Lie Groups Applied to mobile robotics Application to Reachability analysis

Julien DAMERS

Kopadia / ENSTA Bretagne

16 May 2022

Outline

1 Context

Q Guaranteed integration method using Lie symmetries

- Why
- Main Idea
- Basic example
- Example of the tank-like robot

Application to reachability

4 Conclusion

Section 1

Context

Conte:

Context of this research

development of offshore wind farms

Figure: AUV used as an autonomous data mule

Conte>

Context of this research

- development of offshore wind farms
- development of underwater mining

Figure: AUV used as an autonomous data mule

Conte>

Context of this research

- development of offshore wind farms
- development of underwater mining
- development of underwater sensor fields

Figure: AUV used as an autonomous data mule

Conte

Context of this research

- development of offshore wind farms
- development of underwater mining
- development of underwater sensor fields
- Increasing need for data of maritime environment

Figure: AUV used as an autonomous data mule

Conte

Context of this research

- development of offshore wind farms
- development of underwater mining
- development of underwater sensor fields
- Increasing need for data of maritime environment
- No possibility to return to the surface before the end of the mission (military)

Figure: AUV used as an autonomous data mule

Conte

Context of this research

- development of offshore wind farms
- development of underwater mining
- development of underwater sensor fields
- Increasing need for data of maritime environment
- No possibility to return to the surface before the end of the mission (military)

Development of swarms of AUVs ↓ Need for cheaper units with no expensive sensors ↓ Improve algorithms of state estimation

Figure: AUV used as an autonomous data mule $\ensuremath{\mathsf{Source:}}\xspace$ USMART project

Section 2

Guaranteed integration method using Lie symmetries

Need for guarantee as we are working with complex systems

- Need for guarantee as we are working with complex systems
- Conventional tools can be quite slow when performing numerous integrations

- Need for guarantee as we are working with complex systems
- Conventional tools can be quite slow when performing numerous integrations
- Conventional tools cannot deal with large initial conditions

Hints from the vector field

Let us consider the system defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

From the associated vector field we can deduce a translation symmetry along Ox_1 and mirror symmetry over Ox_1 that does not affect the vector field. These symmetries are called **Lie** symmetries.

Objective: Determine the flow function $\Phi_t(\mathbf{x})$ i.e. the function that describes the evolution of the vector \mathbf{x} at time t.

Objective: Determine the flow function $\Phi_t(\mathbf{x})$ i.e. the function that describes the evolution of the vector \mathbf{x} at time t.

We already have a **reference** trajectory denoted $\mathbf{a}(\cdot)$ (painted red) and a transformation function $\mathbf{g}_{\mathbf{p}}$ which can send any point of the state space to any other following the symmetries of the system.

Objective: Determine the flow function $\Phi_t(\mathbf{x})$ i.e. the function that describes the evolution of the vector \mathbf{x} at time t.

We already have a **reference** trajectory denoted $\mathbf{a}(\cdot)$ (painted red) and a transformation function $\mathbf{g}_{\mathbf{p}}$ which can send any point of the state space to any other following the symmetries of the system.

Therefore

$$\Phi_t(x) = \mathbf{g}_{\mathbf{p}} \circ \mathbf{a}(t)$$

where $\mathbf{p} = \mathbf{h}(\mathbf{x}, \mathbf{a}(0))$

 $\mathbf{d} = \Phi_t(\mathbf{b})$

Objective: Determine the flow function $\Phi_t(\mathbf{x})$ i.e. the function that describes the evolution of the vector \mathbf{x} at time t.

We already have a **reference** trajectory denoted $\mathbf{a}(\cdot)$ (painted red) and a transformation function $\mathbf{g}_{\mathbf{p}}$ which can send any point of the state space to any other following the symmetries of the system.

Therefore

$$\Phi_t(x) = \mathbf{g}_{\mathbf{p}} \circ \mathbf{a}(t)$$

where $\mathbf{p} = \mathbf{h}(\mathbf{x}, \mathbf{a}(0))$

$$\mathbf{d} = \Phi_t(\mathbf{b}) = \mathbf{g}_{\mathbf{p}}(\mathbf{a}(t)) = \mathbf{g}_{\mathbf{p}} \circ \mathbf{a}(t)$$

Guaranteed Integration, a set inversion problem

With the flow function Φ_t , performing a guaranteed integration for an uncertain initial condition is equivalent to solving a set inversion problem.

Consider a uncertain initial box $[\mathbf{x}_0]$ for which we want to find the image set by Φ_t . We want to find the set \mathbb{X}_t such that

$$\mathbb{X}_t = \Phi_{-t}^{-1}([\mathbf{x}_0]).$$

Applying the SIVIA

Initial condition: $[\mathbf{x}_0] = [0, 1] \times [2, 3]$

Discrete sets computation

Basic example

Applying the SIVIA

Initial condition: $[\mathbf{x}_0] = [0, 1] \times [2, 3]$

Continous set computation

Discrete sets computation

Example of the tank-like robot: Introduction

Let us consider the system defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}(t)) = \begin{pmatrix} u_1(t) \cos(x_3) \\ u_1(t) \sin(x_3) \\ u_2(t) \end{pmatrix}$$

Example of the tank-like robot: Symmetries

Applying the SIVIA

Applying the SIVIA

Initial condition: $[\mathbf{x}_0] = [-0.1, 0.1]^2 \times [-0.4, 0.4]$

J. DAMERS (Kopadia / ENSTA Bretagne)

Pros:

Pros:

 able to deal with large initial condition (no bloating effect)

Pros:

- able to deal with large initial condition (no bloating effect)
- less computation time (less steps of operations)

Pros:

- able to deal with large initial condition (no bloating effect)
- less computation time (less steps of operations)
- Easily get an outer and inner approximation

Pros:

- able to deal with large initial condition (no bloating effect)
- less computation time (less steps of operations)
- Easily get an outer and inner approximation

Limits:

Pros:

- able to deal with large initial condition (no bloating effect)
- less computation time (less steps of operations)
- Easily get an outer and inner approximation

Limits:

 Need for enough symmetries, method will not work for every systems

Pros:

- able to deal with large initial condition (no bloating effect)
- less computation time (less steps of operations)
- Easily get an outer and inner approximation

Limits:

 Need for enough symmetries, method will not work for every systems

Need for a reference

Section 3

Application to reachability

One of the applications of guaranteed integration is reachability analysis. It is used for various purposes:

Performance assessment

- Performance assessment
- Scheduling

- Performance assessment
- Scheduling
- Controller design

- Performance assessment
- Scheduling
- Controller design
- Deadlock

One of the applications of guaranteed integration is reachability analysis. It is used for various purposes:

- Performance assessment
- Scheduling
- Controller design
- Deadlock

The following slides will focus on performance assessment in a mobile robotic context

Common robotic problem: Ensure that a vehicle will either certainly reach a mandatory area or avoid (a dangerous) one.

Checking that we reach a mandatory area:

$$\forall t \in [t], \begin{cases} 1. \ \Phi_{-t}(\mathbf{x}(t)) \in [\mathbf{x}_0] & (\text{evolution}) \\ 2. \ \mathbf{x}(t) \notin \mathcal{G} & (\text{area to reach}) \end{cases}$$

These two constraints cannot be both satisfied \Rightarrow The system will go through the mandatory area

Checking that we avoid a forbidden area:

$$\begin{cases} 1. \ \Phi_{-t}(\mathbf{x}(t)) \in [\mathbf{x}_0] & (evolution function) \\ 2. \ \exists t \in [t], \mathbf{x}(t) \in \mathcal{R} & (area to reach) \end{cases}$$

These two constraints cannot be both satisfied \Rightarrow The system will avoid the forbidden area

Section 4

Conclusion

Conclusion

- A new guaranteed integration method based on Lie symmetries
- adapted to large initial conditions
- Not suitable for every kind of dynamical systems but suitable for robotics

Thank you for your attention

Proof $\mathbb{X}_t = \Phi_{-t}^{-1}([\mathbf{x}_0])$:

$$egin{array}{lll} \mathbf{x} \in \mathbb{X}_t & \Longleftrightarrow & \exists \mathbf{x}_0 \in [\mathbf{x}_0], \mathbf{x} = \phi_t(\mathbf{x}_0) \ & \iff & \exists \mathbf{x}_0 \in [\mathbf{x}_0], \mathbf{x}_0 = \phi_{-t}(\mathbf{x}) \ & \iff & \phi_{-t}(\mathbf{x}) \in [\mathbf{x}_0] \ & \iff & \mathbf{x} \in \phi_{-t}^{-1}([\mathbf{x}_0]) \end{array}$$

Definition (Lie symmetry) : A function g_p is a symmetry of f if the action \bullet of g_p on f leaves f unchanged i.e

$$\mathbf{g}_{\mathbf{p}} \bullet \mathbf{f} = \mathbf{f}$$
.

It is also called a **stabiliser**.

Definition (Lie group of symmetry): Consider a state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ and an manifold \mathbb{P} . A Lie group $G_{\mathbf{p}}$ of symmetries is a family of diffeomorphisms $\mathbf{g}_{\mathbf{p}} \in diff(\mathbb{R}^n)$ parameterised by $\mathbf{p} \in \mathbb{P}$ such that:

- G_p is a Lie group with respect to the composition ∘,
- $\blacktriangleright \ \forall \mathbf{p} \in \mathbb{P}, \mathbf{g}_{\mathbf{p}} \bullet \mathbf{f} = \mathbf{f}.$

Proposition (Action of a diffeomorphism):

$$\mathbf{g} \bullet \mathbf{f} = \left(\frac{d\mathbf{g}}{d\mathbf{x}} \circ \mathbf{g}^{-1}\right) \cdot (\mathbf{f} \circ \mathbf{g}^{-1}).$$

Objective: Finding ${\boldsymbol{g}}$ such that

$$\mathbf{g} \bullet \mathbf{f} = \left(\frac{d\mathbf{g}}{d\mathbf{x}} \circ \mathbf{g}^{-1}\right) \cdot (\mathbf{f} \circ \mathbf{g}^{-1}) = \mathbf{f}$$

Translation symmetry:

$$\mathbf{g}_{\alpha}: \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1+lpha\\ x_2 \end{pmatrix}$$

$$\begin{aligned} \mathbf{g}_{\alpha} \bullet \mathbf{f}(\mathbf{x}) &= \left(\frac{d\mathbf{g}_{\alpha}}{d\mathbf{x}} \circ \mathbf{g}_{\alpha}^{-1}\right) \cdot \left(\mathbf{f} \circ \mathbf{g}_{\alpha}^{-1}\right)(\mathbf{x}) \\ &= \left(\frac{d\mathbf{g}_{\alpha}}{d\mathbf{x}} \cdot \mathbf{f}\right) \circ \mathbf{g}_{\alpha}^{-1}(\mathbf{x}) \\ &= \left(\left(\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix} \cdot \begin{pmatrix}1\\-x_2\end{pmatrix}\right) \circ \begin{pmatrix}x_1 - \alpha\\x_2\end{pmatrix}\right) \\ &= \begin{pmatrix}1\\-x_2\end{pmatrix} \\ &= \mathbf{f}(\mathbf{x}) \end{aligned}$$

Conclusio

Mirror symmetry:

g_β ●

$$\begin{aligned} \mathbf{g}_{\beta} &: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ \beta x_2 \end{pmatrix} \\ \mathbf{f}(\mathbf{x}) &= \begin{pmatrix} d\mathbf{g}_{\beta} \\ d\mathbf{x} \circ \mathbf{g}_{\beta}^{-1} \end{pmatrix} \cdot (\mathbf{f} \circ \mathbf{g}_{\beta}^{-1}) (\mathbf{x}) \\ &= \begin{pmatrix} d\mathbf{g}_{\beta} \\ d\mathbf{x} \cdot \mathbf{f} \end{pmatrix} \circ \mathbf{g}_{\beta}^{-1} (\mathbf{x}) \\ &= \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \beta \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -x_2 \end{pmatrix} \end{pmatrix} \circ \begin{pmatrix} x_1 \\ \frac{x_2}{\beta} \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ -x_2 \end{pmatrix} \\ &= \mathbf{f}(\mathbf{x}) \end{aligned}$$

2	ł.	١	١	١	۲	۲	۲	۲	۲	۲	١	۲	۲	۲	١	١	١	۲	١	١	١	١	١	١	١	۲	١	١	١	۲	١	١	۲	1
	k.	١		۲	۲	۲	١	۲	۲			١.	١.			١.	١.	١		١.	١.	١.			١.	١.		١.	١	١.			١.	
	k.	Ň			λ.	Ň	Ň		Ň				Ň			Υ.	Υ.	Ň			Υ.	Υ.	λ.			×.		Ň	Ň	×.	Ň	Υ.	Υ.	
	k.	Ň	Ń	Ň	Ň	Ň	Ń		Ň	Ň	Ń	Ń	Ń	Ň	Ń	Ń	Ń	Ň	Ň	Ń	Ň	Ń.	Ň	Ň	Ň	Ń.	Ň	Ň	Ň	Ń.	Ň	Ń.	Ň	
	k.				Ϋ.		Ň																			ν.			Ň	ν.			Ϋ.	
	K.	Ň	Ň	1		Ň	Ň		Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ń	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň		Ň	Ň	Ň	Ň		
1	K.	ς.				1									1			1		1									ς.					
	Ł.							~									ς.				ς.				ς.				Ň			ς.		1
	Ľ.							2	<u>,</u>																				ς.				~	
	Ľ.			~	~				2	~		~	~	~	~	~	~		~	~	~	~			~	~	~		÷.	~	~	~		1
	5										-	-																-						1
	1		-	-	-		-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-		
	-		-	-	-			-	-	-	-	-	-	-	+	-	-		-	-	-	-	-	-	-	-	-	-		-	-		-	-
	L.																	+	+			-		-										
	+	+	+		+	+		+	+	+	+	+	+	+	+	+	+		+	+	+	+	+			-			-	-			+	-
	ŀ.																	-		.+														-
	+														-																			-
	-											,																						-
	-	,				,				1	/							,																-
	F	,				,	,		1	,				,				,											,		,			
	k.	,		1	1	,	1	1	,	1				1				1			1				1				,	,			1	
-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	k	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	k	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	k	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	k	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	k	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
- 2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-1			0							1						2						3									4			

Complete symmetry:

$$\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + p_1 \\ p_2 x_2 \end{pmatrix}$$

To find the transport function, we must solve

$$\mathbf{g}_{\mathbf{p}}(\mathbf{a}) = \mathbf{x}_{\mathbf{a}}$$

in order to express ${\bf p}$ using only ${\bf a}$ and ${\bf x}.$ Using the previous example :

$$\mathbf{g}_{\mathbf{p}}(\mathbf{a}) = \mathbf{x} \iff \begin{pmatrix} a_1 + p_1 \\ p_2 a_2 \end{pmatrix} = \mathbf{x}$$
$$\iff \mathbf{p} = \begin{pmatrix} x_1 - a_1 \\ \frac{x_2}{a_2} \end{pmatrix}$$

Therefore,

$$\mathbf{h}(\mathbf{x},\mathbf{a}) = \begin{pmatrix} x_1 - a_1 \\ \frac{x_2}{a_2} \end{pmatrix}.$$

Flow function of the first example:

$$\mathbf{a}(t)=inom{t}{e^{-t}}$$
 and $\mathbf{a}(0)=(0,1)$

$$\Phi_t(\mathbf{x}) = \mathbf{g}_{\mathbf{h}(\mathbf{x},\mathbf{a}_0)} \circ \mathbf{a}(t)$$
$$= \mathbf{g}_{x_1,x_2} \circ \begin{pmatrix} t \\ e^{-t} \end{pmatrix}$$
$$= \begin{pmatrix} t + x_1 \\ x_2 \cdot e^{-t} \end{pmatrix}$$

Flow function for the tank-like robot:

 $\mathbf{a}(0) = (0, 0, 0)$ and $\mathbf{a}(t)$ obtained with CAPD

$$\Phi_{-t}(\mathbf{x}) = \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \mathbf{R}_{x_3 - a_3(t)} \cdot \begin{pmatrix} -a_1(t) \\ -a_2(t) \end{pmatrix} \\ x_3 + a_3(t) \end{pmatrix}$$