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Guaranteed simulation of differential equations

Recall of Ordinary differential equations

Given by
y'=1f(y.t)

Initial Value Problems

y/:f(y7t)a Y(O):)’O

Numerical simulation of IVPs till a time ¢,
Compute y; =~ y(t;) with t; € {0, t1,..., t,}
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Guaranteed simulation of differential equations

Validated simulation of IVPs
ENSTA
Produces a list of boxes [y;| and [¥;] such that @ eans
> y(t;) € [yi] with t; € {0, t1,...,tn}
> y(t) €[] for all t € [t;, tit1]

Method of Lohner
1. Find [§;] with Picard-Lindelof operator
2. Compute [y;] with a validated integration scheme
(Vnode-LP) or Runge-Kutta (Dynlbex)
[yl
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Differential Algebraic Equations

Differential Algebraic Equations »

ENSTA

General form: implicit

F(t7.y7y/7"-) = 0, tO S t S tend
y' = DAE 15 order, y” = DAE 2" etc
(all DAEs can be rewritten in DAE of 1° order)

Hessenberg form: Semi-explicit (index: distance to ODE)

index 1 : Y —f(txy index 2 : = f(t.x.y)
0=g(t,x,y) O—g(t,x)

=- Focus on Hessenberg index-1: Simulink, Modelica-like, etc.
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Differential Algebraic Equations

Differential Algebraic Equations »

ENSTA

General form: implicit

F(t,y,y',...) =0, to < t < tepg
y' = DAE 15 order, y” = DAE 2" etc
(all DAEs can be rewritten in DAE of 1° order)

Hessenberg form: Semi-explicit (index: distance to ODE)

index 1 : Y —f(txy index 2 : = f(t.x.y)
0=g(t,x,y) O—g(t,x)

Some of dependent variables occur without their derivatives !

Different from ODE -+ constraint

y'=1£(t,y)
v o St < tep
{OZg(y,y’) 0 end

= Direct with contractor approach
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Differential Algebraic Equations

A basic example €4

ENSTA
e
System in Hessenberg index-1 form
y=y+x+1
y(0) = 1.0 and x(0) = 0.0
(y+1)xx+2=0
Simulation = stiffness (in general)
= — e
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Differential Algebraic Equations

Simulation of a DAE

As ODE: a list of boxes [y;] and [y;] such that
> y(t;) € [yi] with t; € {0, t1,...,tn}
> y(t) € [yi] for all t € [t;, tit1]
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Differential Algebraic Equations

Simulation of a DAE
ENSTA
e eanis

As ODE: a list of boxes [y;] and [y;] such that
> y(t;) € [yi] with t; € {0, t1,...,tn}
> y(t) € [yi] for all t € [t;, tit1]
But in addition: a list of boxes [x;] and [%;] such that

» x(t;) € [x;] with t; € {0, t1,...,tn}
» x(t) € [X] for all t € [t;, tit1]
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Differential Algebraic Equations

Simulation of a DAE € 4
ENSTA

e panis

As ODE: a list of boxes [y;] and [y;] such that
> }/(ti) € [yl] with t; € {07 t,..., tn}
> y(t) €[] for all t € [t;, tit1]

But in addition: a list of boxes [x;] and [%;] such that
» x(t;) € [x;] with t; € {0, t1,...,tn}
> x(t) € [X] for all t € [t;, tiy1]

Both validate
> y'(ti) € f(ti, [x], yi])
» Ix € [x],3y € [vi] : g(ti,x,y) =0
» y/(t) € f(t,[%],[7i]), Vt € [ti, tiv]
> Vit € [t tipa], Ix € [&],Ty € [7] - g(t,x,y) =0
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Approach to simulate DAE

Based on Lohner two-step approach >

ENSTA

D e ranis

Step 1- A priori enclosure of state and algebraic variables

How find the enclosure [X] on integration step ?

Assume that g—f is locally reversal

we are able to find the unique x = ¢(y) (implicit function
theorem), and then:

y' = f((y),y)

and finally we could apply Picard-Lindelof to prove existence and
uniqueness, but...
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Approach to simulate DAE

Based on Lohner two-step approach €4

ENSTA

e

Step 1- A priori enclosure of state and algebraic variables

How find the enclosure [X] on integration step ?

Og
ox
we are able to find the unique x = ¢(y) (implicit function
theorem), and then:

Assume that is locally reversal

y' = f((y),y)

and finally we could apply Picard-Lindelof to prove existence and
uniqueness, but...

[ 1) is unknown !j
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Approach to simulate DAE

Based on Lohner two-step approach

ENSTA
Step 1- A priori enclosure of state and algebraic variables |
Solution
If we are able to find [X] such that
for each y € [y],3!x € [X] : g(x,y) = 0, then 3!h on the
neighborhood of [X], and the solution of DAE 3! in [y] (Picard
with [X] as a parameter)
A novel operator Picard-Krawczyk PKC:
P(ly] [)?])) ([)7]) -
If - C Int (| .7 | then 3! solution of DAE
(’C([y], [%1) [X]
» P a Picard-Lindelof for y’ € f([X], )
» K a parametrized preconditioned Krawczyk operator for
g(x,y) =0,Vy € [y]
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Approach to simulate DAE

ENSTA

Parametric Krawczyk
@ e earis

Parametric preconditioned Krawczyk operator

K([7], [%]) = m([x]) — Cg(m([X]), m([7]))—
(Cg—i([?L ) = DX = m([x1)) -
Cg—‘j(m([?]), D] = m(71) (1)
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Approach to simulate DAE

Parametric Krawczyk
ENSTA
@ 1e paris

Interval Newton operator

MEE
repeat
[A] = J([x])

[b] = F(m([x]))
Solve [A]s = [b] with a linear system solver method (Gauss

elimination for example)
[x] = [x] N's + m([x])

until Fixed point
If N'([x]) C Int([x]), then F has a unique solution and this solution

is in NV ([x])

Parametric preconditioned Krawczyk
A better version of Newton, with parameter and preconditioning
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Approach to simulate DAE

Frobenius theorem E’

ENSTA

e

Let X and Y be Banach spaces, and A C X, B C Y a pair of open sets. Let

F:AxB— L(X,Y)

be a continuously differentiable function of the Cartesian product (which inherits a differentiable structure from its
inclusion into X x Y) into the space L(X,Y) of continuous linear transformations of X into Y. A differentiable
mapping u : A — B is a solution of the differential equation

Y = Flx.y) ()

if u’(x) = F(x, u(x)) for all x € A. The equation (1) is completely integrable if for each (xg, yo) € A X B, there
is a neighborhood U of x0 such that (1) has a unique solution u(x) defined on U such that u(x0)=y0. The
conditions of the Frobenius theorem depend on whether the underlying field is R or C. If it is R, then assume F is
continuously differentiable. If it is C, then assume F is twice continuously differentiable. Then (1) is completely
integrable at each point of A X B if and only if

DiF(x,y) - (s1, %) + DaF(x, ) - (F(x,y) - 51, %) = DiF(x,y) - (s2,51) + D2F (x,y) - (F(x, ) - 52, 51) for all
s1,s2 € X. Here D1 (resp. D2) denotes the partial derivative with respect to the first (resp. second) variable; the
dot product denotes the action of the linear operator F(x, y) € L(X, Y), as well as the actions of the operators
D1F(x,y) € L(X, L(X, Y)) and D2F(x, y) € L(Y, L(X, Y)).

Dieudonné, J (1969). Foundations of modern analysis. Academic Press.
Chapter 10.9.
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Approach to simulate DAE

Based on Lohner two-step approach €4

ENSTA

e

Step 2- Contraction of state and algebraic variables (at t + h)

Two contractors in a fixpoint:
» Contraction of [y;+1] (init [¥])
» [X;] as a parameter of function f(t,x,y)
= ODE (stiff + interval parameter)
= Radau IIA order 3 (fully Implicit Runge-Kutta, A-stable,
efficiency for stiff and interval parameters)
» Contraction of [x;4+1] (init [X;])
> [yi+1] as a parameter of function g(x,y)
= Constraint solving
= Krawczyk + forward/backward
(+ any other constraints, from physical context or Pantelides
algorithm)
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Approach to simulate DAE

Recall on Radau methods E’

ENSTA
D e eanis

Yn+1ZYn+hZf:1 bik;, ki= f(t0+C,h y0+hZ —1 dij )

Butcher tableau Radau A order 3
1/3 | 5/12 -1/12
1 | 3/4 1/4
| 3/4 1/

Butcher tableau Radau IlA order 5

2_y6 | 1 _7v6 37 160v6 _ 2 . 6
5 10 45 360 225 1800 225 75
24 V6 | 37, 160v6 11, 7Vv6 2 _ V6
5 10 225 1800 45 60 225 75

1 4 _ V6 44 V6 1

9 36 9 36 9

4 _ V6 4, V6 1

9 36 9 36 9
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Approach to simulate DAE

€

Based on Lohner two-step approach
ENSTA

e panis

How to control the stepsize of integration scheme 7

Classical method: Constrained by the Picard success and an
evaluation of the truncature error lower than threshold
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Approach to simulate DAE

Based on Lohner two-step approach

How to control the stepsize of integration scheme 7

Classical method: Constrained by the Picard success and an
evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable
If x leads to a large evaluation of truncature error: too late !

€

ENSTA

e panis
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Approach to simulate DAE

Based on Lohner two-step approach €4

ENSTA

e panis

How to control the stepsize of integration scheme 7

Classical method: Constrained by the Picard success and an
evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable
If x leads to a large evaluation of truncature error: too late !

Solution: force diameter of x grows slower than y

Empirical approach: to improve !
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Examples

A basic example €4

ENSTA
e earis

System in Hessenberg index-1 form

/
y=y+x+1 _ _

{ (Vi1 exta—o YO =10andx(0)e[-20,20

(consistency: x(0) = —1)

Simulation till t=4s (30 seconds of computation)
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Examples

The classical example: Pendulum €4

ENSTA
@ e eanis
u
v

/

/

mu’ = —pA
mv =—qg\—g

~Q T

m(u® +v?) —gg— PA=0
(p,q,u,v)o =(1,0,0,0) et \g € [-0.1,0.1] (consistency: A =0)
Simulation till t=1s (2 minutes of computation)

Sy
1
25 25
/
0.5 20 20 \
|
15 15
\ |
0 + \ \
10 A 10 i
@5 5 5 |
0 0 + |
-0.5 0 05 1 -0.2 o 02 04 06 08 1 12 1 0 1
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Examples

€

Pendulum with Dymola
ENSTA

e

Dynlbex: Dymola:

NP2 BN
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Examples

Pantelides on pendulum €4
ENSTA
@ 1e paris

Pantelides

Algorithm for order reduction, formal differentiation and
manipulation of equations

On pendulum problem

pPP+q>—1=0
pxu+qg*xv=20
mx (> +v2)—gxq>—P*xp=0

= Constraints valid all the time !
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Examples

Pendulum to 1.6s, to/ = 10718 € 4

ENSTA
28 minutes... @ roans
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