 0.4]

[0, 0.4] [6.8, 9.2]

)

1-Dmean-value approximations
range(f , x) ⊆ [−0.96, 0.96]2

[−0.68, 0.68] ⊆ range(f1, x)

[−0.68, 0.68] ⊆ range(f2, x)

2-D under-approximation by robust range

I We obtain [−0.64, 0.64]2 ⊆ range(f , x) by

∀z1 ∈ z1,∀x2 ∈ x2,∃x1 ∈ x1, z1 = f1(x)

∀z2 ∈ z2,∀x1 ∈ x1,∃x2 ∈ x2, z2 = f2(x)

I e.g. for z1 (similar for z2):
f1(1, 1) +

[−6.8× 0.1+0.4× 0.1, 6.8× 0.1−0.4× 0.1] =

[−0.64, 0.64] ⊆ rangeAE(f1, x, 2)
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f(x) = (5x21 + x22 − 2x1x2 − 4, x21 + 5x22 − 2x1x2 − 4)ᵀ for x = [0.9, 1.1]2

Using f(1, 1) = 0,∇f(x) ⊆

(
[6.8, 9.2] [−0.4, 0.4]

[−0.4, 0.4] [6.8, 9.2]

)
thus | ∇f(x) |⊆

(
[6.8, 9.2] [0, 0.4]

[0, 0.4] [6.8, 9.2]

)

1-Dmean-value approximations
range(f , x) ⊆ [−0.96, 0.96]2 e.g. range(f1, x) ⊆
0+ (9.2× 0.1+ 0.4× 0.1)[−1, 1]
[−0.68, 0.68] ⊆ range(f1, x)

as (0+ 0.68× 0.1+ 0× 0.1)[−1, 1] ⊆
range(f1, x)

[−0.68, 0.68] ⊆ range(f2, x) similarly

2-D under-approximation by robust range

I We obtain [−0.64, 0.64]2 ⊆ range(f , x) by

∀z1 ∈ z1,∀x2 ∈ x2,∃x1 ∈ x1, z1 = f1(x)

∀z2 ∈ z2,∀x1 ∈ x1,∃x2 ∈ x2, z2 = f2(x)

I e.g. for z1 (similar for z2):
f1(1, 1) +

[−6.8× 0.1+0.4× 0.1, 6.8× 0.1−0.4× 0.1] =

[−0.64, 0.64] ⊆ rangeAE(f1, x, 2)
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I e.g. for z1 (similar for z2):
f1(1, 1) +

[−6.8× 0.1+0.4× 0.1, 6.8× 0.1−0.4× 0.1] =
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Approximating the range of the sigmoid function



Approximating the range of the sigmoid function

I Not so accurate/satisfying...

I First natural idea: input domain partition? Costly and
convex union of the under-approximating boxes is in
general not an under-approximation of range(f , x)



Refinement by local quadrature

Mean-value extension is an interval abstraction of
f(x) = f(x0) +

∫ x
x0 f
′(x)dx

Use a partition x = x1 ∪ x2 to refine:

f0 + 〈∇1, dx1〉[−1, 1] + 〈∇2, dx2〉[−1, 1] ⊆ range(f , x1 ∪ x2)

range(f , x1 ∪ x2) ⊆ f0 + 〈∇1, dx1〉[−1, 1] + 〈∇2, dx2〉[−1, 1]



Refinement by local quadrature

Generalizes to more partitions and n dimensions.

x0
x1

xk = x \ xk−1,∆k = [|∇f |](xk)

x−k1 x−11 x01 x11 xk1
x−k2

x02

xk2

x1,∆1x2,∆2



Higher-order AE extensions
Theorem

Let g be an elementary1 approximation function for f , s.t.

∀w ∈ xA, ∀u ∈ xE , ∃ξ ∈ e, f(w, u) = g(w, u, ξ)

Then any under-approx Ig (resp. over-approxOg) of the range of g robust to xA and ξ is an
under-approx (resp. over-approx) of the range of f robust to xA, i.e.

Ig ⊆ rangeAE(f , xA, xE) ⊆ Og

Typically, g(w, u, ξ) Taylor expansion of f (with x = (w, u) and ξ from Lagrange remainder):

g(x, ξ) = f(x0) +
n∑
i=1

(x − x0)i

i!
Dif(x0) + Dn+1f(ξ)

(x − x0)n+1

(n + 1)!

1Elementary functions are compositions of +, -,×, /, sine, cosine, log, exp in particular.



Higher-order AE extensions
Theorem

I Let g be an elementary function g(w, u, ξ) = α(w, u) + β(w, u, ξ)

I Iα under-approx of the range of α robust to w,Oβ over-approx of the range of β

Then the range of g robust with to w ∈ xA and ξ ∈ x is under-approximated by
Ig = [Iα +Oβ, Iα +Oβ] ⊆ rangeAE(f , xA, xE)u

Typically, g(w, u, ξ) Taylor expansion of f :

g(x, ξ) = f(x0) +
n∑
i=1

(x − x0)i

i!
Dif(x0)︸ ︷︷ ︸

α(x)

+ Dn+1f(ξ)
(x − x0)n+1

(n + 1)!︸ ︷︷ ︸
β(x,ξ)

I Easily applicable for n = 1 (linear expression can be exactly evaluated)

I Accuracy comparable to Mean-Value + quadrature



Application to the reachability of
discrete-time systems



Application to reachability of discrete-time systems
Algorithm 1: requires propagating n-dim under-approx. at each step
Iteratively compute function image, with as input, the previously computed approximations
(under and over-approximations Ik and Ok of the reachable set zk):{

I0 = z0, O0 = z0

Ik+1 = I(f , Ik, π), Ok+1 = O(f ,Ok, π)

I n-dimensional range under-approximation can be source of loss of precision

Algorithm 2: propagates only over-approx. of range and Jacobian of iterated loop body f

for k from 0 to K − 1 do
Ik+1 := I(f k+1, z0, π), Ok+1 := O(f k+1, zO, π)

end for

I generally more costly andmore precise than Algo 1 (di�erentiation of the iterated function)

I n-dimensional range under-approximation can be source of loss of precision in Algo 1

I empty under-approximation propagates in Algo 1 (not in Algo 2 which relies on over-approx.
only)



Test model

Model

xk+11 = xk1 + (0.5(xk1 )2 − 0.5(xk2)2)∆

xk+12 = xk2 + 2xk1 x
k
2∆

with x01 ∈ [0.05, 0.1], x02 ∈ [0.99, 1.00]

and∆ = 0.01.
Under- (yellow) and over-approximated (green)
reachable sets over time up to 25 steps with
Algorithm 1, skewed boxes (0.02s computation

time)



Honeybees Site Choice Model [Dreossi et al. (2016)]

xk+11 = xk1 − (β1xk1 x
k
2 + β2xk1 x

k
3)∆

xk+12 = xk2 + (β1xk1 x
k
2 − γxk2 + δβ1xk2x

k
4 + αβ1xk2x

k
5)∆

xk+13 = xk3 + (β2xk1 x
k
3 − γxk3 + δβ2xk3x

k
5 + αβ2xk3x

k
4)∆

xk+14 = xk4 + (γxk2 − δβ1xk2xk4 − αβ2xk3xk4)∆

xk+15 = xk5 + (γxk3 − δβ2xk3xk5 − αβ1xk2xk5)∆

x01 = 500, x02 ∈ [390, 400], x03 ∈ [90, 100],
x04 = x05 = 0 and β1 = β2 = 0.001, γ = 0.3,
δ = 0.5, α = 0.7, and∆ = 0.01.

Algorithm 1
Only 1.7s analysis time, but imprecise
(800 steps here, later diverges))



Honeybees Site Choice Model [Dreossi et al. (2016)]
Algorithm 2 (57s analysis time, 1500 steps)

Joint range (x1, x2)(k)
Projected approximations (filled region is
under-approx, plain black line is over-approx)

(slightly faster and tighter than Dreossi 2016 for over-approx while also providing under-approx)


	Introduction: safe learning in autonomous systems
	Taylor expansion based approach for outer-approximation
	AE extensions for (robust) inner and outer approximations
	Mean-value AE extensions for scalar-valued functions

	RINO: tool and Evaluation
	Appendix
	Backup Slides
	Refinement by local quadrature
	Higher-order AE extensions

	Application to the reachability of discrete-time systems
	Two possible approaches
	Examples



