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Part VIII

Numerical methods for IVP-DDE
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Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, tend]

ẏ = f (t, y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y

∀t, ∀y1, y2 ∈ Rn, ∃L > 0, ‖ f (t, y1)− f (t, y2) ‖≤ L ‖ y1 − y2 ‖ .

Goal of numerical integration
Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = tend

Compute a sequence of values: y0, y1, . . . , yn such that

∀` ∈ [0, n], y` ≈ y(t`; y0) .

s.t. y`+1 ≈ y(t` + h; y`) with an error O(hp+1) where
h is the integration step-size
p is the order of the method
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New problems to solve

System of Delay Differential Equations (DDE)

ẏ(t) = f (t, y(t), y(t − τ)) t0 6 t 6 tend

y(t) = φ(t) t 6 t0

System of Neutral Delay Differential Equations (NDDE)

ẏ(t) = f (t, y(t), y(t − τ), ẏ(t − σ)) t0 6 t 6 tend

y(t) = φ(t) t 6 t0

Remark
For t > t0 it can be that t − τ < t0 so an initial function φ(t) (history) is
needed

We focus on DDE in this lecture.
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Various kinds of delays

Constant delay τ and σ are non-negative values
Variable or time dependant delay τ(t) and σ(t)
State dependant delay τ(t, y(t)) and σ(t, y(t))

Remark: constant and time dependant delay are well studied in the literature.
State variable is still an open problem.

Remark: We will focus on constant delays
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Existence and uniqueness of the solution

It is related to Lipschitz property, in particular for

ẏ(t) = f (t, y(t), y(t − τ(t, y(t)), ẏ(t − σ(t, y(t))) t0 6 t 6 tend

y(t) = φ(t) t 6 t0

if

inf
[t0,tf ]×Rd

τ(t, x) = τ0 > 0 inf
[t0,tf ]×Rd

σ(t, x) = σ0 > 0

then problem reduces to IVP-ODE, on interval [t0, t0 + H] with
H = min(τ0, σ0), such that

ẏ(t) = f (t, y(t), φ(t − τ(t, y(t))), φ̇(t − σ(t, y(t))) 6 tend

y(t) = φ(t0)

This is named method of steps but it does not always work in particular when
delays τ or σ vanishes around t∗
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DDE is not an ODE

Consider the system in 1D{
ẏ(t) = −y(t − 1), t > 0
y(t) = 1, t 6 0

As ẏ(0)− = 0 and ẏ(0)+ = −y(t − 1) = −1 the derivative function has a jump
at t = 0.

And the second derivative ÿ(t) is given by

ÿ = −ẏ(t − 1)

and so it has a jump at t = 1.

The third derivative y ′′′(t) has a jump at t = 2 ans so forth.

τ(t) and σ(t) are assumed continuous
a jump discontinuity in ÿ is named 1-level primary discontinuity
a jump discontinuity in y ′′′ is named 2-level primary discontinuity
. . .

Remark that the solution becomes smoother and smoother as the primary
discontinuity level increases.
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Solution of example
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Figure 1: Solutions of (3.5).
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Continuous Runge-Kutta methods

It is important to have a continuous solution of the ODE in order to get values
of the solution at time t − τ for instance.

As previously seen (cf lecture on discontinuous simulation), we can build a
polynomial approximation using yn, f (yn), yn+1 and f (yn+1). The accuracy of
the approach is interesting with only order 2 RK.

For DDE, we have to find high accurate continuous extension of the solution
a.k.a. CERK (Continuous extension Runge-Kutta methods)
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CERK

Recall that an explicit Runge-Kutta method is defined by:

ki = f

(
tn + cihn, yn + h

i−1∑
j=1

aijkj

)
yn+1 = yn + h

s∑
i=1

biki (1)

They are built from order condition which relates the Taylor expansion of the
true solution and the Taylor expansion of the numerical solution.

What we want is

η(tn + θhn) = yn + hn

s∑
i=1

bi (θ)ki 0 6 θ 6 1

bi (θ) are polynomials of a suitable degree such that

bi (0) = 0 and bi (1) = bi i = 1, . . . , s

interpolants of the first class are defined by only using intermediate steps ki
used to define the RK method

interpolants of the second class are defined by adding extra stages
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Interpolants of the first class

Theorem: interpolants of the first class
Every RK methods (explicit and implicit) of order p > 1 has a continuous
extension η(t) of order (and degree) q = 1, . . . , bp + 1c

Midpoint rule
1
2

1
2
1

b1(θ) = θ

Gauss’s method

k1 = f
(

tn +
(

1
2
−
√

3
6

)
hn, yn + h

(
1
4

k1 +
(

1
4
−
√

3
6

)
k2

))
k2 = f

(
tn +
(

1
2

+
√

3
6

)
hn, yn + h

((
1
4

+
√

3
6

)
k1 +

1
4

k2

))
yn+1 = yn + h

(
1
2

k1 +
1
2

k2

)
b1(θ) = −

√
3

2 θ
(
θ − 1−

√
3

3

)
and

b2(θ) =
√

3
2 θ
(
θ − 1 +

√
3

3

)
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Interpolants of the second class

Why adding new stages? To reach
max

06θ61
| yn+1(tn + θhn)− η(tn + θhn) |= O(hp+1

n )

We will consider CERK methods which will have the FSAL property but adding
new stages to reach a given order of the numerical approximation and a given
order of the continuous approximation will have some limitations.

order stages
1 1
2 2
3 4
4 6
5 8
6 11

Example of order 3
0
12
23

12
23

4
5 − 68

375
368
375

1 31
144

529
1152

125
384

b1(θ) b2(θ) b3(θ) b4(θ)

b1(θ) = 41
72θ

3 − 65
48θ

2 + θ

b2(θ) = − 529
576θ

3 − 529
344θ

2

b3(θ) = − 125
192θ

3 − 125
128θ

2

b4(θ) = θ3 − θ2
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