

Hybrid Interval-Probabilistic Localization in Building Maps

Aaronkumar Ehambram*, Luc Jaulin and Bernardo Wagner

Leibniz Universität Hannover, ENSTA Bretagne

Motivation

Goal: Localize the Vehicle by Matching the Point Cloud to the Facades

Which Pose-Parameters can be constrained?

- Translation:
 - x-direction: 🔾
 - y-direction: 🗸
 - z-direction: 🗙
- Rotation:
 - x-Axis:
 - y-Axis: 🤇
 - z-Axis: 🗸
- Reduce the pose to 2D!
 - Less parameters leads to less dependencies in the equations
 - Better contraction coming with the cost of negecting 3 parameters

RTS

Overview

- Input Data:
 - LiDAR point cloud
 - Building footprints
 - Initial pose is roughly known
- Interval-Based Localization:
 - Interval-based point-to-facade association
 - Interval-based Hough Transformation (iHT)
 - Contract orientation and determine minimal position polygon
- Bounded Optimization:
 - Least squares optimization with rigid bounds

3. Bounded Optimization

Optimized Pose

and Feasible Solution Set

Interval-based Point-to-Facade Association

Interval-based Point-to-Facade Association

Institute of Systems Engineering - Real Time Systems Group

Interval-based Point-to-Facade Association

Output: Cloud of boxes that are associated to the map facades

Problems:

- Balconies, ornaments, close objects, ... may be associated
- Extract line-parameters from a cloud of boxes representing the uncertainty

Our Solution: Interval-based Hough Transformation (iHT)

Interval-based Hough Transformation – Accumulator

Interval-based Hough Transformation – Accumulator Quantization

Quantization

Line Extraction Set of lines with highest support

Interval-based Hough Transformation – Line Extraction

Line extraction based on the quantized accumulator:

- The highest accumulator value is v
- Consider all accumulator cells with >0.95v
- For good line structures, those cell are close together, while for bad line structures there is no significant peak
 - \rightarrow Only select clusters with significant peak
- Take the hull of the cluster

Line Extraction Set of lines with highest support

Interval-based Hough Transformation

Output: Local lines are extracted and we know to which map facades they correspond

Goal: Determine orientation and position of the robot in the map

Training Institute of Systems Engineering - Real Time Systems Group RTS Group i.c.sens **Orientation Contraction** Мар Local data Jai α_m $[\alpha_m]$ $[\alpha_m] - [\alpha_l]$ $[\theta] = [\theta_{\text{init}}] \qquad \bigcap \qquad [\alpha_m] - [\alpha_l]$ $_{i\in\{1,\ldots,n\}}$

ISE

 $[\alpha_l]$

Research

Position Polygon

Approximation: For long facades the orientation uncertanity is small and does not have a strong impact on the position \rightarrow Simplify the orientation interval of a facade to a scalar by taking the mid

Only the distance parameter is "flexible" (interval)

ŊΤ

Position Polygon

A stripe is defined by the form

As multiple facades provide multiple stripes, we seek to solve the interval equation system:

$$\begin{pmatrix} \cos(\alpha_1) & \sin(\alpha_1) \\ \vdots & \vdots \\ \cos(\alpha_n) & \sin(\alpha_n) \end{pmatrix} \begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix}$$

Robot position

Bounded Optimization

Interval-based localization provides a polygon bound for the position and an interval for the orientation

Goal: Find the most likely solution in the feasible set!

 \rightarrow From now on we assume a Gaussian distribution of the error. The MLE becomes a Least-Squares Problem

- Minimization for all measurements and all facades
- Levenberg-Marquardt Optimization
- To account for the rigid bounds: If an update leads to a pose outside the feasible set, recompute the update with higher damping factor

ISE

Leibniz

Universität Hannover

Experimental Results

ISE RTS

Hybrid Interval-Probabilistic Localization in Building Maps

Aaronkumar Ehambram, Luc Jaulin, Bernardo Wagner

Leibniz Universität Hannover

Conclusion

We propose a novel hybrid interval-probabilistic localization approach that...

- ... provides an orientation interval and a position polygon for a given LiDAR scan and a building map.
- ... works in real-time.
- ... outperforms classical methods regarding robustness and calculation speed (comparison with MCL).
- ... combines interval error models and probabilistic error models. The Interval localization provides the rigid bounds for the MLE method to prevent significant divergence.
- ... can not deal with ambiguous localization.
- ... does not solve the global localization problem, instead it can robustly tracks the robot if the initial pose is given up to known uncertainty.

Future Work:

- Extend the localization for ambiguous localization
- Global localization

Thank you for watching!

0

Interval-based Point-to-Facade Association

Experimental Results

Method	Hybrid Localization		MCL
Encloses ground truth pose	99.8%		-
Average radius of smaller side	0.91 m		—
Average radius of larger side	4.2 m		_
Average orientation interval radius	1.8°		_
Optimization	Bounded	Unbounded	_
Translation RMSE	0.237 m	$0.241\mathrm{m}$	0.81 m
Average orientation error	0.339°	0.343°	0.75°
Largest translation error	2.83 m	$2.994\mathrm{m}$	$4.67\mathrm{m}$
Largest orientation error	2.921°	5.935°	6.1°
Result outside feasible pose sets	0.0%	0.725%	-

TABLE I: Evaluation of T_1 with LOD2 Map.

Method	Hybrid Localization		MCL
Encloses ground truth pose	99.8%		_
Average radius of smaller side	1.79 m		-
Average radius of larger side	5.23 m		_
Average orientation interval radius	2.39°		-
Optimization	Bounded	Unbounded	_
Translation RMSE	0.615 m	$0.645\mathrm{m}$	0.85 m
Average orientation error	0.818°	0.843°	0.83°
Largest translation error	$5.03\mathrm{m}$	$8.137\mathrm{m}$	3.5 m
Largest orientation error	6.54°	6.543°	3.92°
Result outside feasible pose sets	0.0%	4.178%	-

TABLE II: Evaluation of T_1 with OSM data.

ISE

Experimental Results

Method	Hybrid Localization		MCL
Encloses ground truth pose	100~%		-
Average radius of smaller side	$1.94\mathrm{m}$		-
Average radius of larger side	$3.48\mathrm{m}$		_
Average orientation interval radius	2.7°		—
Optimization	Bounded	Unbounded	—
Translation RMSE	1.12 m	$1.3\mathrm{m}$	$1.18\mathrm{m}$
Average orientation error	1.149°	1.78°	1.2°
Largest translation error	4.4 m	$6.5\mathrm{m}$	$3.5\mathrm{m}$
Largest orientation error	9.99°	81.7°	2.4°
Result outside feasible pose sets	0.0%	11.7~%	_

TABLE III: Evaluation of KITTI 0027 with OSM data.

Experimental Results

