
An introduction to Mobile Robotics
Seen through the eyes of distributed
computing

Eric Goubault and Bernardo Hummes

June 15, 2022

1 / 24



Part I: An introduction to Distributed Task solvability
(slightly biased towards geometric methods though)

Based on slides from Jérémy Ledent

2 / 24



Introduction



The distributed computing setting

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



The distributed computing setting

2

0
1

2
0

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



The distributed computing setting

2

0
1

2
0

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



The distributed computing setting

2

0
1

2
0

Register

write
read

read rea
d

write

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



The distributed computing setting

2

0
1

2
0

Test-and-set

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



The distributed computing setting

2

0
1

2
0

?
Object(s)

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



The distributed computing setting

2

1

0

1

1

1

2

1

0

1

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



The distributed computing setting

2

1

0

1

1

1

2

1

0

1

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?

3 / 24



Asynchronous computability (a.k.a. Fault-tolerant distributed computing)

Question: Can we solve the task T using the objects X1, . . . ,Xn?

Ï Compare the strength of objects.

Ï Compare the difficulty of solving tasks.

Ï Usually, study objects in which failures can occur.

Main focus today: Proving impossibility results.

" Usually not a matter of computing power:
Dealing with incomplete or unreliable information.

4 / 24



Asynchronous computability (a.k.a. Fault-tolerant distributed computing)

Question: Can we solve the task T using the objects X1, . . . ,Xn?

Ï Compare the strength of objects.

Ï Compare the difficulty of solving tasks.

Ï Usually, study objects in which failures can occur.

Main focus today: Proving impossibility results.

" Usually not a matter of computing power:
Dealing with incomplete or unreliable information.

4 / 24



Asynchronous computability (a.k.a. Fault-tolerant distributed computing)

Question: Can we solve the task T using the objects X1, . . . ,Xn?

Ï Compare the strength of objects.

Ï Compare the difficulty of solving tasks.

Ï Usually, study objects in which failures can occur.

Main focus today: Proving impossibility results.

" Usually not a matter of computing power:
Dealing with incomplete or unreliable information.

4 / 24



Asynchronous computability (a.k.a. Fault-tolerant distributed computing)

Question: Can we solve the task T using the objects X1, . . . ,Xn?

Ï Compare the strength of objects.

Ï Compare the difficulty of solving tasks.

Ï Usually, study objects in which failures can occur.

Main focus today: Proving impossibility results.

" Usually not a matter of computing power:
Dealing with incomplete or unreliable information.

4 / 24



Asynchronous computability (a.k.a. Fault-tolerant distributed computing)

Question: Can we solve the task T using the objects X1, . . . ,Xn?

Ï Compare the strength of objects.

Ï Compare the difficulty of solving tasks.

Ï Usually, study objects in which failures can occur.

Main focus today: Proving impossibility results.

" Usually not a matter of computing power:
Dealing with incomplete or unreliable information.

4 / 24



Combinatorial Topology



Simplicial complexes

Definition
A simplicial complex is a pair 〈V ,S〉 where

Ï V is a set of vertices

Ï S is a downward-closed family of subsets of V called simplices. (i.e.,
X ∈ S and Y ⊆X implies Y ∈ S)

5 / 24



Simplicial complexes

Definition
A simplicial complex is a pair 〈V ,S〉 where

Ï V is a set of vertices

Ï S is a downward-closed family of subsets of V called simplices. (i.e.,
X ∈ S and Y ⊆X implies Y ∈ S)

5 / 24



Simplicial complexes

Definition
A simplicial complex is a pair 〈V ,S〉 where

Ï V is a set of vertices

Ï S is a downward-closed family of subsets of V called simplices. (i.e.,
X ∈ S and Y ⊆X implies Y ∈ S)

5 / 24



Simplicial complexes

Definition
A simplicial complex is a pair 〈V ,S〉 where

Ï V is a set of vertices

Ï S is a downward-closed family of subsets of V called simplices. (i.e.,
X ∈ S and Y ⊆X implies Y ∈ S)

Definition
Ï If X ,Y ∈ S are simplices such that Y ⊆X , then Y is a face of X .

Ï The dimension of a simplex X ∈ S is card(X )−1.

Ï A simplicial complex is pure if all maximal simplices are of the same
dimension.

5 / 24



Simplicial complexes

Definition
A simplicial complex is a pair 〈V ,S〉 where

Ï V is a set of vertices

Ï S is a downward-closed family of subsets of V called simplices. (i.e.,
X ∈ S and Y ⊆X implies Y ∈ S)

Definition
Ï If X ,Y ∈ S are simplices such that Y ⊆X , then Y is a face of X .

Ï The dimension of a simplex X ∈ S is card(X )−1.

Ï A simplicial complex is pure if all maximal simplices are of the same
dimension.

5 / 24



Simplicial complexes

Definition
A simplicial complex is a pair 〈V ,S〉 where

Ï V is a set of vertices

Ï S is a downward-closed family of subsets of V called simplices. (i.e.,
X ∈ S and Y ⊆X implies Y ∈ S)

Definition
Ï If X ,Y ∈ S are simplices such that Y ⊆X , then Y is a face of X .

Ï The dimension of a simplex X ∈ S is card(X )−1.

Ï A simplicial complex is pure if all maximal simplices are of the same
dimension.

5 / 24



Simplicial topology

Definition
A simplicial map f from C = 〈V ,S〉 to C ′ = 〈V ′,S ′〉 is a function
f :V →V ′ such that for all X ∈ S , f (X ) ∈ S ′.

Simplicial complexes ' Topological spaces
Simplicial maps ' Continuous functions

Simplicial complexes are a good setting for algebraic topology:

Ï Simplicial approximation theorem

Ï Sperner’s Lemma, Index Lemma
Ï Homology

6 / 24



Simplicial topology

Definition
A simplicial map f from C = 〈V ,S〉 to C ′ = 〈V ′,S ′〉 is a function
f :V →V ′ such that for all X ∈ S , f (X ) ∈ S ′.

Simplicial complexes ' Topological spaces
Simplicial maps ' Continuous functions

Simplicial complexes are a good setting for algebraic topology:

Ï Simplicial approximation theorem

Ï Sperner’s Lemma, Index Lemma
Ï Homology

6 / 24



Simplicial topology

Definition
A simplicial map f from C = 〈V ,S〉 to C ′ = 〈V ′,S ′〉 is a function
f :V →V ′ such that for all X ∈ S , f (X ) ∈ S ′.

Simplicial complexes ' Topological spaces
Simplicial maps ' Continuous functions

Simplicial complexes are a good setting for algebraic topology:

Ï Simplicial approximation theorem

Ï Sperner’s Lemma, Index Lemma
Ï Homology

6 / 24



Simplicial topology

Definition
A simplicial map f from C = 〈V ,S〉 to C ′ = 〈V ′,S ′〉 is a function
f :V →V ′ such that for all X ∈ S , f (X ) ∈ S ′.

Simplicial complexes ' Topological spaces
Simplicial maps ' Continuous functions

Simplicial complexes are a good setting for algebraic topology:

Ï Simplicial approximation theorem
Ï Sperner’s Lemma, Index Lemma

Ï Homology

6 / 24



Simplicial topology

Definition
A simplicial map f from C = 〈V ,S〉 to C ′ = 〈V ′,S ′〉 is a function
f :V →V ′ such that for all X ∈ S , f (X ) ∈ S ′.

Simplicial complexes ' Topological spaces
Simplicial maps ' Continuous functions

Simplicial complexes are a good setting for algebraic topology:

Ï Simplicial approximation theorem
Ï Sperner’s Lemma, Index Lemma
Ï Homology

6 / 24



Asynchronous Computability
via Combinatorial Topology



Chromatic simplicial complexes

We fix a finite set P of colors/processes.

Definition
A chromatic simplicial complex is given by 〈V ,S ,χ〉 where

Ï 〈V ,S〉 is a simplicial complex

Ï χ :V →P assigns colors to vertices, such that every simplex X ∈ S
has vertices of different colors (∀u,v ∈X .χ(u) 6=χ(v))

Example: a pure chromatic simplicial complex of dimension 2:

7 / 24



Chromatic simplicial complexes

We fix a finite set P of colors/processes.

Definition
A chromatic simplicial complex is given by 〈V ,S ,χ〉 where

Ï 〈V ,S〉 is a simplicial complex

Ï χ :V →P assigns colors to vertices, such that every simplex X ∈ S
has vertices of different colors (∀u,v ∈X .χ(u) 6=χ(v))

Example: a pure chromatic simplicial complex of dimension 2:

7 / 24



Chromatic simplicial complexes

We fix a finite set P of colors/processes.1

Definition
A chromatic simplicial complex is given by 〈V ,S ,χ〉 where

Ï 〈V ,S〉 is a simplicial complex

Ï χ :V →P assigns colors to vertices, such that every simplex X ∈ S
has vertices of different colors (∀u,v ∈X .χ(u) 6=χ(v))

Example: a pure chromatic simplicial complex of dimension 2:

1All the pictures will have 3 processes in order to remain 2-dimensional; this is of
course not a technical requirement.

7 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

0

1

1

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

0

1

1

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

0

1

1

1

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

0

1

1

1

0

0

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

0

1

1

1

0

0

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

0

1

1

1

0

0

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



Example: binary input complex for 3 processes

Ï Every process has input value either 0 or 1.

Ï Every process knows its value, but not the other values.

In the picture below, the three process names are represented as the
colors black, grey, white:

Remark: for n+1 processes, we get a combinatorial n-sphere.

8 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A=

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3

9 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A=

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3

9 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A= 2

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3

9 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A= 2 3

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3

9 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A= 2 3

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3
9 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A= 2 3

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3
9 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A= 1 2 3

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3
9 / 24



The immediate snapshot object

immediate_snapshot : int -> int array

Fix a number n of processes.
We suppose given a shared array A of size n.
Only process Pi can write in A[i ], but everyone can read it.

When Pi calls immediate_snapshot(x):

Ï It writes its input value x in its own cell A[i ].
Ï Then atomically takes a snapshot of the whole array.

Example: for 3 processes P ,Q ,R with inputs 1,2,3.

A= 1 2 3

P’s view: 1 2 3

Q’s view: 2 3

R’s view: 2 3
9 / 24



Protocol complex for immediate snapshot

1 2

3 Immediate Snapshot

Input configuration

1 2 3 2 3

2 3

10 / 24



Protocol complex for immediate snapshot

1 2

3 Immediate Snapshot

Input configuration

1 2 3 2 3

2 3

3

10 / 24



Protocol complex for immediate snapshot

1 2

3 Immediate Snapshot

Input configuration

1 2

3

1 21 2

1 3

1 3

2 3

2 31 2 3

10 / 24



Protocol complex for immediate snapshot

1 2

3 Immediate Snapshot

Input configuration

Chromatic subdivision

1 2

3

1 21 2

1 3

1 3

2 3

2 31 2 3

10 / 24



Protocol complex for immediate snapshot

Input complex

Protocol complex

Immediate snapshot

Key property: the topology is preserved.

10 / 24



The (binary) consensus task

There is a fixed number n of processes.
Each process Pi has a binary input ini ∈ {0,1}.
After communicating, it decides an output di ∈ {0,1}.

Specification:

Ï Agreement: di = dj for all i , j .

Ï Validity: di ∈ {ini | 1≤ i ≤ n} for all i .

Examples: for 3 processes,

Ï if the inputs are (0,0,0), the outputs must be (0,0,0).

Ï if the inputs are (1,0,1), the outputs can be (0,0,0) or (1,1,1).

11 / 24



The (binary) consensus task

There is a fixed number n of processes.
Each process Pi has a binary input ini ∈ {0,1}.
After communicating, it decides an output di ∈ {0,1}.

Specification:

Ï Agreement: di = dj for all i , j .

Ï Validity: di ∈ {ini | 1≤ i ≤ n} for all i .

Examples: for 3 processes,

Ï if the inputs are (0,0,0), the outputs must be (0,0,0).

Ï if the inputs are (1,0,1), the outputs can be (0,0,0) or (1,1,1).

11 / 24



The (binary) consensus task

There is a fixed number n of processes.
Each process Pi has a binary input ini ∈ {0,1}.
After communicating, it decides an output di ∈ {0,1}.

Specification:

Ï Agreement: di = dj for all i , j .

Ï Validity: di ∈ {ini | 1≤ i ≤ n} for all i .

Examples: for 3 processes,

Ï if the inputs are (0,0,0), the outputs must be (0,0,0).

Ï if the inputs are (1,0,1), the outputs can be (0,0,0) or (1,1,1).

11 / 24



Topological characterization of task solvability

Input complex

Protocol complex

Subdivision

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

12 / 24



Topological characterization of task solvability

Input complex

Protocol complex

Subdivision

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

12 / 24



Topological characterization of task solvability

Input complex

Protocol complex

Subdivision

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

12 / 24



Topological characterization of task solvability

Input complex

Protocol complex

Subdivision

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

⊆

12 / 24



Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write registers if and
only if there exists a simplicial map from the protocol complex into the
output complex that satisfies the task specification.

We have reduced a computational question (“Is the task solvable?”) to a
topological one (“Is there a simplicial map?”).

Algebraic topology excels at answering such questions!
Ï Simplicial maps preserve k-connectedness.

Ï Compute algebraic invariants of spaces.

13 / 24



Some results in the field



Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write registers if
and only if there is a decision map from the protocol complex into the
output complex that satisfies the task specification.

For instance: Update/scan wait-free protocols are:

Ï (n−1)-connected (no hole in any dimension)
Ï whatever number of communication rounds

Applications
Ï k-set agreement: generalisation of consensus; processes must
terminate with at most k different values, taken from the initial
values

Ï we cannot even solve k-consensus (k ≥ 1) on such a machine!

Ï Approximate agreement: end up with "close enough" decisions:
Possible!

Ï we replace “wait-free” by “t-resilient”?

−→ Asynchronous Computability Theorems for t-resilient systems,

Saraph, Herlihy, Gafni (DISC 2016).

Ï we use other objects instead of read/write registers?
−→ Many results with atomic operations (test&set, fetch&add etc.),
(semi-) synchronous broadcast etc.

14 / 24



Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write registers if
and only if there is a decision map from the protocol complex into the
output complex that satisfies the task specification.

What if:

Ï we replace “wait-free” by “t-resilient”?

−→ Asynchronous Computability Theorems for t-resilient systems,

Saraph, Herlihy, Gafni (DISC 2016).

Ï we use other objects instead of read/write registers?
−→ Many results with atomic operations (test&set, fetch&add etc.),
(semi-) synchronous broadcast etc.

14 / 24



Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write registers if
and only if there is a decision map from the protocol complex into the
output complex that satisfies the task specification.

What if:

Ï we replace “wait-free” by “t-resilient”?
−→ Asynchronous Computability Theorems for t-resilient systems,

Saraph, Herlihy, Gafni (DISC 2016).

Ï we use other objects instead of read/write registers?
−→ Many results with atomic operations (test&set, fetch&add etc.),
(semi-) synchronous broadcast etc.

14 / 24



Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write registers if
and only if there is a decision map from the protocol complex into the
output complex that satisfies the task specification.

What if:

Ï we replace “wait-free” by “t-resilient”?
−→ Asynchronous Computability Theorems for t-resilient systems,

Saraph, Herlihy, Gafni (DISC 2016).

Ï we use other objects instead of read/write registers?
−→ Many results with atomic operations (test&set, fetch&add etc.),
(semi-) synchronous broadcast etc.

14 / 24



Protocol complexes for other objects

For test-and-set protocols
Herlihy, Rajsbaum, PODC’94

For synchronous message-passing
Herlihy, Rajsbaum, Tuttle, 2001

15 / 24



Example: task solvability for 3 procs, one round, 1-resilient
synchronous broadcast

Input complex

Protocol complex

Protocol
specification

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

⊆

16 / 24



Ex: output complex, 3 processes, for the 2-set agreement

3 sphere, glued together, minus the simplex formed of the 3 values: connected but not 1-connected! (i.e.

simply-connected) - compare with the output complex for consensus: 2 disconnected triangles!

Consequence
The 1-round protocol complex is connected, not simply connected:
=⇒ Impossible to solve consensus in 1 round, in a 1-resilient manner,
with synchronous broadcast
=⇒ Possible to solve 2-set agreement in 1 round, in a 1-resilient manner,
with synchronous broadcast

17 / 24



More generally speaking

In every synchronous broadcast protocol
Ï With (n−2) steps (for n processes, synchronous message passing,
one fault at most, i.e. 1-resilient), the sub-complex with all values
equal to zero, and the one with all values equal to one, are connected

Ï Corollary : there is no algorithm, for this architecture, to solve
consensus in (less than) n−2 rounds of communication (for at most
one round)

Easy...

18 / 24



More generally

For r rounds of communication, and at most k faults in the
synchronous model (message passing)

Ï The (sub-) protocol complex corresponding to an input,
homeomorphic to the sphere in dimension n−1 (binary input values)
P(Sn−1) is (n− rk −2)-connected

Ï This implies in particular that we have a lower bound of n−1 rounds
for consensus, with k = 1 (at most one crash)

19 / 24



Is it that simple?

Renaming
It is known to be implementable on an asynchronous system with
message passing, in the presence of faults:

The (n+1,K )-renaming starts with n+1 processes which all have a name
in 0, . . . ,N. They must terminate with a name in in 0, . . . ,K with
n≤K <N.

20 / 24



Is it that simple?

Renaming
It is known to be implementable on an asynchronous system with
message passing, in the presence of faults:

Ï (Attiya et al. JACM 1990) : wait-free solution for K ≥ 2n+1, and
none when K ≤ n+2

Ï By using entirely geometric techniques: it was shown that there is
there is no renaming when K ≤ 2n (Herlihy and Shavit STOC 1993)

20 / 24



Is it that simple?

Renaming
It is known to be implementable on an asynchronous system with
message passing, in the presence of faults:

A mistake in the proof has been found in 2008 (Rajsbaum and
Castaneda, PoDC). In fact, this is still computable when K = 2n and n+1
is not a power of a prime number!
Example : computable for (K ,n)= (10,5),(14,7) . . . but not for
(K ,n)= (4,2),(6,3),(8,4) . . .

20 / 24



Is it that simple? (2)

Real multiprocessors use much more refined synchronisation
primitives

Ï test&set

Ï fetch&add

Ï compare&swap

Ï queues...

21 / 24



Exemple : Test&Set

Wait-free protocols with Test&Set
Ï are all (n−3)-connecterd

Ï are more expressive than scan/update protocols (for instance, we
can solve the consensus with 2 processes)

Ï but we still cannot solve the consensus problem, in the presence of
faults, for 3 processes or more

22 / 24



Some references

Other primitives, other models (asynchronous, synchronous,
semi-synchronous etc.)...other results

Ï “Distributed Algorithms”, N. Lynch

Ï “The art of multiprocessor programming”, M. Herlihy, N. Shavit

Ï “Distributed Computing through Combinatorial Algebraic Topology”,
M. Herlihy, D. Kozlov, S. Rajsbaum

And also "Directed Topology and Concurrency”, L.
Fajstrup, E. Haucourt, E. Goubault, S. Mimram, M.
Raussen

23 / 24



Conclusion



Conclusion

A deep connection between topology and distributed computing.

Ï Useful to prove impossibility results.

Ï Applies to a large range of computational models.

What I did not talk about:

Ï Full description of the proofs of impossibility results (next time!)

Ï Connection with epistemic logic (very good for proving algorithms
correct, next time!).

Ï Connection with swarm robotics: Bernardo, now!.

24 / 24



Conclusion

A deep connection between topology and distributed computing.

Ï Useful to prove impossibility results.

Ï Applies to a large range of computational models.

What I did not talk about:

Ï Full description of the proofs of impossibility results (next time!)

Ï Connection with epistemic logic (very good for proving algorithms
correct, next time!).

Ï Connection with swarm robotics: Bernardo, now!.

24 / 24



Conclusion

A deep connection between topology and distributed computing.

Ï Useful to prove impossibility results.

Ï Applies to a large range of computational models.

What I did not talk about:

Ï Full description of the proofs of impossibility results (next time!)

Ï Connection with epistemic logic (very good for proving algorithms
correct, next time!).

Ï Connection with swarm robotics: Bernardo, now!.

24 / 24


	Introduction
	Combinatorial Topology
	Asynchronous Computability via Combinatorial Topology
	Some results in the field
	Conclusion

