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Initial Value Problem of Ordinary Differential Equations

Initial Value Problem of [
Ordinary Differential Equations &

Classical problem
Consider an IVP for ODE, over the time interval [0, T]

y = f(y) with y(0)=yo

This IVP has a unique solution y(t;yo) if f : R” — R" is Lipschitz.

Interval VP
y = f(y,p) with y(0) € [yo]
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and p € [p]



Initial Value Problem of Ordinary Differential Equations

€

Numerical Integration
ENSTA
How compute y(t) = yo + fot f(y(s))ds ? Y

Goal of numerical integration
» Compute a sequence of time instants:
th=0<ty<---<t,=T

» Compute a sequence of values: yg,y1,.-..,Y¥n such that

Vie[0,n], yi~y(tiyo) .

Goal of validated numerical integration

» Compute a sequence of time instants:
h=0<t1 < - <th=T
» Compute a sequence of values: [yo],[yi], .-, [yn] such that

Vie[0,n], [y >y(tiyo) -
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Problem of integral computation

Problem of integral computation
ENSTA
@ 1e paris

Discrete system given by y,11 =y, + foh f(y(s))ds

Bounding of foh f(y(s))ds
If y(s) is bounded s.t. y(s) € [x],

h
/0 F(Ix])ds < [0, ] - [F1((x])

Vs € [0, h], then

How bound y(s) ?
Complex, it is what we are trying to compute !

We note by [¥,] D {y(s),s € [tn, tnt1]}
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Picard-Lindelsf

Picard-Lindelsf (or Cauchy-Lipschitz) €4
Theorem (Banach fixed-point theorem) B

Let (K, d) a complete metric space and let g : K — K a
contraction that is for all x, y in K there exists c € ]0,1[ such that
d(g(x),g(y)) < c-d(x,y) , then g has a unique fixed-point in K.

We consider the space of continuously differentiable functions
CO([tj, tj+1], R") and the Picard-Lindeléf operator

pr(y) = eyt [ RS L with v =y() ()

If this operator is a contraction then its solution is unique and
its solution is the solution of IVP.
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Picard-Lindelsf

Interval counterpart of Picard-Lindelof €4

ENSTA
@ e eamis

With a first order integration scheme that is for f : R” — R"” a
continuous function and [a] C IR", we have

El
/ f(s)ds < (a —a)f([a]) = w([a])f([a]) . ()
a
we can define a simple enclosure function of Picard-Lindeléf such
that der
€
[pel([r]) = [yj] + [0, A] - £([r]) (3)
with h = tj11 — t;j the step-size. In consequence, if one can find [r]
such that [pg]([r]) C [r] then [y;] C [r] by the Banach fixed-point
theorem.
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Picard-Lindelsf

Interval counterpart of Picard-Lindelof ENE;
@ e earis
[y;l
We can then build the Lohner 2-steps method: [yl
]

operator and Banach's theorem

2. Compute [yjt1] with a validated integration

scheme: Taylor or Runge-Kutta t
j

1. Find [y;] and h; with Picard-Lindelof - jj[yjﬂ]

‘ t
TR a

J

It is important to obtain [y;] and [y;;1] as tight as possible

Integration scheme at order higher than one: Taylor for example
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Integration scheme

Integration scheme »

ENSTA
@ e eamis

Two main approaches:
» Taylor series (Vnode, CAPD, etc.):
yir1 =y + 0 Al (y;) + O(hP+Y) with £l the ith term of
serie expansion of f.

O(hP*1) can be easily bounded by the Lagrange remainder of
serie s.t. O(hP+Y) = fIPH(€), with € € [§;], and then
O(hPT1) € FIPHI(g;)

» Runge-Kutta methods (DynIBEX):

Yji+1 = ®(yj, f,p) + LTE, with ® any RK method and LTE
the local truncation error.
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Integration scheme

Runge-Kutta methods »
ENSTA
s-stage Runge-Kutta methods are described by a Butcher tableau @ e
Ci|ail d12 -+ dis .
[ J
Cs | ds1 ds2 -+ dss

Which induces the following recurrence:

k,-:f(thrc,-th YJ+hZai/k/> Vi1 =yj+h) bk

=1 i=1
» Explicit method (ERK) if ay =0is i </
» Diagonal Implicit method (DIRK) if ay =0is i </ and at
least one a;; # 0

» Implicit method (IRK) otherwise
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Integration scheme

Explicit methods
ENSTA
@ 1e paris

Interval extensions
1. Computation of ky = f(y;), ko = f(y; + h- ax1 - k1), .
ki = fy; +h>_ aike), ..., ks = Fy; + h 2571 asrke)

2. Computation of yj41 =y;+ h> ; ; bik; + LTE

= with interval arithmetic (natural extension)

Example of HEUN

ol 0 0
11 0
1/2 12

[ki] = [f1(ly;]),  [ke] = [fI(ly;] + hlka]),
[yj+1] = [y;] + h([k1] + [k2])/2
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Integration scheme

Implicit Schemes
ENSTA
e earis

Example of Radau IIA
1/3]5/12 —1/12
1 |3/4 1/4
| 3/4  1/4

[ka] = [f1([y;] + h(5[k1]/12 — [k2]/12)),
[ka] = [F1(ly;] + h(3[k1]/4 + [ka]/4)

We need to solve this system of implicit equations !
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Integration scheme

Solve implicit scheme with a contractor point of view ENE;

e

ki is the approximate of f(y(t; + h/3)), but by construction
y(tj + h/3) € [§)], then [kq] C f([¥;]) (same for k3)

Algorithm based on contraction
Require: f, [yj], [y;], LTE
k] = [f1([3;]) and [ko] = [£]([y;])
while [k;] or [kz] improved do
[ki] = [ka] O [F1([y;] + A(5[k1]/12 — [ko] /12))
[ka] = [ko] N [F1([y;] + h(3[k1]/4 + [k2]/4)
end while
[yj+1] = [yjl + h(3[ki] + [k2])/4 + LTE
return [y 1]
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Integration scheme

How to compute the LTE ?

y(tn; ynfl) —¥Yn= C- (hp+1) with C € R.

Order condition
This condition states that a method of Runge-Kutta family is of
order p iff

» the Taylor expansion of the exact solution

» and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence

The LTE is the difference of Lagrange remainders of two
Taylor expansions

€

ENSTA

e anis
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Integration scheme

A quick view of Runge-Kutta order condition theory »

ENSTA

e

Starting from y(@) = (f(y))(q_l) and with the Chain rule, we have

High order derivatives of exact solution y

y = f(y)
y="f(y)y f'(y) is a linear map
yO& = (y)(y,y) + ' (y)y "(y) is a bi-linear map

y O = F"(y)(3,5.9) + 37" (0E.9) + F(y)y®  F(y) is a tri-linear map

y® = fO(y)(y,y.¥.y) + 6" (¥)(§.,y)
+4f"(y) (Y, y) + 3F"(y)(¥, ¥) + F'(y)y®
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Integration scheme

A quick view of Runge-Kutta order condition theory ENE;

e eanis

Inserting the value of y, y, ..., we have:

High order derivatives of exact solution y

y="f
y = f(f)

y® = (£, ) + £ (F(F))

yW = F(EF )+ 3F(FF,F) + F1(F(F, F)) + F/(F(F()))

» Elementary differentials, such as f”(f,f), are denoted

by F(7)
Remark a tree structure is made apparent in these computations
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Integration scheme

A quick view of Runge-Kutta order condition theory gsz

e eanis

Rooted trees

» fis a leaf

» f’is a tree with one branch, ..., (%) is a tree with k branches
Example

f'
f”(f’f7 f) is associated to f f!
f//

Remark: this tree is not unique e.g., symmetry
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Integration scheme

A quick view of Runge-Kutta order condition theory >

ENSTA
Theorem 1 (Butcher, 1963) @ s

The gth derivative of the exact solution is given by

(@ _ . r(7) the order of 7 i.e., number of nodes
yu= (z): o(7)F(7)(yo) ~ with a(T) a positive integer
r(t)=q

We can do the same for the numerical solution

Theorem 2 (Butcher, 1963)

The gth derivative of the numerical solution is given by
Y = 3 A(r)é(r)a(r)F(r)(yo) with () 2 positive integer

= ¢(7) depending on a Butcher tableau
rnT)=q

Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff ¢(7) = ﬁ V1, r(T) < p
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Integration scheme

LTE formula for explicit and implicit Runge-Kutta €4

ENSTA
From Th. 1 and Th. 2, if a Runge-Kutta has order p then @ eas

p+1
Yt Yo-1)—Yo = (p”:l)l 3 el

—p+1
€ € [ta-1,tn]
» a(7) and (1) are positive integer (with some combinatorial
meaning)
» ¢(7) function of the coefficients of the RK method,
Example

qﬁ( <> is associated to Z biajc; with ¢ = Z ajk

i,j=1

Note: y({) may be over-approximated using Interval

Picard-Lindel6f operator.
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Integration scheme

Implementation of LTE formula ENE;

e anis

Elementary differentials

F(7)(y) = F0y) (F(r)(y), -, Frm)(y))  for 7 =[71,..., 7]

translate as a sum of partial derivatives of f associated to sub-trees

Notations
> n the state-space dimension

> p the order of a Rung-Kutta method

Two ways of computing F(7)
1. Direct form: complexity O(nP*1)

2. Factorized form: complexity O(n(p + 1)%) based on

Automatic Differentiation
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Problem of wrapping effect

Wrapping effect

Consider the following IIVP: (y1> = <_y2)
y2 Y1

with y1(0) € [-1,1], y2(0) € [10, 11]. Exact solution is

y(t) = A(t)yo with A(t):( cos(t) Sin(t)>

—sin(t) cos(t)

We compute periodically at t = Fnwith n=1,... 4

wl— 1

g -

Wrapping effect comparison
2 (black: initial, green: interval
1T E blue: interval from QR, red:
zonotope from affine)

— T T T T T
1 0 1 2 4 s & 7 8 9 10 U 1

€

ENSTA

e
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Problem of wrapping effect

Solution to wrapping effect €4

ENSTA
e earis
One solution is the centered form of Taylor series, coupled with QR

Taylor integration

[yl = y] + S0 T F(Tyg]) + AV NI ()
Each fli=l([y;]) evaluated in centered form:

ANn(fy)) + (i) (] — () -

and a QR-decomposition of J is used to reduce the wrapping
effect. ..

Geometric sense

Consists on a rotation of the evaluation. But in O(n?)
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Problem of wrapping effect

Another solution: Affine arithmetic

A different arithmetic than interval
Represented by an affine form % (also called a zonotope):

n
X =g+ E QE;
i=1
where «; real numbers, g the center, and ¢; are intervals [—1, 1]

Geometric sense

Represents a zonotope, a convex polytope with central symmetry
(not affected by rotation !)

€

ENSTA

e
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Affine arithmetic

Affine arithmetic €4
ENSTA
An interval a = [a1, ap] in affine form: @ rooaes

X = ap + aie with ag = (a1 + a2)/2 and a1 = (a2 — a1) /2.
Usual operations: X = ag+ > ; ajei and § = Bo + >_r_; Bici,
then with a,b,c € R

a% + by + c = (acg + bBo + c) + ¥ _(ac; + bBi)e; .
i=1

Multiplication creates new noise symbols:

n
$x §=agar+ Y (eifo+ cfi)ei + venia
i=1
where v = (3_7; |ai]) x (327, |Bi]) over-approximates the error
of linearization.
Other operations, like sin, exp, are evaluated using either the
Min-Range method or a Chebychev approximation
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Stepsize controller

€

Enclosure part of the algorithm ENSTA
Compute §1 = PL(¥o) P earis
iter =1
while (§1 Z ¥o) and (iter < size(f) + 1) do

Yo=%

Compute §; with PL(¥g)
iter = iter + 1

end while Stepsize h decreases but never

if (§1 C Jo) th .
' "éom,,yfﬁe ite = LTE(5,) increases: Zenon problem

if Ite > tol then
h = h/2, restart

end if
else

h = h/2, restart
end if

Stepsize controller

If first step is achieved with success, multiply h by a factor
function of method order and LTE:
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Validated integration in a contractor formalism

Validated integration in a contractor formalism gsz

e panis

Contractor for [yj]

After Picard-lindeldf contractance obtained :
Ctepr ([§;]) 2 [§;] N PL([y;], [§;]) till a fixed point

Contractor for [y; 1]
Cter([yj+1]) = [yj+1] N RK([y]) + LTE([3,])
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Additive constraints

Additive constraints

For constraint valid all the time

vt g(y(t)) =0

Coming from mechanical constraints, energy conservation, etc.

A new contractor

Based on Fwd/Bwd contractor on g combined with previous Ctc:

> Cterp([¥]) N Ctepr([§])
» Ctcrg([yj+1]) N Cterr([yj+1])

€

ENSTA

e
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Additive constraints

Additive constraints

For constraint valid all the time

vt g(y(t)) =0

Coming from mechanical constraints, energy conservation, etc.

A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:
> Cterp([¥;]) N Crepc([95])

> Cterp([yj+1]) N Cterk([yj+1])
But ? The second one is often a bad idea, lost of noise symbols !

€

ENSTA

e panis
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Additive constraints

Additive constraints

For constraint valid all the time

vt,g(y(t)) =0

Coming from mechanical constraints, energy conservation, etc.

A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:

> Cterp([§)]) N Ctepc([9)])

> Cterg([yj+1]) N Cteri([yj+1])
But ? The second one is often a bad idea, lost of noise symbols !
Because intersection of zonotopes is not a zonotope...

€

ENSTA

e
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Temporal constraints

Temporal constraints

€

ENSTA

e panis

2
OK-1

15

1
0.5

o o T

NOK-4 i

05 OK-2

-1
1.5

NOK-3
-2
0 0.5 1 15 2 25 3 35 4 4.5 5 5.5 6 6.5 7

OK-1: safe zone, OK-2: Goal, NOK-3: obstacle, NOK-4: forbidden
zone at a given time, ...
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Temporal constraints

Temporal constraints >

ENSTA
@ e eamis

Constraint Satisfaction Differential Problem (CSDP)

With a tube R(t), such that y(t) € R(t),Vt (obtained with
validated simulation:

Verbal property CSDP translation

Stay in A (until 7) R(t) C Int(A),Vt (t < T)
In Aatr R(7) C Int(A)

Has crossed A (before 7) dt, R()NOA#0D (t <7)
Go out A (before 7) Jt, R()NOA=0 (t <7)
Has reached A R(TYNOA#0

Finish in A R(T) C Int(A)
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Bibliography »

ENSTA

B e paris

» Solving Ordinary Differential Equations |: Nonstiff Problems -
Hairer et al. - 2009 - Springer

» Coefficients for the study of Runge-Kutta integration
processes - Butcher - 1963 - Journal of the Australian
Mathematical Society

> Interval Analysis - Moore - 1966 - Prentice-hall

» Validated solutions of initial value problems for ordinary
differential equations - Nedialkov et al. - 1999 - Appl. Math.
and Comp.

» Validated Explicit and Implicit Runge-Kutta Methods -
Sandretto et al. - 2016 - Reliable Computing

> Dynlbex - http:
//perso.ensta-paristech.fr/~chapoutot/dynibex/
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Do it yourself

Do it yourself »
ENSTA
Consider an IVP - Van der Pol oscillator @ eanis

w1 = y3)y1 — yo
with £ =1 and y(0) = (2;0)"

To Do
Compute the simulation of this ivp with Dynlbex !

Write a function, an IVP, launch simulation till t = 10s

v

v

Export and plot the result (with vibes or matlab)

v

Find the “best” method and precision to obtain a nice picture
Play with & (0.2, 2, etc.)

What do you see after y > 57

What do you need to change ?
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