Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Differential equations

Many classes
o Ordinary Differential Equations (ODE)

y(t) = f(z,y(1))

o Differential-Algebraic equations (DAE)

y(t) = f(t,y(t),x(t))
0 = g(t,y(t),x(t))

o Delay Differential Equations (DDE)
Y(t) = f(t7 y(t)7 y(t - T))

@ and others: partial differential equations, etc.

Remark
This talk focuses on ODE

2/42

High order vs first order and non-autonomous vs autonomous

@ High order vs first order

.. . n Y2 . .
=f S = th = d =y .
y (Y» Y) <y2) (f ()/1,}/2)) wi yi=y an Ya=y

@ Non-autonomous vs autonomous

. . t 1
y=f(t,y) ©z= (y) = (f(t,y)) =g(z) .

3/42

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, tend]
y=f(t,y) with y(0) =yo
IVP has a unique solution y(t;yo) if f : R” — R" is Lipschitz in y

Vt,Vy1,y2 € R", 3L >0, | f(t,y1) = F(t,y2) IS L[yr—y2 |

Goal of numerical integration
o Compute a sequence of time instants: to =0 < t1 < - < tp = tend

o Compute a sequence of values: yo,y1,...,Yn such that
Ve e [0,n], yemy(teiyo) -
@ s.t. yer1 ~ y(te + h;ye) with an error (’)(h"“) where

o h is the integration step-size
o p is the order of the method

4/42

Simulation algorithm

Data: f the flow, yo initial condition, ty starting time, tend end time, h
integration step-size

t < to;

Y < Yo,

while t < teng do

Print(t, y);

y <« Euler(f,t,y,h);

t<t+ h;

end

with, the Euler's method defined by

Yn+1 = Yn + hf(tmyn) and th41 = th + h .

5/42

One-step methods: Runge-Kutta family J

o One-step methods: Runge-Kutta family
e Building Runge-Kutta methods

o Variable step-size methods

o Solving algebraic equations in IRK

e Implementation in Python

° Special cases : symplectic integrator

6/42

Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapezoidal method (or Heun's method)® is defined by:

k; = f(te,yz) s ko, = f(te -+ 1h,yz + hlkl)

1 1
Yiri=Ye+h (§k1 + §k2>

Yy expl. trap. rule
Y1
o y=t"+y
e yo = 0.46 1
e h=1.0
dotted line is the exact solution. . k2
J ! !
2 t 1

Lexample coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner, 2006.

7/82

Examples of Runge-Kutta methods

Single-step variable step-size explicit Runge-Kutta method

e.g. Bogacki-Shampine (0de23) is defined by:

k1 = f(tn,yn)
1 1 0
kng(tn-f— Eh"’y"+§hk1) 1 1
3 3 2| 2
ks = f(tn + hn, yo + hk2) >lo 2
112 1 4
Yn+1:yn+h(ki + —ko + k3> o 3 9
ke = f(tn + Lhn, yni1) 71 1 1
24 4 3 8

7 1 1 1
n == n A e . 7k
Znt1 Y+h(24k1+4k2+3k3+84)

Remark: the step-size h is adapted following || Yn+1 — Zn41 ||

7/42

Examples of Runge-Kutta methods

Single-step fixed step-size implicit Runge-Kutta method

e.g. Runge-Kutta Gauss method (order 4) is defined by:

ky =f (tn—l- (; - ?)hn, Yn+h (ikl-‘r (i— f) k2>> (1a)
kz—f(tn-f—(;Jr?)hn, Yn+h(<i+?>k1+ik2>> (1b)

Ynt1 =Yn+h (ki + k2) (1c)

Remark: A non-linear system of equations must be solved at each step.

7/42

Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau:

C1|an a2 - ais
3 R 5 r’ J
Cs as1 ds2 o dss

by by -+ bl (optional)

Which induces the following recurrence formula:

ki =f (tn + Cihn,yn + hz a,-,-k,-) Yoil = Yo + hz ki (2)
i=1

Jj=1

e Explicit method (ERK) if a; =01is i <

o Diagonal Implicit method (DIRK) if a; =0 is i < j and at least one
dji ?é 0

e Singly Diagonal implicit method (SDIRK) if a; = 0is i < and all
aj; = -y are identical.

o Implicit method (IRK) otherwise

8/42

Building Runge-Kutta

methods

o One-step methods: Runge-Kutta family
o Building Runge-Kutta methods

o Variable step-size methods

o Solving algebraic equations in IRK

e Implementation in Python

° Special cases : symplectic integrator

9/42

Building RK methods: Order condition

Every numerical method member of the Runge-Kutta family follows the
condition order.

Order condition

This condition states that a method of this family is of order p if and only if
the p + 1 first coefficients of the Taylor expansion of the true solution and the
Taylor expansion of the numerical methods are equal.

In other terms, a RK method has order p if

y(tn; Ynfl) —Yn = hp+1\uf(yn) + O(hp+2)

10/ 42

Building RK methods: Order condition

Taylor expansion of the exact and the numerical solutions

@ At a time instant t, the Taylor expansion of the true solution with the
Lagrange remainder states that there exists £ €]tn, tp41[such that:

p)
hh (i
Y(tnt1; ¥o) = y(tn; yo) + Z le()(tn; yo) + O(KPTY)
i=1

P .
o i
= y(tiyo) + Y 2D (tn,y(tniyo)) + O(H)
i=1

@ The Taylor expansion (very complex expression) of the numerical solution
is given by expanding, around (t,,yns), the expression:

Ynt1 = Yo+ h i bik;

i=1

Consequence of the condition order

The definition of RK methods (Butcher table coefficients) is based on the
solution of under-determined system of algebraic equations.

11/42

Example: 3-stages explicit RK method (scalar IVP)

One considers a scalar ODE y = f(t,y) with f : R xR - R

One tries to determine the coefficients b; (i = 1,2,3), ¢, cs, as such that
Y1 = Yn + h(biki + baka + b3ks)
k1 = f(tn,yn)
ko = f(t,, + ch, yn + hC2k1)
ks = f(tn + c3h, yn + h(c3 — az2) ki + hasko

Some notations (evaluation at point (t,, y(t)):

f_Ofty) . _Pflty) . _ 0f(ty)
T ST YT atdy

f="f(ty)

Note: in Butcher tableau we always have the row-sum condition

S
Ci = E dij, i:1,2,...,5.
J=1

12/42

Example: 3-stages explicit RK method (scalar IVP)

Taylor expansion of y(ta41), the exact solution, around t,:
1 K @ e 4
y(tar1) = y(ta) + hy () + 7)/(() + gy('(ta) + O(h")

Moreover,
yW(t) = f
YO(t)) = fi + £y = f + f,
YO tn) = fue - fo f o+ F(foy + Fi F) + £ (F, +)
= fit + 2fRy + F2£,, + £, (i + fF,)

With F = f, + ff, and G = fix + 2fRy + f°fy, one has:

2 3

h h
Y(tai1) = y(ts) + hf + —F + — (Ff + G) + O(h")

13/42

Example: 3-stages explicit RK method (scalar IVP)
Taylor expansion k; around t,
ko = f + hes (fi + ki) + c2 > (o + 2kafoy + ki fy) + O(h?)
=f+hoF + %cic +0(h)
ks =f 4+ h{csfi + [(cs — as2) ki + anko] £, }
+ %2{C§ftt +2c3[(c3 — a)ki + anke] fy
+ [(c3 — az)ki + ak]’ fyy} +0O(h’)

1
= f 4+ hasF + W (canFf, + Ec:32G + O(h*) (substituting ki = f and k»)

Taylor expansion of y,;1 (localizing assumption y, = y(t,))

Y1 = y(tn) + h(b1 + by + b3)f + W (b2cs + b3cs)F
h3
+ 5 [2b3C2332ny + ([32(,‘22 + b3C§)G] + O(h4)

14/42

Example: 3-stages explicit RK method (scalar IVP)

Building one stage method

We fix by = b3 = 0, so one gets

Yn+1 = y(tn) + hbif + O(hz)

In consequence by = 1 (by identification) so one gets Euler's method (order 1)

15 /42

Example: 3-stages explicit RK method (scalar IVP)

Building two stages method

We fix b3 = 0, so one gets

1
Yor1 = y(tn) + h(b1 + bo)f + K> bycoF + Eh3bzc§G + O(h)
In consequence to get order 2 methods, we need to solve

1
b +b=1 b2€2=§

Remark: there is a (singly) infinite number of solutions.

Two particular solutions of order 2:

0
1

(e} ST
jury

16 /42

Example: 3-stages explicit RK method (scalar IVP)

Building three stages method

In consequence to get order 3 methods, we need to solve

1

bi+b+bs=1 b2C2+b3C3:§
1 1

b2C22 + b3C§ = § bscraz = 6

Remark: there is a (doubly) infinite number of solutions.

Two particular solutions of order 3:

17/42

Relation between order and stage

Limitation of ERK

s-stage ERK method cannot have order greater than s

Moreover, this upper bound is reached for order less or equal to 4. For now, we

only know:
order | 1 |2 |3 | 4 5 6 7 8 9 10
s T2 (346 | 7|9 | 11 | 12,17 | 13,17]
cond | 1 |2 |4 |8 | 17 | 37 | 8 | 200 486 1205

Remark: order 10 is highest order known for an ERK (with rational

coefficients).

Optimal order for IRK methods

We know s-stage method having order 2s (Gauss’' methods).

18/ 42

Note on building IRK Gauss' method

y=f(y) with y(0)=yo < y(t) =yo+ / " fiy(s))ds

n

We solve this equation using quadrature formula.

IRK Gauss method is associated to a collocation method (polynomial

approximation of the integral) such that for i, j =1,... s:
cj 1
aj; = / éj(t)dt and bj = / Kj(t)dt
0 0
with £;(t) =[], ;_cckk the Lagrange polynomial.

And the ¢; are chosen as the solution of the Shifted Legendre polynomial of

degree s:
P(x) = (-1)"> (k) (i k) (—x)"

k=0
1, x, 0.5(3x*> — 1), 0.5(5x> — 3x), etc.

19/42

Example (order 3): Radau family (2s — 1)

Based on different polynomial, one can build different IRK methods with a
particular structure. For examples, Radau family consider as endpoints of time
interval either 0 or 1.

Radau IA (0 endpoint)

Radau 1A (1 endpoint)

20/42

Example (order 4): Lobatto family (2s — 2)

Based on different polynomial, one can build different IRK methods with a
particular structure. For examples, Lobatto family always consider 0 and 1 as
endpoints of time interval.

Lobatto IIIA Lobatto 11IB
1 1
0olo 0 o0 ol -1 o0
15 1 1 101 1 g
2 24 3 24 2 6 3
1 2 1 1 5
11§ 5 5 11 § 0
12 1
6 3 6
Lobatto I1IC
ol _1 1
6 3 6
11 s _1
2 6 12 12
1 2 1
115 35 %
12 1
3 6

21/42

Variable step-size methods J

o One-step methods: Runge-Kutta family
o Building Runge-Kutta methods

o Variable step-size methods

o Solving algebraic equations in IRK

e Implementation in Python

° Special cases : symplectic integrator

22/42

Local error estimation in ERK

Goal: monitoring the step length to

@ increase it if the norm of the error is below a given tolerance (with a
factor)

@ decrease it if the norm of the error is above a given tolerance

The trade-off between Accuracy versus Performance

An old solution: Richardson extrapolation, from a method of order p:
@ solve the IVP for one step h to get ¥,
@ solve the IVP for two steps h/2 to get Z,
o error estimation if given by: (2, — §.)/(2°™" — 1)

Drawback: time consuming

Other approach

embedding two ERK (or suitable IRK) methods of order p and p + 1 and
compute the difference, as

Yoi1 — Yor1 = [Y(tar1) — Yor1] — [Y(tnr1) — Yhe1] = th\Uf(y,,) + O(hp+2)

with yn+1 solution of order p and y;,; solution of order p* > p

23/42

Example: explicit Runge-Kutta-Fehlberg (RKF45)

Fehlberg's method of order 4 and 5

Remark

o coefficient chosen to minimize the coefficient of the Taylor expansion

remainder

0
1 1
2 2
3 3 9
8 32 32
12 | 1932 7200 7296
13 | 2197 2197 2197
1| 49 _g 3680 _ 845
216 513 2104
1| _8 2 __ 3544 1859 _u
2 27 2565 2104 40
25 0 1408 2197 1
216 2565 2104 5
16 0 128 2197 1 2
135 2275 75240 50 55

24/42

Example: explicit DOPRI54

Dormand-Prince’s method of order 5 and 4

Remarks

0]

1 1

5 5

3 | 3 9

0 | %0 40

4 | 44 _56 32

5 55 15 9

8 19372 25360 64448 212

9 6561 2187 6561 729

1 9017 355 46732 49 5103
3168 33 5247 176 18656

1 35 0 500 125 2187 11
384 1113 192 6784 84
5179 7571 393 92097 187 1
57600 16695 640 339200 2100 40
35 0 500 125 _ 2187 11
384 1113 192 6784 84

@ 7 stage for an order 5 method but FSAL (First Same As Last)

@ Local extrapolation order 5 approximation is used to solve the next step

25/42

Example (order 4): SDIRK Family

1] 1

1 1

3|1 1

) 2)

1| w7 1 1

20 50 25 4

1 371 137 15 1

2 1360 2720 544 4

1| 38 _a 125 _8& 1
24 48 16 12 4
25 _49 15 _8 1
24 48 16 12 4
59 _17 25 _8
48 96 32 12

Remarks:
@ this an embedded implicit RK method (difficult to find one for IRK)

@ simplification of the iteration to solve the fixpoint equations

26 /42

Step size control - simple case

Simple strategy:
err =[| yn+1 — Zn41 ||

with y,+1 the approximation of order p and z,4;1 the approximation of order
p+1

Simple step-size update strategy
From an user defined tolerance TOL:
@ if err > TOL then solve IVP with h/2

o if err < 19% then solve IVP with 2h

27/42

Step size control - more evolved case

Validation of the integration step

For adaptive step-size method: for all continuous state variables

= | yp—zona | S max(atol, rtol x max (| a1 Il Il ya)

~ g

Estimated error Maximal acceptable error

Note: different norms can be considered.

Strategy:
@ Success: may increase the step-size: hnt1 = h, P/1/err (p is the
minimal order of the embedded methods).
o Failure: reduce the step-size h, in general only a division by 2,
and restart the integration step with the new step-size.

The reduction of the step-size is done until the hmin is reached. In that case a
simulation error may happen.

28/42

More details on the step-size control

Some care is necessary to reduce probability the next step is rejected:

hny1 = h, min (facmax, max (facmin,fac i/ 1/err)>

and to prevent that h is increased or decreased too quickly.
Usually:

e fac =0.8,0.9,(0.25)"/(P*1) (0.38)%/(P+1)
@ facmax is between 1.5 and 5

e facmin is equal to 0.5

after a rejection (i.e., a valid step coming from a reject step) it is advisable to
let h unchanged.

29/42

Solving algebraic equations in

IRK

o One-step methods: Runge-Kutta family
o Building Runge-Kutta methods

o Variable step-size methods

o Solving algebraic equations in IRK

e Implementation in Python

° Special cases : symplectic integrator

30/42

Implicit Runge-Kutta Methods

The ki, i =1,...,s, form a nonlinear system of equations in,
s s
ki=f (tn+c,-hn,yn+h2a,-,-k,-> Yoi1 = Yo+ h Y bk
j=1 i=1

Theorem: existence and uniqueness of the solution

Let f : R x R" — R" be continuous and satisfy a Lipschitz conditions with

constant L (w.r.t. y). If
1

<—
Lmax;). | aj |

there exists a unique solution which can be obtained by iteration.

h

Remark: in case of stiff problems (see lecture on DAE), larger value of L is bad
has it may cause numerical instability in iterations.

31/42

Quick remainder on Newton-Raphson methods

Goal of the method

finding zeroes of non-linear continuously differentiable functions G : R” — R"

Based on the idea (in 1D) to approximate non-linear function by its tangent
equation and starting from a sufficiently close solution xo we can produce an
approximation x; closer to the solution, such that

X1 = Xo — JEI(XO)G(XO)

where Jg is the Jacobian matrix of G. This process is repeated until we are
close enough

Usually instead of computing inverse of matrices, it is more efficient to solve
the linear system (e.g., with LU decomposition)

Je(x0)dx = —G(x0) with unknown dx = x1 — Xo

and so x; = xp + Ox

32/42

Reformulating non-linear system of k;'s

Solution of the nonlinear system of equations using Newton's method:
first we can rewrite the system:

ki = f (tn + Cihn, yo + hZaUkj>

Jj=1

Yo+l = Yn + h i bik;

i=1

with k'; =y, + h ZJS.ZI ajik; into

Ki=yo+hY_ ayf(ts + ciha, k)

Jj=1

Vo1 =Y+ h > bif (ta + cihn, K))

Jj=1

33/42

Reformulating non-linear system of k;'s

Next, let z; = k} — y, we have:

z; ai - ais hf(tn + cLhn, yn + 21)
S S : 3)
Zs ds1 dss hf(tn+ Cshnyyn +Zs)

z = hAF(z)

hence, with z* the solution of Equation (3):

Yoi1 =Yo+ Y _dizf with (dy, oo, di) = (by, o, b)AT

i=1

with A = {a;} if A is invertible (it is the case for Gauss' method).

34/42

Reformulating non-linear system of k;'s

Now we have to solve:
g(z) =0 with g(z) =z— hAF(2)

with Newton's method where Jacobian matrix Vg(z) of g is:

| — hau_/(zl) —h312J(22) . —halsJ(zs)
—hazi1J(z1) | — haxd(z2) ... —hapsJ(zs)

Ve(z) = : : - :
—haisJ(z1) —hazsJ(z2) ... I — hassJ(zs)

with J(zi) = g—;(tn + Cihn, Yo + 2;). And the Newton iteration is defined by:

2" =z 4 pi with py solution of Vg(z")p = —g(z")

Remarks: Usually we use g—g(tn,y,,) ~ %;(t,, + cihn,¥n + 2;) and we have
strategy to update the computation of Vg(z)

35/42

Implementation in

Python

o One-step methods: Runge-Kutta family
o Building Runge-Kutta methods

o Variable step-size methods

o Solving algebraic equations in IRK

e Implementation in Python

° Special cases : symplectic integrator

36/42

Implementation of fixed step size ERK

def euler_one_step (f, t, y, h):
return y + h x f(t, y)

~

def heun_one_step (f, t, y, h
yl = euler_one_step (f,t,y,h)
return y + h %« 0.5 % (f(t, y) + f(t+h, yl))

def solve (f, t0O, yO, tend, nsteps):
h = (tend — t0) / nsteps
time = np.linspace(t0, tend, nsteps)
yn = y0
y = [l
print (h)
for t in time:
y.append(yn)
change the method here
yn = heun_one_step (f, t, yn, h)
return [time, y]

def dynamic (t, y):
return np.array([—y[1], y[O]])

37/42

Implementation of fixed step size IRK

def backward_euler_one_step (f, t, y, h):
yn = vy; err = 10000000
while (err > le—14):
ynl =y + h % f(t + h, yn)
err = LA.norm (ynl — yn, 2)
yn = ynl
return ynl

def implicit_.trapezoidal_one_step (f, t, y, h):
aux = lambda yn : y + h % 0.5 =* (f(t y) + f(t+h, yn)) — yn
res = fsolve (aux, y)
return res

def solve (f, t0O, y0O, tend, nsteps):
h = (tend — t0) / nsteps
time = np.linspace(t0, tend, nsteps)
yn = y0; y =
for t in time:
y.append(yn)
yn = implicit_trapezoidal_one_step (f, t, yn, h)
return [time, y]

def dynamic (t, y):
return np.array([—y[1], y[0]])

[t, y] = solve (dynamic, 0.0, np.array([l., 0.]), 2*np.pi*10, 100)

38/42

Implementation of variable step size ERK

def heun_euler_one_step (f, t, y, h):
kl = f(t, y); k2 = f(t +h, y +h % kl1); ynpl =y + h % 0.5 % (k1 + k2)
znpl =y + h % kl; err = ynpl — znpl
return (ynpl, err)

def compute_h (err, hn, order, tolerance):
if LA.norm(err, 2) <= (tolerance / pow(2.0, order + 1)):
return 2 % hn
else:
return hn

def solve (f, t0O, y0O, tend, tolerance):
t = t0; yn = y0; hn = 0.5; y = [y0]; time = [tO]; h = [hn]
while t <= tend:
(yn, err) = heun_euler_one_step (f, t, yn, hn)
if LA.norm(err, 2) <= tolerance:
y.append(yn); t = t + hn; time.append(t)
hn = compute_h (err, hn, 1, tolerance); h.append(hn)

hn = hn / 2.0
return [time, y, h]

def dynamic (t, y):
return np.array([—y[1], y[0]])

[t, y, h] = solve (dynamic, 0.0, np.array([1., 0.]), 2%np.pi*10, le—2)

39/42

Special cases : symplectic integrator J

o One-step methods: Runge-Kutta family
o Building Runge-Kutta methods

o Variable step-size methods

o Solving algebraic equations in IRK

e Implementation in Python

° Special cases : symplectic integrator

40/42

Hamiltonian systems

We consider conservative (i.e., energy is preserved) Hamiltonian dynamical
systems of the form

H(a,p) = K(p) + V(q)
where H the Hamiltonian, K is the kinetic energy and V is the potential energy.

And so can be write as

dg _ oH
dt — 9p
do __oH
dt Oq
We have 1 1
_ 12 15
H—2p-|-2
SO
dq _
dt
dq
a =~ °)

41/42

Symplectic Euler's method

@ Applying directly explicit Euler's method on conservative Hamiltonian
system cannot guaranteed the preservation of energy along the simulation.

@ But we can do a small change to make the Euler's method symplectic i.e.,

energy preserving as

Solution 1
oK

n = dn h— n
Gnt1 = qn + 8p(p)

oK
Pnt+1 = pn+ h—— ap (Gn+1)

Note: g has to be solved first

Solution 2
(pn+1)

(an)

n haK

Adn+1 = Qn ap
oK
pn+1 — Pn + h 8

Note: p has to be solved first

Note: In that case, it is a fixed step-size explicit order 1 method

42/42

	One-step methods: Runge-Kutta family
	Building Runge-Kutta methods
	Variable step-size methods
	Solving algebraic equations in IRK
	Implementation in Python
	Special cases : symplectic integrator

