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Part 6. Section 1
Introduction fo Differential Algebraic Equations

o Introduction fo Differential Algebraic Equations
e Notion of index for DAE
e Index reduction

© sovability of IVP DAE

o Initial Value Problem for DAE — solving methods
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Definition of Differential Algebraic Equations (DAE)

We consider a differential system of equation

F1(X(t),X(t)7 t)
, Fa(x(t), x(t), t)
F(x,x,t) = : =0
Fal%(2), x(t), £)
with x(t), x(t) € R".

This system is a DAE if the Jacobian matrix

oF . .
—— is singular

ox
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Example of DAE

The following system is a DAE

x1—x1+1=0 — X
1_ ! = F(x,x,t)= X X+l with x=
X1xo+2=0 x1xo + 2

X2

The Jacobian of F w.r.t. x is

on o
8i _ (Bxl BXQ) _ (—1 0) - det (ai) =0
Ox ok 9F x2 0 ox

Ox1 Oxp

Note in this example X2 is not explicitly defined.
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Example of DAE continued

Solving DAE is a hard challenge either symbolically or numerically.

Special DAE forms are usually considered: linear, Hessenberg form, etc.

@ solving for X; the equation x; — %1 +1=0= % =x1 +1

@ Substitute X1 in X1x2 +2 = 0 we get

X1 = x1 +1 Ordinary differential equation

(a+1)x+2=0 Algebraic equation

Note: this form of DAE is used in many engineering applications.
@ mechanical engineering, process engineering, electrical engineering, etc.

@ Usually: dynamics of the process + laws of conservation
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Engineering examples of DAE - Chemical reaction

An isothermal continuous flow stirred-tank reactor’ (CSTR) with elementary
reactions:
A=B—-C
assuming
@ reactant A with a in-flow rate F, and concentration Ca,
@ Reversible reaction A = B is much faster that B — C, i.e., k1 > ko

V=F,-F
Fa
CA:V(CAO Ca) — R
F
Cg=—-2Cs+R—R
%
Fs
Cc=--2 +R
c CC+ 2
C
0=C— -2
Keq
0=Rs— ksCp

1Control of Nonlinear DAE Systems with Applications to Chemical Processes
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Engineering examples of DAE - Chemical reaction

@ Ry and R, rates of reactions
o F output flow

@ Ca, Cg and Cc are concentrations of A, B and C.

Let
X = (V7 CA7 CB7 CC)
zZ = (Rl,RQ)
we get
x = f(x, z)
0:g(X7Z)
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Engineering examples of DAE - Mechanical system

Pendulum

@ second Newton's law

m>"<——£x
T
F
my = ’"él;?)/

Mechanical energy conservation

X2+y2:1€2

X1 = X3
X‘2 = X4

F
X3 _le
. F
X =g
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Engineering examples of DAE - Electrical system

Ohm’s law

CVc=ic, LV =i,Vg=Rig "

Kirchoff’s voltage and current laws
@ Conservation of current

. . . . . . v
ie=ir, ir=lc, ic=1i G‘“’ s .

o Conservation of energy

VR+Vi+Vc+VE=0

And we get

. 1

Ve= =i
c=ch

. 1

Vi= i
L=l

0= Vg + Rig

0=Vg+Vr+Vc+V,
0=1i —ig
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Engineering examples of DAE - Electrical system

Let
x = (Ve, Vi, VR, iL, ig)
we have
% 0 0 0 O
0 f 000
x=|0 0 0 0 Ofx
0 0 0 0 O
0 0 0 0 O
0 01 0 R 0
0=11 1 1 0 O |x+ (1] Ve
0 0 0 1 -1 0
which is of the form
x = Ax

0=Bx+ Dz
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Method of Lines for PDE

Consider the linear PDE (diffusion equations)

ou 2u u(x = xo,t) = up
—(x,t) = D—(x,t) with
81‘( ) 8X2( ) {gi(X—Xf,t)_O

and D a constant.

Using method of lines, we have with an equally spaced grid for x (finite
difference)

O*u U —2u; + Ui 2

x? ~ Ax? +0 (AX )
Hence, we get

du’:Dw for i=1,2,...,M

dt Ax?
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Method of Lines for PDE

In other words, we get the system

uy = up
dup DU3*2U2+Ub
dt Ax?
% _ DU4—2U3—|—U2
dt Ax2
dum _ plms— 2upm + um—1
dt Ax?
Um+1 = Upm

Note upm1 is outside of the grid so we add an extra constraints.

Hence we get a DAE
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Method of Lines for PDE




Classification of DAE

@ Nonlinear DAE if it is of the form
F(x,x,t)=0
and it is nonlinear w.r.t. any one of x, x, or t
o Linear DAE if it is of the form
A(t)x + B(t)x = c(t)
If A(t) = A and B(t) = B then the DAE is time-invariant
o Semi-explicit DAE it is of the form
x = f(t,x, z)
0= g(t,x,2)

z is the algebraic variable and x is a differential /state variable
Fully implicit DAE it is of the form

F(x,x,t)=0
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Classification of DAE - cont

Note any DAE can be written in a semi-explicit form.

X=z

0= F(z,x,t)

F(x,x,t) =0 é»{

Remark this transformation does not make the solution more easier to get

But useful in case of linear DAE, see next.
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Classification of DAE - cont

Consider a linear time-invariant DAE

Ax 4+ Bx + b(t) =0

assuming that AA + B (matrix pencil) is not singular for some scalar A.

Then it exists non-singular matrices G and H of size n X n such that:
Im 0 _(J O
GAH = (0 N> and GBH = (0 /n—m>

I is the identity matrix of size m x m (m < n)

In—m is the identity matrix of size (n — m) x (n — m)
N is a nilpotent matrix, i.e., 3p € NT, NP =0

J e R™™
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Classification of DAE - cont

Hence

Ax + Bx + b(t) = 0 < (GAH)(H ')x 4+ (GBH)(H™")x + Gb(t) = 0

Im O\ 1, . (4 0\, 3
@(0 N)H x—|—<0 Inm>H x+ Gb(t) =0

& with W(t):H_lx

Im 0} . J 0
(0 N>W+<O In_m>w+Gb(t)—O

Let w = (wy, W2)T with w1 € R™ and w» € R"™7, b = (by, bz)T we get

w1 + Jwy + bl(t) =0
Nwi + ws + ba(t) =0

From Nilpotency property, we get
w1 = —Jwy — bl(t)
0=—(N")""wy — (NP) ' by(t)
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Part 6. Section 2
Notion of index for DAE

° Introduction fo Differential Algebraic Equations
0 Notion of index for DAE

e Index reduction

@ sovability of IVP DAE

o Initial Value Problem for DAE — solving methods
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Index of DAE

Remark

There are several definitions of an index.
Each measure a different aspect of the DAE.

o Differential index (§) measure the degree of singularity.
@ Perturbation index (7) measure the influence of numerical approximation.

@ etc.

Definition of differential index

The index of a DAE system F (x,x,t) = 0 is the minimum number of times
certain equations in the DAE must be differentiated w.r.t. t, in order to
transform the problem into an ODE.

Remark: (differential) index can be seen as a measure of the distance between
the DAE and the corresponding ODE.

Remark: mathematical properties are lost with differentiation!
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DAE and index

Definition of index
The differential index k of a sufficiently smooth DAE is the smallest k such

that:
F(x,x,t)=0
%(X,x, t)=0
O“F .
W(X7X’ t) = 0

uniquely determines x as a continuous function of (x, t).
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Differential index and DAE — example

Let
x1=x1+1

(X1+1)X2+2:0
with x, the algebraic variable.
Differentiation of g w.r.t. t,

X1X2

dtg(XhXZ) =0 =  Xx1x2 + (X1 + 1))'(2 =0 = X =

=
X11

Only one differentiation is needed to define x», this DAE is index 1

Other examples,
@ CSTRis index 2
@ Pendulum is index 3
There are higher index DAEs (index > 1)

Index reduction is used to go from higher index to lower index DAE (cf Khalil
Ghorbal's lecture)
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DAE family and differential index

ODE system x = f (t, x(t)) l
Algebraic equation y = q(t) l

DAE in Hessenberg form of index 1

x=f(t,x,y)

0=g(x,y) with g—i is non-singular
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Examples of differential index - cont.

DAE in Hessenberg form of index 2

x=f(t,x,y)
og of

0=g(t,x) with ax By is non-singular

v

DAE in Hessenberg form of index 3

x=f(t,x,y,2)

y=g(t,x,y)
Oh dg Of

0= h(t,y) with 3y 0x 9z is non-singular

e.g., mechanical systems
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Perturbation index
The DAE has the perturbation index k along a solution x if k is the smallest
integer such that,
for all functions x(t) having the defect
f(Xg,Xg, t) = (5(1‘)
there exists an estimate
[ x(2) = xs(¢) [[< € (H x(to) = xs(to) || +max || 8(¢) || +-max: || 8°(¢) |
ot max | 64V )
t

for a constant C > 0, if § is small enough.

Property:
<t <d+1 J
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Part 6. Section 3
Index reduction

° Introduction fo Differential Algebraic Equations
0 Notion of index for DAE

e Index reduction

@ sovability of IVP DAE

° Initial Value Problem for DAE — solving methods
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RLC circuit

up = f(t)

u = R1i1

io U = Raio

_,di

+\ u, = LE
Dl - ch
. T

Up =t + Uc

u = ur+

uc = uz
o= i1+ i
— h=h+ic

We want to compute a state-space form of this RLC circuit.
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Structure incidence matrix
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Structure incidence matrix
Relation between equations (rows) and unknowns (columns)

o if the j-th equation contains the j-th variable then the matrix coefficient
(7,j) contains 1 and O otherwise.
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Structure incidence matrix - cont.

By default all equations are implicit (or acausal)

Two rules to choose the set of variables to solve
@ if an equations contains only a single unknown then we need that variable
to solve it (i.e., this equation is causal, e.g., Eq. (1))
@ If an unknown only appears in one equation, that equation must use to
solve it. E.g., Eq. (9) i only appears in that equation.

Apply iteratively these rules:
o if a row only contains one 1, that equation needs to be solved for that
variable so eliminate both row and column
@ if a column only contains one 1, that variable needs to be solved for that
equation so eliminate both row and column
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Structure digraph

Remark the number of equations must always equal to the number of variables.
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Structure digraph - cont.

Building: There is a link between a node of equations and a node of variable is
this variable appears in that equation.

Finding which variable needs to be solved from which equations, is based on a
graph coloring algorithm (Tarjan)

When a variable is selected to be solved from an equation the link between
them is colored in red.

When a variable is known or when the equation in which it occurs is being
used to solve an other variable, the link is colored in blue

A causal equation has exactly one red link connected to it
An acausal equation has block or blue connected edges

A known variable has exactly one red input edge

An unknown variable has only black or blue input edges

No equation or variable has more than one red edges
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Structure digraph - cont.

Rules to find variables and equations

@ For all acausal equations, if an equation has only one black line attached
to it, color that line red, follow it to the variable it points at, and color all
other connections ending in that variable in blue. Renumber the equation
using the lowest free number starting from 1.

@ For all unknown variables, if a variable has only one black line attached to
it, color that line red, follow it back to the equation it points at, and color
all other connections emanating from that equation in blue. Renumber the
equation using the highest free number starting from n, where n is the
number of equations.

These rules are applied recursively.
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Structure digraph

After one iteration of the algorithm.

Eq. (1) -1

#
Eq. (8)
10
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Structure digraph

At the end of the algorithm
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Structure digraph

At the end of the algorithm and the system of equations is written as

up =
u =
=

u =

duc
dt

dip
i
o =

Note these equations are causal and in

f(t)
U2/R2

up — uc

=u R1

ih— i

=+ W

ic/C
ur/L
i+

order to be evaluated.

(11)
(12)
(13)
(14)
(15)
(16)
(17)

(18)

(19)
(20)

35/65



Structure incidence matrix and Tarjan algorithm

Q
=
Q
<
5

o
o
<
>
&
<
S
fory
)
<
S
5-

cCcoocococorOOR
OCoOoOrHOOOKRKEO
cCcoo0coOoOrROOROO
CcoorHrORHOOO
HOOORRFROOOO
corrorRrOOOOO
oOorrOoOrRrOOOOOO
cCoroOoO0OoO0O0 oS
o»—\oooooooo&‘
HOoOOO0OO0OO0OOO OO

Note 1 the matrix is lower triangular (Tarjan < matrix permutation)

Note 2 Tarjan algorithm has a linear complexity in the number of equations.
Also used in Pantelides algorithm
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Algebraic loops

A tiny modification of the RLC circuit

up = f(t) (21)
v = Rii (22)
= Roio (23)
w3 = R3iz (24)
di
u = Ld—tL (25)
up = u1 + us (26)
u=uw+ (27)
uz = (28)
io=1ih + i (29)
h=h-+i (30)

Note the capacitor is replaced by a resistor.
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Algebraic loop - structure digraph
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Algebraic loop - structure digraph - Tarjan

Remark after 2 iterations the Tarjan algorithm cannot progress any more.
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Algebraic loop - structure digraph - Tarjan

uo = f(t) (31)

u— Rih =0 (32)
wm—Rib=0 (33)
us — Rsiz = 0 (34)
Uy + us = U (35)
u—u3=20 (36)
h—h—i3=0 (37)
up = u + w2 (38)

% — L (39)
=i+ it (40)

Note The last six equations form an algebraic loop and cannot be sorted then
they must be solved all together.
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Algebraic loop - structure digraph - Tarjan - cont

&
~

ug up i1 wg iy ug i3 up, at iQ

Eq.(7.6a) 1 | 0 0 0 0 0 0 0 0 0
— + — — — — — — .

Eq.(7.6b) 0 | 1 1 0 0 0 0 | 0 0 0

Eq.(7.6¢) 0 | 0 0 1 1 0 0 | 0 0 0

Eq.(7.6d) 0 | 0 0 0 0 1 1 | 0 0 0

Eq.(7.6e) 1 | 1 0 0 0 1 0 | 0 0 0

s — Ea(7.60) 0 | 0 0 1 0 1 0 | 0 0 0

Bq.(7.68) o | o 1 o 1 0 1 | o0 0 0

. — — — — — — + — .
Eq.(7.6h) 0 1 0 1 0 0 0 | 1 | 0 0
. — + —

Eq.(7.6i) 0 0 0 1 0 0 1 | 1 | 0

— + -

Eq.(7.6j) 0 0 1 0 0 0 0 0 | 1

(7.7)

Algebraic loops deserve special treatment:
@ in case of linear system: Gauss elimination

@ otherwise: Newton algorithm

Algebraic loops are very frequent in multi-body dynamics.
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Structural singularity elimination

vo = F(£) (41)
ur = Rio (42)
. duy
g% 4
=G (43)
dU2
=G— 44
= G (44)
Up = UR + tn (45)
u = (46)
— o =1+ (47)

If the state variables are u; and up then Eq. (46) is a constraint (a variable as
only blue edges in the structure digraph).

Pantelides algorithm can can be used to handle this situation
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Pantelides and structural singularity elimination

If up = uy is true for all t then

duy  duy

— forall t

dt  dt

Idea use symbolic differentiation to compute Eq. (48) and replace the

constraint by its derivative. Hence,

UO:f(t)
UR:Ri()
. duy
= C —
Mg
dU2
= C—=
2=ty
Up = Ur + 1
duz _ duy
dt  dt
o =i+ i

(48)

(49)
(50)

(51)
(52)
(53)
(54)
(55)

Using Tarjan algorithm we get an algebraic loop but we know how to deal with.
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Pantelides and structural singularity elimination

Structurally singular systems are also known as higher index problems.
@ an index-0 contains neither algebraic loop nor structural singularities

@ index 1 contains algebraic loops but no structural singularities

Pantelides is a symbolic index reduction algorithm. One application reduces
the index by 1.
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Issues of index reduction

Issues

o Consistent initial conditions finding initial value for differential and
algebraic variables may be very difficult.
For
F(x,x,t) =0

Xo is a consistent initial value, if there exists a smooth solution that fulfills
x(0) = xo and this solution is defined for all ¢.

E.g., semi-explicit DAE with only x(0) = xo what about the algebraic
variable?

o Drift off effect when applying index reduction the solution of the lower
index DAE may not be of the original index.

In consequence, tools/methods to solve DAE should
@ provide automatic index reduction
@ be able to find consistent initial values

e.g., Dymola/Modelica
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Example of consistent initial value

Let

i=—-05(u+v)+ qi(t)
0=10.5(u—v) — qAt)

If u(0) is given we can determine v(0) = u(0) — 2¢2(0) and so 1(0).
Set u=y1 +y, and v =y — y» we get

ity =—yi+aqft)
0=y — q2(t)

For consistency we must have y>(0) = g2(0) but we can choose y1(0) arbitrarily
but we cannot determine y1(0) without using y»(0) = §2(0).
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Example of drift off effect

Going from index 3 pendulum to index 2 by differentiating the constraint
x2 4+ x3 — (> = 0 leads to

>'(1 = X3 (56) ‘
X =X (57) :
)'(3 = *fxl (58)
J4
. F
a = g% (59)
0 = x1x3 + Xoxa (60) ;1;
Comments:

@ solid line curve is the result of index 3 pendulum problem

o Constraint (60) says the velocity should orthogonal to the position. Index
reduction increase the space of solution with dashed line curves
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Part 6. Section 4
Sovability of IVP DAE

a Introduction fo Differential Algebraic Equations
e Notion of index for DAE

e Index reduction

@ sovability of IVP DAE

o Initial Value Problem for DAE — solving methods
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A small theory of DAE

For ODE, we have a theorem applying on a large class of problem proving the
existence and unicity of the solution

No such theorem exists for DAE

Instead we have some theorems of solvability of different kinds of DAE
@ Linear constant coefficient DAE
@ Linear time varying coefficient DAE
@ Non-linear DAE
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Solvability of DAE

Definition

Let 7 be an open sub-interval of R, Q a connected open subset of R*™ and
F a differentiable function from Q to R™. Then the DAE F(x,x,t) =0 is
solvable on Z in Q if there is an r-dimensional family of solutions (¢, c)
defined on a connected open set Z x €2, 2 C R, such that

© ¢(t,c) is defined on all of Z for each c € {2
Q (#/(t,c), (t,c), t) € Qfor (t,c) €T x Q

© If 1(t) is any other solution with (¢'(t, ¢), ¥(t, c), t) € Q then
Y(t) = ¢(t, c) for some c € Q

@ The graph of ¢ as a function of (t,c) is an r + 1-dimensional manifold.

o’
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Solvability of linear constant constant DAE

Let
Ax+Bx = f

And consider the matrix pencil AA 4+ B

A matrix pencil is regular if det(A\A + B) is not identically zero as a function of

A

Theorem

The linear constant coefficient DAE is solvable if and only if AA + B is regular
pencil.

Note: the degree of nilpotency of the matrix N used in the decomposition is
also the index number of the DAE.
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Conclusion

DAE are a generalisation of ODE but
@ there is no general theorem to prove existence of the solution of DAE
o differentiation used to index reduction can introduce singularities

@ the class of numerical methods used to solve DAE is rather small compare
to ODE.
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Part 6. Section 5
Initial Value Problem for DAE — solving methods

o Introduction fo Differential Algebraic Equations
e Notion of index for DAE
e Index reduction

© sovability of IVP DAE

o Initial Value Problem for DAE — solving methods
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IVP for DAE

We will consider DAE in Hessenberg form of index 1
y="f(ty,2)
0=g(y,z) with % is non-singular

with  z(0) =2y and y(0)=1yo

and sometimes, DAE of the following form can be considered

My(t) = f(y(t))

M is known as the Mass Matrix
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Relation between DAE and stiff ODE

Singularly perturbed ODE systems are of the form
y=~f(ty,2) (61)
€z = g(t,2,y) (62)

When e = 0 then we get a DAE but Eq. (61) is usually stiff.
DAE can be seen as infinitely stiff.

Consequence
not all numerical method to solve ODE can be used to solve DAE!

we want A-stable methods (event L-stable) but stiffly stable is enough (as for
BDF)
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State-space method to solve DAE index 1

y="~(ty,2)
0=g(y,z) with g—i is non-singular
with  z(0) =2z and y(0)=1yo

By Implicit function theorem there exists (at leat locally) a function G(y) such

that
z=G(y)

By substitution we can have
y = f(t,y,G(y))

which can be solved by any method for IVP ODE but
@ you lose the structure of the problem

@ G is not so simple to get
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e-embedding approach — Runge-Kutta case

y="f(ty.2)
. . og . .
ez=g(y,z) with 5. non-singular
with  z(0) =2zo and y(0)=1yo

Applying a Runge-Kutta method,

Yo = yn+ hz an(Ynjy an)

j=1

ez +hy_ a5g(Ye, Zy)

=t

Ezni

Yoi1 =Ya+h Y bif(Yi,Z)

i=1

ezpi1 =ezo+h Y big(Yi, Z;)

i=1
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e-embedding approach - Runge-Kutta case — cont’

Applying a Runge-Kutta method,

Yo = Yn + hz an(Ynj, an)

=1

el =cz,+ h Z a,-jg(Ynj, an)

Jj=1

Yoi1 = Yo+ h Y bif(Yi,Z)

i=1
€Zn41 = €Z,+ h Z big(Yi,Z;)
i=1

assuming the matrix A of coefficients aj; is non singular,

hg(Yni7 Zni) =€ Zwij (Ynj — Zn) with wij = (a,j)_l

j=1
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e-embedding approach - Runge-Kutta case — cont’

From

hg(Yni7 zni) =¢£ Zw;j (Ynj — Zn) with wijj = (a,-j)_l
j=1

we get,

Yo =Yyn+ hz a;f YnJysz
0= g(Yni7Zni)

Vo1 =Ya+hD_ bif(Yi,Z))

i=1

Zni1 = <1 - Z b,-w,-j> z, + Z bjwijZy; independence wrt

i,j=1 i,j=1

Remark: this approach can lead to numerical divergence as the solution may

not respect the constraint g(y,z) =0
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e-embedding approach/State-space method

Approximating state-space method can be reached by the formula

Yo =yo+hy  aif (Yo, Zy)
j=1
0= g(Yni7 Zni)

Yoi1 = Yo+ h Y bif(Yi,Z)

i=1
0 = g(Yn+1,2n11)
Remarks

@ For stiffly accurate methods (see next slide) e-embedding method and
state-space method are identical

@ c-embedding method can be generalized to other classes of DAE index 1
(mass matrix form or implicit form)
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Solving DAE with Runge-Kutta methods

A Runge-Kutta is defined by its Butcher tableau

C1 | a1 a2 - dis
Cs | @1 as2 - dss
by b5 .- bl (optional)

Remark

For DAE, we only consider fully implicit Runge-Kutta methods which are
L-stable, with A non-singular and with b; = a5 (j =1,2,...,s).

The most used method are Backward Euler’'s method and Radau IIA order 5.

Remark:

@ the last condition b; = ay; is good as the last step of RK method is not
applied on algebraic variable.

o Stiffly accurate is sufficient for semi-explicit index 1 but not for higher
index
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Multi-step methods

Recall: single-step methods solve IVP using one value y, and some values of f.

A multi-step method approximate solution y,11 of IVP using k previous
values of the solution y,, Yn—1, - .., Yn—k—1-

Different methods implement this approach
o Adams-Bashworth method (explicit)
@ Adams-Moulton method (implicit)
o Backward Difference Method (implicit)

The general form of such method is

k k
> iy =h Y Bif(tass, i) -
j=0 j=0

with «; and 8; some constants and ax = 1 and |ao| + |Bo] # O
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Solving DAE with multi-step methods

We consider )
y="~(ty,z2)

0=g(y,z) with g—i is non-singular
with  z(0) =2zo and y(0)=1yo
by using e-embedding method.
y="f(ty.2)
. . og . .
ez=g(y,z) with 5. non-singular
with  z(0) =2zo and y(0)=1yo

Applying, multi-step method, we get

k k
Z iynyi = h Z Bif (Yoti, Znti)
IT(O lio
€ Z Qizpyi = h Z Big(YntisZnti)
i=0 i=0
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e-embedding method — multi-step case - cont’

Applying, multi-step method, we get

P K
Z jynri = h Z Bif (Yoti, Zn+i)
=0 i=0

k k
€ Z Qizpyi = h Z ﬁig(YnJri, Zn+i)
i=0 i=0

and setting € = 0 we get
k k
Z AiYnti = h Z 5if(Yn+i, Zn+i)
i=0 i=0

k
0=h Z Big(ynH, Zn+/’)

i=0

A state-space method can be applied by using

k k
Z QiYnti = h Z Bif(ywri, Zn+i)
i=0 i=0

0 = g(Yntks Zntk)
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Solving DAE index 1 with BDF

For BDF one has )
1
e Z;‘ iYnti = F(Ynik; Znik)
0= g(Yn+k7 Zn+k)
Remarks

o we still need stiffly accurate method so BDF has to be considered

@ Can be applied on DAE index 2 also

Convergence
m-step BDF with m < 6 converge; i.e.,
y(t) —yi <O(h") and z(t;) —z < O(h™)

for consistent initial values.
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