Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021



Part VIII

2/12



Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, tend]
y=f(t,y) with y(0) =yo
IVP has a unique solution y(t;yo) if f : R” — R" is Lipschitz in y

Vt,Vy1,y2 € R", 3L >0, | f(t,y1) = F(t,y2) IS L[ yr—y2 |

Goal of numerical integration
o Compute a sequence of time instants: to =0 < t1 < - < tp = tend

o Compute a sequence of values: yo,y1,...,Yn such that
Ve e [0,n], yemy(teiyo) -
@ s.t. yer1 ~ y(te + h;ye) with an error (’)(h"“) where

o h is the integration step-size
o p is the order of the method
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New problems to solve

System of Delay Differential Equations (DDE)

y(t) = f(t,y(t),y(t — 7)) to < t < tend
y(t) = ¢(t) t < to

System of Neutral Delay Differential Equations (NDDE)

y(t) = f(t,y(t),y(t — 7),y(t — o)) to < t < tend
y(t) = &(t) t

N
s

For t > to it can be that t — 7 < to so an initial function ¢(t) (history) is
needed

We focus on DDE in this lecture.
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Various kinds of delays

Constant delay 7 and o are non-negative values
Variable or time dependant delay 7(t) and o(t)
State dependant delay 7(t, y(t)) and o(t, y(t))

Remark: constant and time dependant delay are well studied in the literature.
State variable is still an open problem.

Remark: We will focus on constant delays

5/12



Existence and uniqueness of the solution

It is related to Lipschitz property, in particular for

y(t) = £(t,y(t), y(t — 7(t, ¥(t)), ¥(t — o(t,y(t))) to < t < teng
y(t) = #(t) t < to
if
inf  7(t,x) =7 >0 inf  o(t,x) =00>0
[to,tF] xRY [to,te] X RY

then problem reduces to IVP-ODE, on interval [to, to + H] with

H = min(7o, 00), such that
y(t) = (£, y(t), ¢(t — (£, (1)), (t — o (t,y(t))) < tend
y(t) = ¢(to)

This is named method of steps but it does not always work in particular when
delays 7 or o vanishes around t*
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DDE is not an ODE
Consider the system in 1D

y(t)=—-y(t—1), t>0
{Y(t)_lv t<0

As y(0)~ =0 and y(0)* = —y(t — 1) = —1 the derivative function has a jump
at t =0.

And the second derivative y(t) is given by
y=-y(t—-1)

and so it has a jump at t = 1.
The third derivative y”’(t) has a jump at t = 2 ans so forth.

7(t) and o(t) are assumed continuous

@ a jump discontinuity in ¥ is named 1-level primary discontinuity

!

@ a jump discontinuity in y”’ is named 2-level primary discontinuity

Remark that the solution becomes smoother and smoother as the primary
discontinuity level increases.
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Solution of example

-1 0 1 2 3
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Continuous Runge-Kutta methods

It is important to have a continuous solution of the ODE in order to get values
of the solution at time t — 7 for instance.

As previously seen (cf lecture on discontinuous simulation), we can build a
polynomial approximation using yn, f(yn), Yn+1 and f(ynt+1). The accuracy of

the approach is interesting with only order 2 RK.

For DDE, we have to find high accurate continuous extension of the solution
a.k.a. CERK (Continuous extension Runge-Kutta methods)
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CERK

Recall that an explicit Runge-Kutta method is defined by:

i—1 s
ki=f (t,, + Ciba,ya+h Y a,-jkj> Yo =Ya+hY bk (1)
i=1

Jj=1

They are built from order condition which relates the Taylor expansion of the
true solution and the Taylor expansion of the numerical solution.

What we want is
N(ta+0hn) =y + hn > bi(0)ki 0<O<1
i=1
bi(6) are polynomials of a suitable degree such that
b,(O):O and b,‘(l):b,' I':17..,,S

interpolants of the first class are defined by only using intermediate steps k;
used to define the RK method

interpolants of the second class are defined by adding extra stages
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Interpolants of the first class

Theorem: interpolants of the first class

Every RK methods (explicit and implicit) of order p > 1 has a continuous
extension 7(t) of order (and degree) g=1,...,|p+ 1]

k1=f(t,,+ (% _ ‘?)h yn+h<%k1+ (% - ‘?)kz))
k2=f(tn+ (%+‘/§)h y"+h((§+‘/?§) k1+§kz>)

1 1
Yot1 = Yo+ h (§k1 4 Ekz)

bu(6) = — 3¢ (0 _1- ?) and

bz(a)z%ge(e—u%g)
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Interpolants of the second class

Why adding new stages? To reach

max | ynia(tn + Ohn) = n(tn + 0hn) |= O(hy™)
We will consider CERK methods which will have the FSAL property but adding
new stages to reach a given order of the numerical approximation and a given
order of the continuous approximation will have some limitations.

1 1 0
2 2 12 12
3 4 %f 228 -
5 375 375
: 0 1| 3L 59 15
5 8 144 1152 384
6 11 | b1(9) b2(0) b3(0) ba(0)
° bl(e) 4103 02+0
29 29 2
L b2(9) 276 - 2440
e 0= -0 - 2
o by(0) = 6° —
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