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Part 5. Section 1
Introduction to stability of numerical methods

o Introduction to stability of numerical methods

e Linear stability analysis for one-step methods

e Linear stability analysis for multi-step methods

o Stiffness
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Stability properties: a graphical view

Note: there are several kinds of stability.

Problem |—>| Impose C, |<—>| Consequence x(t) |

Method |—>| Impose Cp, |<—>| Consequence x, |

From a generic point of view we have:
@ Impose a certain conditions C, on IVP which force the exact solution x(t)
to exhibit a certain stability
@ Apply a numerical method on IVP

@ Question: what conditions must be imposed on the method such that the
approximate solution (x»)nen has the same stability property?
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Total stability of IVP

Consider, a perturbed IVP
y = f(t,y) + 6(t) with y(0) =yo+d and te€][0,b]

(6(t),d0) denotes the perturbations

Definition: totally stable IVP
From
@ ((t),d0) and (6*(t),ds) two perturbations
@ y(t) and y*(t) the associated solutions
if
vVt € [0, b],Ve > 0,3K > 0,
[ 6(t) = 6™ (t) IS en || do — b5 [I< e =] y(t) —y" () I< Ke

then IVP is totally stable.
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Zero stability of numerical methods

We consider the application of numerical method on a perturbed IVP so we
have a perturbed numerical scheme

Definition: zero-stability
From
@ J, and ¢, two discrete-time perturbation
@ y, and y; the associated numerical solution
if
Vn € [0, N],Ve > 0,3K > 0,Vh € (0, ho]
| 60 —0n [I< € =]l yo — ya [I< Ke

then the method is zero-stable

In a different point of view, we want to solve y = 0 with y(0) = yo and so
numerical method should produce as a solution y(t) = yo. (It is obvious for RK
methods)
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Zero stability for multi-step methods

First and second characteristic polynomials for linear multi-step methods are

Root condition
A linear multi-step method satisfies the root condition is the roots of the first
characteristic polynomial p have modulus less than or equal to one and those of
modulus one are simple.

Theorem

A multi-step method is zero stable is it satisfies the root condition.

Theorem
No zero-stable linear k-step method can have order exceeding k + 1
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Consistency of numerical methods

We denote by ®¢ (t,, yn; h) a Runge-Kutta method such that
Ynt+1 = Yn + hd)f (tn7Yn; h)

If ¢ is such that
lim ®¢ (tn,Yn; h) = F(tn,¥n) -
h—0

then the Runge-Kutta method is consistent to the IVP.

As a consequence, the truncation error is such that:

lim y(tnt1) — Yo — h®7 (t, yni h) =0
h—0

Consistency for s-stage RK methods

A necessary and sufficient condition is that

Zs: bi=1
i=1
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Convergence of numerical methods

A Runge-Kutta method is said convergent if

li n = ty
lim yn = y(tn)

Lipschitz Problem
condition totally stable

consistency and Yn con-
o zero-stability verges to y(t)
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Part 5. Section 2
Linear stability analysis for one-step methods

o Introduction to stability of numerical methods

e Linear stability analysis for one-step methods

o Linear stability analysis for multi-step methods

o Stiffness
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Linear stability

We consider the IVP:

y=Xy with XeC,®(\)<0

Applying a RK method, we get
Yne1 = R(h)y, with h=\h

R(h) is called the stability function of the method.

Stability function of RK methods

det (I — hA + hilb*)

RO == =)

A~

So, limp—00 x» = 0 when |R(h)| < 1
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Linear stability of ERK — 1

The stability function for s-stage (s =1,2,3,4 = p = s) ERK is reduced to a
polynomial function:

R(h)=1+/3+ih2+ + g
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Linear stability of ERK -1

The stability function for s-stage (s > 4 = p < s) ERK is reduced to a
polynomial function:

) — A 1o 12 - 7aq
R(B) =14 bt ot D0 > yeh
q=p+1

with 4 depending only on the coefficients of the ERK methods.

For example,
o for RKF45 (s =5 and p = 4)

. s lay las laa 1 s
RhY=1+h+ —=h"+-h"+ —=h"+ —h
(h) + +2! +6 +24 + 104

e DOPIR54 (s = 6 and p = 5)

2 2 145 123 14y 1 :5 1 46
R(h)=14+h+ =h —h —h —h —h
(h) + +2! +6 +24 +120 +6OO
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Part 5. Section 3
Linear stability analysis for multi-step methods

o Introduction to stability of numerical methods

e Linear stability analysis for one-step methods

o Linear stability analysis for multi-step methods

o Stiffness
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Linear stability of Adams-Bashworth methods

We consider the scalar linear IVP
y=2Xdy with AeC,R(\) <0

For linear problem, the stability polynomial of a multi-step method is
w(r,h) = p(r) — ho(r) with h=Ah
Stability Domains of AB

Im{\ - h}
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Linear stability of Adams-Moulton methods
We consider the scalar linear IVP
y=2Xdy with AeC,R(\) <0
For linear problem, the stability polynomial of a multi-step method is
w(r,h) = p(r) — ho(r) with h=Ah

Stability Domains of AM
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Linear stability of Adams-Bashworth-Moulton methods

We consider the IVP:
x=MXx with XeC,®N\)<0

Stability Domains of ABM

Re{\ - h}
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Linear stability of BDF
We consider the scalar linear IVP
y=2Xdy with AeC,R(\) <0
For linear problem, the stability polynomial of a multi-step method is

w(r,h) = p(r) — ho(r) with h=Ah

Stability Domains of BDF

Im{X - h}

-5
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Part 5. Section 4
Stiffness

° Introduction to stability of numerical methods

e Linear stability analysis for one-step methods

e Linear stability analysis for multi-step methods

o Stiffness
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Stiff versus non-stiff problems

Problem 1
ny (-2 1 i 2sin(t)
w) U1 —2) ) T 2(cos(t) = sin(t))
Problem 2
(2) = (5 -30) (2) # (sl o)
¥ 998 —999 / \ 2 999(cos(t) — sin(t))

Both have the same exact solution:

1(t) o 1 sin(t) L e 1(0) (2
(;(ﬂ) = 2exp(—t) <1> + (cos(t)) with initial values (;(0)) = <3)
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Simulation results

(d) Probiem 1, 2-stage Gauss; N =29.
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Stiff linear ODE: a definition

We consider linear constant coefficients IVP of the form:

y = Ay + ¢(t)

assuming that all eigenvalues A are such that () < 0

We denote by
o | R(N) |= maxici<n | R(N) |
o [ R(Q) [= minici<n | R(N) |
o the stiffness ratio is defined by | R(\) | / | R(}) |

Stiffness definition - 1 (Lambert)

A linear constant coefficients system is stiff iff all eigenvalues are such that
R(A) < 0 and the stiffness ratio is large.
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Others stiffness definitions

Definition 2 (Lambert)

Stiffness occurs when stability requirements, rather than those of accuracy,
constrain the step size.

Definition 3 (Lambert)

Stiffness occurs when some components of the solution decay much more
quickly than others.

Global definition (Lambert)

If a numerical method with a finite region of absolute stability, applied to a
system with any initial values, if forced to use in a certain interval of integration
a step size which is excessively small in relation to the smoothness of the exact
solution in that interval, then the system is said to be stiff in that interval.
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Linear stability definition for stiff systems - 1

A-stability
A method is A-stable if Rs D {h: R(h) < 0}

A(«)-stability
A method is A(a)-stable, o €]0,7/2][, if Rs D {h: —a < 7 — arg(h) < a}

Stiffly stability

A method is stiffly stable if Rs O R1 U R2 such that Ry = {h:R(h) < —a}
and R, ={h: —a < R(h) <0,—c < (h) < c} with a and ¢ two positive real
numbers.

4

N
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Linear stability definition for stiff systems - 2

L-stability
A one step method is L-stable if
@ it is A-stable

@ and when applied to stable scalar test equations y = Ay it yields

Yotr1 = R(hA)x, where | R(hA) |= 0 as R(hA) — —o0

L-stability = A-stability = stiffly stability = A(«)-stability
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Numerical methods for linear stiff problems

Runge-Kutta methods

Method Order  Linear stability prop.
Gauss 2s A-stability
Radau IA, IIA 2s—1 L-stability
Lobatto IIIA, IlIB 25 —2 A-stability
Lobatto 111C 25 —2 L-stability

Theorems (Dahlquist barrier)

@ Explicit RK cannot be A-stability or stiffly stability or A(«)-stability!

@ Explicit linear multi-step method cannot be A-stable

@ The order of an A-stable linear multi-step method cannot exceed 2

@ The second order A stable multi-step method with the smallest error

constant (G3) is the Trapezoidal rule.

For the particular case of BDF
@ BF1 and BDF2 are L-stable
@ other BDF(3-4-5-6) are A(«)-stable

o BF6 has a very narrow stability area, it is not used in practice
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