
Paparazzi UAV Flight Plan Generator

Verified with Coq

AID 2022

C. Garion1, G. Hattenberger2, B. Pollien1, P. Roux3, X. Thirioux1

June 2022

1ISAE-SUPAERO, 2ENAC and 3ONERA

Presentation of Paparazzi

Paparazzi is an autopilot for micro-drones

• Developed at ENAC since 2003,

• Open-Source under GPL license.

Complete drone control system:

• Offers the control software part,

• Also offers some designs of hardware components,

• Supports for ground and aerial vehicles,

• Supports for simultaneous control of several drones.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 1 / 22

Flight Plan

The flight plan (FP)

• describes how the drone might behave when it is launch,

• is defined in a XML configuration file.

Example:

1. Wait until the GPS connection is set,

2. Take off,

3. Do a circle around a specific GPS position.

4. If battery is less than 20%: Go home and land.

Remark: The user can interact with flight plan during a flight.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 2 / 22

Presentation of the Generator

Generator

The C file generated contains:

• Flight Plan Header: definition of constantes and variables,

• The main function void auto_nav(void),

• Other auxilary functions:

pre call block, post call block and forbidden deroute.

=⇒ Compiled with the autopilot and embedded on the drone.

Function auto nav:

• Called at 20 Hz,

• Sets navigation parameters.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 3 / 22

XML File Describing the Flight Plan

Flight plan architecture:

1. Header 
Flight Plan Header

2. Waypoints

3. Sectors

4. Modules

5. Includes

6. Blocks := list of Block

Block := list of Stage

7. Exceptions

8. Forbidden Deroutes (New)

Stages supported:

• While

• Set

• Call

• Deroute

• Return

• Nav: Go, Circle, Stay, Survey

Rectangle, Oval, Home...

• Path, For, Call Once

Remark: The flight plan can contain arbitrary C code.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 4 / 22

Example: Potential Execution of a Flight Plan

Flight Plan:
...

<block name="Wait GPS">

<call_once fun="NavKillThrottle()"/>

<while cond="!GpsFixValid()"/>

</block>

<block name="Start Engine">

<call_once fun="NavResurrect()"/>

<attitude pitch="0" roll="0" throttle="0"

until="FALSE"/>

</block>

<block name="Takeoff">

<exception

cond="stateGetPositionEnu_f().z > 2.0"

deroute="Standby"/>

<call_once fun="NavSetWaypointHere(WP_CLIMB)"/>

<stay vmode="climb" climb="nav_climb_vspeed"

wp="CLIMB"/>

</block>

...

Results of auto nav:

(T : 0× p, Block: Wait GPS):

NavKillThrottle()

GpsFixValid()
~wfalse.

(T : 1× p, Block: Wait GPS):

GpsFixValid()
~wfalse.

(T : 2× p, Block: Wait GPS):

GpsFixValid()
~wfalse.

.

.

.

(T : n × p, Block: Wait GPS):

GpsFixValid()
~wtrue.

(T : (n + 1)× p, Block: Start Engine):

NavResurrect()

NavAttitude(0, 0, 0)

(T : (n + 2)× p, Block: Takeoff):

.

.

.

=⇒ Possible risks of an infinite loop

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 5 / 22

Motivation

Problems:

• Does the flight plan always terminate?

• The behaviour of the flight plans is not formally defined.

• Generator is a complex software that generates embedded code.

=⇒ Compilation problem

Solution to similar problems

• CompCert: C compiler proved in Coq.

• Vélus: Lustre compiler proved in Coq.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 6 / 22

Coq

Coq is a proof assistant

• Developed by Inria,

• Based on Gallina language.

Software for writing and verifying formal proofs

• Proofs of mathematical theorems,

• Proofs of properties on programs.

=⇒ Coq code can be extracted into OCaml code with guarantees.

Our solution: New flight plan generator developed and verified in Coq.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 7 / 22

Process to Develop a Verified Generator

Generator

efp

ofp

e′fp

XML semantics

ec

oc

e′c

CLight semantics

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 8 / 22

Generator

VFPG (Verified Flight Plan Generator)

Parser Pre-processor

Generator

PrinterPost-processor

FP XML

Flight Plan

Header

Clight

C

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 9 / 22

Pre-Processing

Pre-processing: several transformations are performed on the flight plan

• Manage included files that contain processus

• Update, convert and verify the coordinates

• Add a safety home block

• Process paths

• Process for loops and compute the list of local variables

• Index the blocks

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 10 / 22

Flight Plan Structure in Coq

Inductive fp_stage :=

WHILE (params: fp_params_while)

(block: list fp_stage)

| SET (params: fp_params_set)

| CALL (params: fp_params_call)

| DEROUTE (params: fp_params_deroute)

| RETURN (params: fp_params_return)

| NAV (nav_mode: fp_navigation_mode)

(init: bool).

Definition fp_block :=

(* Index of the block *)

nat

(* List of local exceptions *)

∗ fp_exceptions

(* Parameters of the block *)

∗ fp_params_block

(* List of stage *)

∗ list fp_stage

Definition flight_plan :=

(* List of deroutes forbidden *)

fp_forbidden_deroutes

(* List of exceptions *)

∗ fp_exceptions

(* List of block *)

∗ list fp_block.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 11 / 22

Generator Function

generate flight plan:

flight plan -> list gdef -> (Clight * list err msg)

Inputs:

• Flight plan to convert,

• List of local variables.

Ouputs:

• Clight program generated

• List of warnings and errors found during the generation.

For now: detect if there is a possible deroute that is forbidden.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 12 / 22

Example of C Code Generated

Example of a flight plan:

...

<blocks>

<block name="b0">

<stage s0/>

<stage s1/>

</block>

</blocks> ...

C code generated:

static inline void auto nav(void) {
switch (get nav block()) {

case 0: // Block b0

set nav block(0);

switch (get nav stage()) {
case 0: // Stage s0

set nav stage(0);

C CODE(s0)

case 1: // Stage s1

set nav stage(1);

C CODE(s1)

default:

case 3: // Default Stage

set nav stage(3);

NextBlock();

break;

}
break;

case 1: // Default Block

C CODE(DEFAULT BLOCK)

}
}

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 13 / 22

Flight Plan Extension

FP Extend FP E
Clight

Generator
CLight

Extended Flight Plan:

• Numerotation of the stage,

• Split NAV into NAV INIT and NAV,

• Inline all stage contained in the WHILE

(stage END WHILE is then added).

=⇒ Allow to have a structure similar to the C code generated.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 14 / 22

Semantics of the Flight Plan

Abstraction of the External Drone Environment

The drone environment of the flight plan is too complex.

=⇒ fp env represents an abstraction of the current state of the flight plan.

Definition fp_env :=

(* Current position *)

block_id ∗ list fp_stage

(* Last position *)

∗ block_id ∗ list fp_stage.

(* Current time *)

∗ time

A position is a couple of a block ID and the remaining stages to execute.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 15 / 22

Abstraction of the External Drone Functions

• Execution of navigation stages corresponds to complex function call.

• The flight plan can potentially contain arbitrary C code.

=⇒ The semantics will generate a trace for these calls.

Variant c_exec := COND (c: cond) | C_CODE (c: c_code) | SKIP.
Definition outputs := list c_exec.

• We also need the result of the evaluation of conditions.

=⇒ Definition of the function eval

Parameter eval: time → cond → (bool ∗ time).

Evaluates a condition at a time t and produce a boolean result at a time t′ > t.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 16 / 22

Big Step Semantics of the Flight Plan

Big Step Function

Represents the execution of the auto nav function starting from a state e

and finishing in a state e′.

e
fp
↪→o e

′

• o are the generated ouputs, i.e. all the extern C code called

As the function is defined in Coq it terminates.

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 17 / 22

Semantics of Clight defined in CompCert

Variable ge: genv. (* Global environment: symbols and functions *)

Variable e: env. (* Local environments: map variables to location. *)

Variable le1, le2: temp_env. (* Temp env: maps local temporaries to values. *)

Variable m1, m2: mem. (* Memories: maps adresses to values. *)

Variable s: statement.

Variable t: trace. (* List of event (load, store, syscall) *)

Variable out: outcome. (* Break, continue, return or normal*)

exec_stmt ge e le1 m1 s t le2 m2 out.

exec stmt is a Coq proposition that describes the execution of the

statement s in the environment (ge, e). We note:

m1
w�s

(out,t)
m2

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 18 / 22

Preservation of the Semantics

Verification of the Preservation of the Semantics

Suppose we have:

• env∼ an equivalence relation between fp env and mem.

•
output∼ an equivalence relation betweeen output and trace.

Theorem: Preservation of the Semantics

∀fp prog e m e′ t t ′ o ,

prog = generate flight plan fp

→ e
env∼ m

→ e
fp
↪→o e′

→ ∃m′ T , m
w�prog

(Out normal,T)
m′

∧
e′

env∼ m′
∧
o

output∼ T

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 19 / 22

Flight Plan Extension

FP Extend FP E
Clight

Generator
CLight

Verification of the generator:

• Verification of the Extend pass : DONE

• Verification of the Clight generation pass: To be done

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 20 / 22

Conclusion

Conclusion

Summary:

• Development of the generator in Coq,

• Formalisation of the flight plan semantics,

• Add new features,

• Verification of the Extend pass.

Perspectives:

• Verification of the generation pass,

• Reduce the number of steps in pre-processing,

• Verify new properties.

This work is supported by the Defense Innovation Agency (AID) of the French Ministry of Defense

(research project CONCORDE N 2019 65 0090004707501)

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 21 / 22

Thank you

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 22 / 22

Execution of abstracted functions

Axiom: Execution to Trace

∀f m m′ out T ,

m
w�(SCALL f)

(out,T)
m′

→ m = m′

∧ out = Out normal ∧ T = [SYS CALL f]

C. Garion, G. Hattenberger, B. Pollien, P. Roux, X. Thirioux Paparazzi UAV Flight Plan Generator Verified with Coq 22 / 22

	Generator
	Semantics of the Flight Plan
	Preservation of the Semantics
	Conclusion

