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Presentation of Paparazzi

Paparazzi is an autopilot for micro-drones

• Developed at ENAC since 2003,

• Open-Source under GPL license.

Complete drone control system:

• Offers the control software part,

• Also offers some designs of hardware components,

• Supports for ground and aerial vehicles,

• Supports for simultaneous control of several drones.
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Flight Plan

The flight plan (FP)

• describes how the drone might behave when it is launch,

• is defined in a XML configuration file.

Example:

1. Wait until the GPS connection is set,

2. Take off,

3. Do a circle around a specific GPS position.

4. If battery is less than 20%: Go home and land.

Remark: The user can interact with flight plan during a flight.
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Presentation of the Generator

Generator

The C file generated contains:

• Flight Plan Header: definition of constantes and variables,

• The main function void auto_nav(void),

• Other auxilary functions:

pre call block, post call block and forbidden deroute.

=⇒ Compiled with the autopilot and embedded on the drone.

Function auto nav:

• Called at 20 Hz,

• Sets navigation parameters.
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XML File Describing the Flight Plan

Flight plan architecture:

1. Header 
Flight Plan Header

2. Waypoints

3. Sectors

4. Modules

5. Includes

6. Blocks := list of Block

Block := list of Stage

7. Exceptions

8. Forbidden Deroutes (New)

Stages supported:

• While

• Set

• Call

• Deroute

• Return

• Nav: Go, Circle, Stay, Survey

Rectangle, Oval, Home...

• Path, For, Call Once

Remark: The flight plan can contain arbitrary C code.
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Example: Potential Execution of a Flight Plan

Flight Plan:
...

<block name="Wait GPS">

<call_once fun="NavKillThrottle()"/>

<while cond="!GpsFixValid()"/>

</block>

<block name="Start Engine">

<call_once fun="NavResurrect()"/>

<attitude pitch="0" roll="0" throttle="0"

until="FALSE"/>

</block>

<block name="Takeoff">

<exception

cond="stateGetPositionEnu_f().z > 2.0"

deroute="Standby"/>

<call_once fun="NavSetWaypointHere(WP_CLIMB)"/>

<stay vmode="climb" climb="nav_climb_vspeed"

wp="CLIMB"/>

</block>

...

Results of auto nav:

(T : 0× p, Block: Wait GPS):

NavKillThrottle()

GpsFixValid()
~wfalse.

(T : 1× p, Block: Wait GPS):

GpsFixValid()
~wfalse.

(T : 2× p, Block: Wait GPS):

GpsFixValid()
~wfalse.

.

.

.

(T : n × p, Block: Wait GPS):

GpsFixValid()
~wtrue.

(T : (n + 1)× p, Block: Start Engine):

NavResurrect()

NavAttitude(0, 0, 0)

(T : (n + 2)× p, Block: Takeoff):

.

.

.

=⇒ Possible risks of an infinite loop
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Motivation

Problems:

• Does the flight plan always terminate?

• The behaviour of the flight plans is not formally defined.

• Generator is a complex software that generates embedded code.

=⇒ Compilation problem

Solution to similar problems

• CompCert: C compiler proved in Coq.

• Vélus: Lustre compiler proved in Coq.
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Coq

Coq is a proof assistant

• Developed by Inria,

• Based on Gallina language.

Software for writing and verifying formal proofs

• Proofs of mathematical theorems,

• Proofs of properties on programs.

=⇒ Coq code can be extracted into OCaml code with guarantees.

Our solution: New flight plan generator developed and verified in Coq.
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Process to Develop a Verified Generator

Generator

efp

ofp

e′fp

XML semantics

ec

oc

e′c

CLight semantics
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Generator



VFPG (Verified Flight Plan Generator)

Parser Pre-processor

Generator

PrinterPost-processor

FP XML

Flight Plan

Header

Clight

C
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Pre-Processing

Pre-processing: several transformations are performed on the flight plan

• Manage included files that contain processus

• Update, convert and verify the coordinates

• Add a safety home block

• Process paths

• Process for loops and compute the list of local variables

• Index the blocks
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Flight Plan Structure in Coq

Inductive fp_stage :=

WHILE (params: fp_params_while)

(block: list fp_stage)

| SET (params: fp_params_set)

| CALL (params: fp_params_call)

| DEROUTE (params: fp_params_deroute)

| RETURN (params: fp_params_return)

| NAV (nav_mode: fp_navigation_mode)

(init: bool).

Definition fp_block :=

(* Index of the block *)

nat

(* List of local exceptions *)

∗ fp_exceptions

(* Parameters of the block *)

∗ fp_params_block

(* List of stage *)

∗ list fp_stage

Definition flight_plan :=

(* List of deroutes forbidden *)

fp_forbidden_deroutes

(* List of exceptions *)

∗ fp_exceptions

(* List of block *)

∗ list fp_block.
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Generator Function

generate flight plan:

flight plan -> list gdef -> (Clight * list err msg)

Inputs:

• Flight plan to convert,

• List of local variables.

Ouputs:

• Clight program generated

• List of warnings and errors found during the generation.

For now: detect if there is a possible deroute that is forbidden.
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Example of C Code Generated

Example of a flight plan:

...

<blocks>

<block name="b0">

<stage s0/>

<stage s1/>

</block>

</blocks> ...

C code generated:

static inline void auto nav(void) {
switch (get nav block()) {

case 0: // Block b0

set nav block(0);

switch (get nav stage()) {
case 0: // Stage s0

set nav stage(0);

C CODE(s0)

case 1: // Stage s1

set nav stage(1);

C CODE(s1)

default:

case 3: // Default Stage

set nav stage(3);

NextBlock();

break;

}
break;

case 1: // Default Block

C CODE(DEFAULT BLOCK)

}
}
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Flight Plan Extension

FP Extend FP E
Clight

Generator
CLight

Extended Flight Plan:

• Numerotation of the stage,

• Split NAV into NAV INIT and NAV,

• Inline all stage contained in the WHILE

(stage END WHILE is then added).

=⇒ Allow to have a structure similar to the C code generated.
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Semantics of the Flight Plan



Abstraction of the External Drone Environment

The drone environment of the flight plan is too complex.

=⇒ fp env represents an abstraction of the current state of the flight plan.

Definition fp_env :=

(* Current position *)

block_id ∗ list fp_stage

(* Last position *)

∗ block_id ∗ list fp_stage.

(* Current time *)

∗ time

A position is a couple of a block ID and the remaining stages to execute.
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Abstraction of the External Drone Functions

• Execution of navigation stages corresponds to complex function call.

• The flight plan can potentially contain arbitrary C code.

=⇒ The semantics will generate a trace for these calls.

Variant c_exec := COND (c: cond) | C_CODE (c: c_code) | SKIP.
Definition outputs := list c_exec.

• We also need the result of the evaluation of conditions.

=⇒ Definition of the function eval

Parameter eval: time → cond → (bool ∗ time).

Evaluates a condition at a time t and produce a boolean result at a time t′ > t.
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Big Step Semantics of the Flight Plan

Big Step Function

Represents the execution of the auto nav function starting from a state e

and finishing in a state e′.

e
fp
↪→o e

′

• o are the generated ouputs, i.e. all the extern C code called

As the function is defined in Coq it terminates.
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Semantics of Clight defined in CompCert

Variable ge: genv. (* Global environment: symbols and functions *)

Variable e: env. (* Local environments: map variables to location. *)

Variable le1, le2: temp_env. (* Temp env: maps local temporaries to values. *)

Variable m1, m2: mem. (* Memories: maps adresses to values. *)

Variable s: statement.

Variable t: trace. (* List of event (load, store, syscall) *)

Variable out: outcome. (* Break, continue, return or normal*)

exec_stmt ge e le1 m1 s t le2 m2 out.

exec stmt is a Coq proposition that describes the execution of the

statement s in the environment (ge, e). We note:

m1
w�s

(out,t)
m2
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Preservation of the Semantics



Verification of the Preservation of the Semantics

Suppose we have:

• env∼ an equivalence relation between fp env and mem.

•
output∼ an equivalence relation betweeen output and trace.

Theorem: Preservation of the Semantics

∀fp prog e m e′ t t ′ o ,

prog = generate flight plan fp

→ e
env∼ m

→ e
fp
↪→o e′

→ ∃m′ T , m
w�prog

(Out normal,T )
m′

∧
e′

env∼ m′
∧
o

output∼ T
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Flight Plan Extension

FP Extend FP E
Clight

Generator
CLight

Verification of the generator:

• Verification of the Extend pass : DONE

• Verification of the Clight generation pass: To be done
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Conclusion



Conclusion

Summary:

• Development of the generator in Coq,

• Formalisation of the flight plan semantics,

• Add new features,

• Verification of the Extend pass.

Perspectives:

• Verification of the generation pass,

• Reduce the number of steps in pre-processing,

• Verify new properties.

This work is supported by the Defense Innovation Agency (AID) of the French Ministry of Defense

(research project CONCORDE N 2019 65 0090004707501)
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Thank you
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Execution of abstracted functions

Axiom: Execution to Trace

∀f m m′ out T ,

m
w�(SCALL f )

(out,T )
m′

→ m = m′

∧ out = Out normal ∧ T = [SYS CALL f ]
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