Gaol 3.1.1

NOT Just Another
Interval Arithmetic Library

Edition 4.0
Last updated 06 October 2006

Frédeéric Goualard

Laboratoire d’Informatique de Nantes-Atlantique, France

Copyright © 2001 Swiss Federal Institute of Technology, Switzerland
Copyright © 2002-2006 Laboratoire d'Informatique de Nantes-Atlantique, France

dtoa() and strtord() are Copyright © 1991, 2000, 2001 by Lucent Technologies
APMathlib is Copyright © 2001 by IBM
f£d1ibmis Copyright © 1993 by Sun Microsystems, Inc.

All Trademarks, Copyrights and Trade Names are the property of their respective
owners even if they are not specified below.

Part of the work was done while Frédéric Goualard was a postdoctorate at the Swiss
Federal Institute of Technology, Lausanne, Switzerland supported by the European
Research Consortium for Informatics and Mathematics fellowship programme.
This is edition 4.0 of the gaol documentation. It is consistent with version 3.1.1 of
the gaol library.

Permission is granted to make and distribute verbatim copies of this manual pro-
vided the copyright notice and this permission notice are preserved on all copies.

GAOL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THIS SOFT-
WARE IS WITH YOU. SHOULD THIS SOFTWARE PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Recipriversexcluson. n. A number whose
existence can only be defined as being
anything other than itself.

Douglas Adams, 1982
Life, the Universe and Everything

Contents

Copyright vii
1 Introduction 1
2 Installation 3
2.1 Gettingthesoftware 3
2.2 Installing gaol from the source tarball on Unix and Linux 3
2.2.1 Prerequisites. e 4

2.2.2 Configuration 4

223 Building e 6

224 Installation. 6

2.3 Installinggaolasarpmpackage 7
2.4 Installing gaolon MSWindows 95-XP 7
2.4.1 Installing gaol with the auto-installing program 7

2.4.2 Compiling and installing gaol under Windows 7

3 An overview of gaol 9
3.1 Thetrustroundingmode 10
3.2 COMMONEITOIS . . . v v v vt it e et e i e et e e e et e e 10
3.2.1 Floating-point arithmeticand rounding 11

4 [Initialization and cleanup 13
5 Interval creation and assignment 15
51 ConStruCtors v v v vttt it i e e 15
5.2 Straightassignment. 16
5.3 Assignment combined with an operation 17

6 Interval constants 19
7 Interval relations 21
7.1 Setrelations 21
7.2 Certainlyrelations o ... 23
7.3 Possiblyrelations e 25
7.4 RelationalSymbols 26
7.5 Interval-specificrelations 27

8 Interval Arithmetic 31
8.1 Functional Arithmetic 31
8.1.1 Trigonometricfunctions 33

8.1.2 Hyperbolicfunctions 33

8.2 Relational Arithmetic., .. 34
8.2.1 (n+1)-aryrelational functions 34

9 Interval functions
9.1 Splittingmethods
9.2 Unionandintersection.

10 Input/output

10.1 Readingintervals e
10.1.1 Inputformat o it e e
10.2 Writingintervals.
10.2.1 Converting intervalstostrings
10.2.2 Outputformat e
10.2.3 Choosing the number of digits todisplay
10.2.4 Example e

11 Floating-point numbers
11.1 Floating-pointconstantsot v it
11.2 Floating-pointfunctions

12 Manipulating the FPU
12.1 Rounding functionso
12.2 Manipulatingthe FPUflags

13 Version information

14 Additional functions

15 Error handling
15.1 Exceptions

15.1.1 The gaol_exceptionexception
15.1.2 The input_format_error exception
15.1.3 The unavailable_feature_error exception
15.1.4 The invalid_action_error exception

15.2 Warnings .

16 Debugging facilities

17 Profiling

17.1 The timepiececlass
17.1.1 Methods of the timepiececlass

18 Additional Documentation
18.1 Documentationongaol

18.2 References
19 Reporting bugs
20 Contributors

Library Copying

37
40
41

43
43
43
45
45
45
47
47

49
49
49

51
51
52

53

55

57
58
58
59
59
59
60

61

63
64
64

67
67
67

69

71

73

Copyright

Gaol is distributed under the GNU Lesser General Public License (see Section 20,
page 73). The copyright for the initial version—named ce1l1—(year 2001) is owned
by the Swiss Federal Institute of Technology, Lausanne, Switzerland. The copy-
right for the following versions (from 2002 onward) is owned by the Laboratoire
d’Informatique de Nantes-Atlantique, France.

For the input of floating-point numbers, gaol uses the strtord() function

written by David M. Gay, whose copyright notice follows:

¥ X X X X X X X X X X X K X X X *

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this
software for any purpose without fee is hereby granted,
provided that this entire notice is included in all
copies of any software which is or includes a copy or
modification of this software and in all copies of the
supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY
EXPRESS OR IMPLIED WARRANTY. 1IN PARTICULAR, NEITHER
THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR
WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
PURPOSE.

Under MS Windows platforms, gaol uses the nextafter () function provided

by the £d1ibm library by Sun Microsystems, Inc. whose copyright notice follow:

*
*
*
*
*
*
*

Copyright (C) 1993 by Sun Microsystems, Inc.
A1l rights reserved.

Developed at SunSoft, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this
software is freely granted, provided that this notice
is preserved.

Gaol relies on the APMathlib mathematical library from IBM for most floating-

point operators. The APMathlib library is released under the GNU Lesser General
Public License (see Section 20, page 73).

vii

Introduction

Gaol' is a C++ library to perform arithmetic with floating-point intervals. The de-
velopment of gaol was initiated at the Swiss Federal Institute of Technology, Lau-
sanne, Switzerland, while E Goualard was a post-doctorate supported by the Swiss
National Science Foundation. It started as a limited version of Jail (now halloween),
a templated C++ interval library developed during Goualard’s PhD.

To our knowledge, a unique feature of gaol among all C++ interval arithmetic li-
braries available is the implementation of relational arithmetic operators required
by interval constraint arithmetic software (see Section 8.2, page 34). Hence, the
game of the name: gaol is not JAIL (Just Another Interval Library).

This document is both a manual and a reference to use gaol. It assumes a prior
knowledge of interval arithmetic. Refer to the books and papers by Goldberg, Neu-
maier, and others >*516! for a basic presentation of floating-point arithmetic, in-
terval arithmetic and the use thereof.

The main entry point for interval arithmetic on the Web is Vladik Kreinovich’s
Interval Computation site (http://wuw.cs.utep.edu/interval-comp/).

Classes, methods, functions, macros, constants and variables available in the
library but not described in this document are likely to change or to be removed.
Consequently, they should be used with caution, if at all.

T For those readers who are not native
English speakers, “gaol” should be pro-
nounced jal, like the word “jail”, of which
itis a, chiefly British, variant.

[2] David Marc Goldberg. What every computer sci-
entist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5-48, March 1991.

[4] IEEE. IEEE standard for binary floating-point
arithmetic. Technical Report IEEE Std 754-1985, In-
stitute of Electrical and Electronics Engineers, 1985.
Reaffirmed 1990.

[5] Ramon Edgar Moore. Interval Analysis. Prentice-
Hall, Englewood Cliffs, N. J., 1966.

[1] Gotz Alefeld and Jiirgen Herzberger. Introduc-
tion to Interval Computations. — Academic Press
Inc., New York, USA, 1983. Traduit par Jon Rokne
de I'original Allemand ‘Einfiihrung In Die Intervall-
rechnung’.

[6] Arnold Neumaier. Interval methods for systems
of equations, volume 37 of Encyclopedia of Mathe-
matics and its Applications. Cambridge University
Press, 1990.

http://www.cs.utep.edu/interval-comp/

Installation

The installation procedure differs depending on your platform. The current release
of gaol is supported on the following platforms:

¢ ix86-based computers and compatibles under Linux with GNU gcc/g++

¢ ix86-based computers and compatibles under MS Windows 95-XP with Mi-
crosoft Visual C++

Gaol used to be available on UltraSparc-based computers under SUN Solaris 2.[5-
8] with GNU gcc/g++. With no such architecture at hand anymore, it is no longer
actively developed on it, though its support should not require too much work.

2.1 Getting the software

The official web page for gaolishttp://sourceforge.net/projects/gaol/.
Gaol comes in different formats depending on the platform you intend to use
it on:

* asa source code tarball for all the supported platforms (see Section 2.2, page 3
for unix and/or linux-based platforms and Section 2.4, page 7 for MS Win-
dows);

¢ as a rpm package for Linux (see Section 2.3, page 7);

e asan auto-installing executable file for MS Windows (see Section 2.4.1, page 7).

2.2 Installing gaol from the source tarball on Unix and
Linux

Installing gaol from the source archive is done in three steps, in accordance with
the spirit of all GNU softwares: configuration, building, installation. These steps
are described hereunder. In the following, the base directory of the gaol distribu-
tion as created by decompressing the archive will be referred as the root directory
of the distribution (or simply, the root directory).

http://sourceforge.net/projects/gaol/

2.2.1 Prerequisites

In order to build and install gaol, you will need the following tools. Some of them
are mandatory, some are only required if you intend to modify the code, and others
are only optional (their absence will not prevent you from using gaol though some
features might be unavailable).

Mandatory tools and programs

Gaol uses many features provided by the ANSI-standard ISO/IEC FDIS 14882 for
the C++ language. As a consequence, you will need a recent C++ compiler in order
to compile gaol—e.g. gcc 3.0 or above.

Gaol relies on the IBM APMathlib floating-point arithmetic library. APMathlib
must be properly installed on your system prior to configuring gaol. For your con-
venience, an archive of it is available on the gaol web site (http://sourceforge.
net/projects/gaol).

Tools for maintainers

Gaol uses code produced by GNU Flex and GNU Bison for parsing the expression
used to initialize an interval.
Any modification of the files

gaol_interval_lexer.lpp
or
gaol_interval_parser.ypp

requires the availability of these tools.

Optional tools

e dot. This program is used by doxygen (see below) to draw dependency
graphs in the HTML documentation. Itis part of the GraphViz package (http:
//www.research.att.com/sw/tools/graphviz/);

* doxygen. Tool similar to SUN Javadoc for the C++ language. It is available
athttp://www.stack.nl/"dimitri/doxygen/index.html. If youdo not
have it, you will not be able to regenerate the HTML documentation;

e CppUnit. This library for unit testing is available on SourceForge (http:
//sourceforge.net/projects/cppunit). Itis required to test the proper
compilation of gaol.

2.2.2 Configuration

Before actually compiling the library, you have to configure it for your platform
by using the configure program located at the root of the gaol distribution. It
accepts the following options:

e --help. Displays a list of all options. Note that only those described here-
under are supported;

e --prefix=prefix-dir. The root directory where the library will be in-
stalled. It defaults to /usr/local;

e --libdir=1ib-dir. The directory where to put the libraries. It defaults to
prefix-dir/lib;

http://sourceforge.net/projects/cppunit
http://sourceforge.net/projects/cppunit
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://sourceforge.net/projects/gaol
http://sourceforge.net/projects/gaol
http://gcc.gnu.org

e --includedir=include-dir. The directory where to put the header files.
It defaults to prefix-dir/include;

e —-infodir=info-dir. The directory where to put the documentation in
info format. It defaults to prefix-dir/info;

¢ --with-mathlib-inc=dir. Tells gaol that file MathLib.h isin 'dir’. There
is no default for this option;

¢ --with-mathlib-lib=dir. Tells gaolthatfilelibultim.{so,a}isin’dir"
There is no default for this option;

* --enable-shared[=yes/no]. Creates or not a shared library. This option
defaults to yes whenever shared libraries are supported by the current plat-
form;

¢ --enable-debug[=yes/no]. Adds or not debugging information to the li-
brary. Enable the use of debugging macros (see Section 16, page 61). This
option defaults to no.

* --enable-preserve-rounding[=yes/no]. The library assumes that the
rounding direction is never modified outside of gaol, which allows to set it
once and for all to "upward" at initialization (see Section 3.1, page 10). This
option defaults to no. You should define this option to yes if you use gaol
together with libraries or programs that manipulate the rounding direction,
or that require the rounding direction to be to the nearest;

¢ --enable-optimize[=yes/no]. Compiles gaol with full optimization turned
on. This option defaults to yes;

¢ —-enable-fast-math[=yes/no]. Compiles gaol with fast butless accurate
transcendental and power operators. This option defaults to yes;

* --enable-exceptions[=yes/no]. If enabled, errors should be reported
by throwing an exception (see Section 15.1, page 58). If disabled, errors are
reported by calling gaol_error (), which prints a message to the standard
error channel. This option defaults to yes;

¢ --enable-asm[=yes/no]. Allows the use of assembler code in some parts
of gaol. For most platforms, assembler code is used only to switch thr round-
ing direction of the FPU. On ix86, assembler code is also used for many prim-
itives. This option defaults to yes. On ix86, disabling the assembler support
should be done with caution, depending on the propensity of of your com-
piler to wrongly optimize code using floating-point instructions (which is
high for versions of gcc prior to 4.1);

e —_enable-relations=kind. Defines the kind of relation to use for rela-
tional symbols (=, <, ...) to be kind. Possible values for kind are certainly,
set, and possibly (see Section 7, page 21). The default is certainly;

* --verbose-mode [=yes/no]. Allows information messages to be sent to
the standard output (such as messages to report automatic initialization and
cleanup). The default is yes.

Note that, as usual, --disable-xxx is equivalent to - -enable-xxx=no. More-
over, --enable-xxx is equivalent to --enable-xxx=yes.

Configuration examples

First, go to the root directory. If you simply type
% ./configure

you will create a shared library with full optimization, which will be installed in
/usr/local.
By issuing

% ./configure --enable-debug \
--prefix=/usril/local --infodir=/export/info

you will create a library including debugging information that will be installed
in the root directory /usr1/local except for the info files, which will be installed
in the /export/info directory.

Missing optional tools are reported during the configuration process, though
they do not prevent you from building the library. The configuration is aborted if
some important tool or library is missing.

2.2.3 Building
After having configured gaol, you can now type
% make

in the root directory to build the library and its documentation (pdf and html
files).
The targets for the Makefile in the root directory are:

* all. Similar to calling make without any argument;
* doc. Create the manual in both pdf and html formats;
e html Create only the html reference;

* check. Test the library by compiling some benchmarks and checking their
output against the expected one;

e clean, distclean, maintainer-clean. These are standard options for a
GNU standard compliant Makefile. The clean option erases all files cre-
ated during the building process; the distclean erases also the files created
during the configuration process; maintainer-clean is meant to be used
by maintainers only since it might erase files needing special tools to be re-
created as well;

e install. Install the library in the directories specified at configuration time.

2.2.4 Installation
To install gaol on your system, just type
% make install

Remember that the directories you have chosen to install the libraries into,
must be accessible to your compiler, i.e. they must appear in the paths contained
in the relevant environment variables:

e LIBRARY_PATH for static libraries,

e LD_LIBRARY_PATH for dynamic libraries,

to be able to use the library once installed.

2.3 Installing gaol as a rpm package
Asroot, just type
% rpm -i gaol-3.1.1.rpm

or whatever the name of the rpm file may be. The package depends on the APMathlib
package being already present on the system.

2.4 Installing gaol on MS Windows 95-XP

2.4.1 Installing gaol with the auto-installing program

Not yet written.

2.4.2 Compiling and installing gaol under Windows

Not yet written.

An overview of gaol

In this chapter, we will assume that gaol has already been properly installed, and
that the libraries and header files are accessible to your compiler.
Let us consider the following program to compute the range of the function

fy) =1+ x+3)209 - 14x +3x* - 14y +6xy +3y%)
(30+ (2x - 3y)*(18 - 32x + 12x* + 48y — 36xy +27y%))

forxe[-2,2] and y € [-2, 2].

Example
#include <iostream>
#include <gaol/gaol.h>

int main(void)
{
gaol::init();

interval
X(-2,2) s
y(-2,2), z;

z=(1+sqr (x+y) * (19-14*x+3*sqr (x) - 14*y+6*xx*y+3*sqr (y))) *
(30+sqr (2*x-3*y) * (18-32*x+12*sqr (x) +
48xy-36xx*y+27*sqr(y)));

std::cout << "z = " << z << std::endl;

gaol: :cleanup();
return O;

First, note that we have to include the gaol/gaol.h header file in order to use
all the facilities provided by gaol. All the functions, classes, constants and types
defined in gaol are embedded into the gaol namespace. The gaol/gaol.h header
imports the whole namespace such that it is not necessary to use the gaol prefix.
Alternatively, you may include the gaol/gaol header instead of gaol/gaol.h and
add using directives to only import what you actually need.

The call to gaol: :init () on Line 6 is related to the use of the so-called trust
rounding mode (see next section): it switches the rounding mode of the floating-

Definition 1 (Rounding down/up)

Given R the set of real numbers and [the
set of floating-point numbers (double),

we have:

VxeR: {

| x|=max{yelF|y<x}
Txf=min{yelF|y>x}

point unit towards +oo (if the library was compiled with - -preserve-rounding=no)
and calls some initialization code.

The sqr (x) function stands for square of x and is equivalent to pow (x,2).

Let £ . cpp be the name of the file containing the program above. To compile it
with g++, we have to type the following command:

% gt+ -o £ f.cpp -1m -lultim -lgaol

were ultim corresponds to the APMathlib library.

We thus create the executable file £, using the gaol and APMathlib libraries—
APMathlib is the Accurate Portable Mathematical library developed by IBM; it
provides us with correctly rounded mathematical functions if they are not directly
available on the given platform.

Executing £, we obtain:

Output

z = [-56254330,94177270]

We then know that f(x, y) ranges over [—56254330, 94177270] when x and y
range over [—2, 2] independently.

3.1 The trust rounding mode

Floating-point interval arithmetic requires outward rounding in order to fulfill the
containment property: for example, to add intervals [a, b] and [c, d], we compute
[l a+cl, 1 b+d1],where| r | and ! r { return the greatest (resp. smallest) floating-
point number smaller (resp. greater) than the real result of . These two operations
are performed by switching the rounding direction of the FPU towards, respec-
tively, —oo and +oo.

On most platforms, switching the rounding direction is costly. However, it
is possible to cut down the number of switches by relying on the property that
| =r |=—1r1. Consequently, one can replace nearly all downward rounding op-
erations by upward rounding ones by negating appropriately twice the operations
performed. The next step is then to only switch once and for all the rounding di-
rection towards +oo at the beginning of a computation. This strategy reduces dras-
tically the number of rounding direction switches at the cost of putting on the user
the burden to ensure that the rounding direction be always set towards +oo before
any computation involving intervals. This mode is called the trust rounding mode
since we trust the user for ensuring that the rounding direction is always properly
set.

Basically, all the user has to do when using the trust rounding mode is to switch
the rounding direction towards +oco at the beginning of his program (this is per-
formed automaticallyby gaol: :init ()), and then ensuring that it always remains
set to that direction before performing any interval operation. This condition is
never violated by any function or method of the library itself.

When gaol is used in a larger application that also relies on libraries that as-
sume the rounding direction to be to the nearest, it is easier and safer to configure
it with the trust rounding mode disabled (see Section 2.2.2, page 4).

3.2 Common errors

In this section, we will review common errors made when using gaol in the—
forlorn?—hope that it will help prevent users from making them.

10

http://oss.software.ibm.com/mathlib/

w

3.2.1 Floating-point arithmetic and rounding

Programming with floating-point numbers is one of the few activities where one
must always consider ones compiler defiantly. For example, let us consider the
following piece of code:

Example
#include <gaol/gaol> // We do not import the gaol namespace

using gaol::interval;

int main(void) {
gaol::init();
interval one_tenth(0.1); BEWARE: wrong !

[some code using one_tenth]
gaol: :cleanup();
}

Though a rational perfectly representable in decimal, 0.1 is not representable
in binary (at least, not with a finite number of bits) and thus requires rounding.
Obviously, the purpose of the user was to define an interval containing this value.
However, 0.1 will be rounded at compile time, most certainly to the nearest rep-
resentable floating-point number | 0.1 |. As a consequence, one_tenth will be a
degenerate interval containing only | 0.1 |, and the containment property will be
violated.

The right way to deal with rational constants that might not be perfectly rep-
resentable as floating-point numbers is to stringigy them, such that they can be
correctly rounded downward and upward at runtime:

Example

#include <gaol/gaol>
using gaol::interval;

int main(void)
{
gaol::init();
interval one_tenth("0.1"), // OK: this is the right way
one_tenth2("1/10"); // Another possible way

[some code using one_tenth]
gaol: :cleanup();
return O;

Now, one_tenth will be the smallest floating-point interval enclosing 0. 1. An
interval like this one, containing at most two consecutive floating-point numbers,
is called a canonical interval.

11

Definition 2 (Rounding to the nearest)
Given R the set of real numbers and [the
set of floating-point numbers (double),
we have:

VxeR: {x|=yeFs.t
x—y=min{|§|eR|d=x-2,VzelF}

Definition 3 (canonical interval) A non-
empty interval I = [a, b] is canonical if
andonlyifa>b™.

w

Initialization and cleanup

The following functions have to be called before using any functionality of the li-
brary and just after having used it for the last time.

Since Release 1.0 of gaol, there is an automatic initialization/cleanup feature
that ensures that no problem will arise if the user forgets to explicitly call these
functions.

bool init (int dbg Ivl = 0)

Initializes the variable debug_level (see Section 16, page 61) to the value of
dbg _Ivl.

If the library was not compiled with the --enable-preserve-rounding
option, it sets the FPU control word according to the requirements of the
APMathlib library and enforces rounding towards +oco. In addition, it sets
the number of digits to display for interval bounds to 16.

Returns true if the library was not already initialized and false otherwise. Af-
ter its first call, the only effect of this function is to—possibly—set the debug-
ging level to a new value.

bool cleanup (void)

Restores the state of the FPU to its value prior to the initialization of the gaol
library.
In the current version, returns true the first time it is called and false after-
wards.

Example
#include <gaol/gaol>
int main(void)
{
init(1); // First level of debugging requested
[Some code using interval arithmetic]
cleanup() ;
return 0;
}

13

Interval creation and
assignment

The methods for creating an interval and assigning a new value to an already ex-
isting one are described in the following.

5.1 Constructors

One can create an interval in five different ways:

¢ by providing its left and right bounds:

Example

1 interval x(1,r);

where I and r are doubles or of a type that is castable into a double;

¢ by providing only one bound, for degenerate point intervals:

Example

1 interval x(v);

This is equivalent to: interval x(v,v);

» without providing any bound:

Example
interval x; ‘

This is equivalent to:

Example
interval x(-GAOL_INFINITY,+GAOL_INFINITY); ‘

where GAOL_INFINITY represents the infinity value of the double format
(see Section 11.1, page 49);

* by copying an already existing interval (copy constructor):

Example
1 interval x(-12,12), y=x, z(x);

15

* by using a string representing an interval in the same format as the one used
for input (see Section 10.1.1, page 43)

Example

1 interval x("[-23, inf]"),
2 y("[5%0.1+dmin, 89%sinh(2.1)]1");

If the input string does not comply with the expected format, an empty inter-
val is returned. The exception gaol: : input_format_error is raised if the
library was compiled with exception support; in the absence of exception
support, the gaol_error () function is called to print an error message, and
the errno variable is set to -1 (errno is not modified when no error occurs).

* by using a string representing an interval in the same format as the one used
for input (see Section 10.1.1, page 43) for each bound:

Example

1| // constructs x=[-4,2]
interval x("[-5,4]+1","[4,6]-[3,2]1");

N

Caution. you have to be very careful when creating an interval from floating-
point constants. Remember that a rational number that is perfectly representable
in the decimal base may require rounding in the binary base. For example, if you
write the following statement:

Example

1| interval x(0.1);

you will not have created an interval containing 0.1 since this number has an in-
finite expansion in the binary base (i.e. it is impossible to represent it perfectly
whatever the size of the mantissa may be). As a consequence, the constant 0.1 has
very likely been rounded to the nearest floating-point number at compile-time. In
such a case, you have to use a string instead:

Example

1| interval x("0.1");

5.2 Straight assignment

It is possible to assign a new value to an already existing interval in three different
ways:

* by copying another interval:

Example
1 interval x(-12,12),
2 y; // Here, y is [—00+00,]
3 y = x; // Now, y is [-12,12]

* by using a string whose format follows the one expected for input (see Sec-
tion 10.1, page 43).

Example
interval x;
2|x = "[-inf, 123]";

16

¢ by using a double:

Example
interval x;
2|x = 1234.5; // Now, x is [1234.5,1234.5]

Note that there is no method for modifying a bound of an interval since inter-
vals must be considered as an atomic concept.

5.3 Assignment combined with an operation

The following assignment operators combine the value of the interval pointed to
by self and the value of the right-hand side interval. In this manual, we note self the object

. . . to which this is a pointer in C++.
interval& interval::operator&= (const interval& /) W tsisap i

Assigns to self the interval resulting from the intersection of self and L

Example
interval x(-12,12);
2| x &= interval(-6,23); // Now, x is [-6,12]

interval& interval::operator|= (const interval& /)

Assigns to self the interval resulting from the union of self and L.

Example
1 interval x(-12,12);
2 x |= interval(-6,23); // Now, x is [-12,23]

interval& interval::operator+= (const interval& /)
interval& interval::operator+= (double d)

Assigns to self the interval resulting from adding self and I (resp. d).

Example

interval x(-12,12);
2| x += interval(-6,23); // Now, x is [—18,35]

interval& interval::operator-= (const interval& /)
interval& interval::operator-= (double d)

Assigns to self the interval resulting from subtracting I (resp. d) from self.

Example

interval x(-12,12);
2| x -= interval(-6,23); // Now, x is [-35,18]

interval& interval::operator*= (const interval& /)
interval& interval::operator*= (double d)

17

Assigns to self the interval resulting from multiplying self and I (resp. d).

Example

1| interval x(-12,12);
2| x *= interval(-6,23); // Now, x is [—276,276]

interval& interval::operator/= (const interval& /)
interval& interval::operator/= (double d)

Assigns to self the interval resulting from dividing self by I (resp. d).

Example

1| interval x(-12,12);
2| x /= interval(-6,23); // Now, x is [—oo, +00]
3| x /= interval::zero; // Now, x is O

interval& interval::operator%= (const interval& /)
interval& interval::operator%= (double d)

Assigns to self the interval resulting from dividing self by I (resp. d), using
a relational division (see Section 8.2, page 34).

Example

interval x(-12,12);
:|x %= interval(-6,23); // Now, x is [—o0, +00]
s|x %= interval::zero; // Now, x is [—oo, +00]

18

Interval constants

For convenience, some useful intervals and some canonical intervals enclosing
real constants are defined as static constants of the interval class:

Constant Value
interval::emptyset %]
interval::half_pi UzL131
interval: :minus_one_plus_one [-1,1]
interval::negative [—o0, 0]
interval: :one 1
interval::one_plus_infinity [1, +00]
interval: :pi lml,171]
interval::positive [0, +o0]
interval::two_pi [l2m|,12m1]
interval: :universe [—o0, +00]
interval: :zero 0

Example

N

= [empty]

cout << interval::emptyset;

19

Interval relations

Interval relations may be divided into three groups. Given I and J two intervals,
we have:

1. setrelations: intervals I and J are considered as sets of reals. For example:
I=]Je (Vxel,dyeJ: x=y)ANVye], Axel: x=Y)
Basically, two intervals are equal in that mode if they have the same bounds;

2. certainly relations: the relations must be true for any tuple of values in the
intervals. For example:

I=]o (Vxel,VyeJ:x=1y)

Then, two intervals are equal in that mode if they are both reduced to the
same value;

3. possibly relations: the relations are true if it exists at least one tuple verifying
the corresponding real relation. For example:

I=]Jo @xel,3ye]:x=y)

Then, two intervals are equal in that mode whenever their intersection is not
empty.

The kind of relation to associate to relation symbols such as == and < is cho-
sen when configuring the library (see Section 2.2.2, page 4). The other possible
definitions are always available through the methods described hereunder.

7.1 Setrelations

bool interval::set _contains (const interval& /) const
bool interval::set contains (double d) const

21

Returns true if I (resp. {d}) is included in self.

Example
1| interval x(-12,34), y(-12,5);

3| cout << x.set_contains(y) << endl;
4| cout << x.set_contains(interval::emptyset) << ? ?

5 << y.set_contains(x) << 7 ?

6 << interval::emptyset.set_contains(x) << ? ?’

7 << interval::emptyset.set_contains(interval::emptyset)
8 << endl;

9| =1 true true false false true

bool interval::set _strictly contains (const interval /) const
bool interval::set _strictly _contains (double d) const

Returns true if I (resp. {d}) is strictly included in self

Example
1| interval x(-10,12), y(-10, 11), z, t, u(10.5);

3| cout << boolalpha

4 << x.set_strictly_contains(y) << ’ 7’

5 << z.strictly_contains(t)

6 << 7 ? << x.set_strictly_contains(u) << ’

7 << interval::emptyset.set_strictly_contains(

8 interval: :emptyset)
9 << ? 7 << u.set_strictly_contains(

10 interval: :emptyset) << endl;

1| & false false true true true

bool interval::set _disjoint (const interval& /) const

Returns true if the intersection of self and I is empty.

Example

1| interval a(2,4), b(6,dmax);

2| cout << a.set_disjoint(b) << " "

3 << interval::emptyset.set_disjoint(interval::emptyset);
4| = true true

bool interval::set _eq (const interval& /) const

Returns true if intervals self and I are equal when considered as sets of re-

als.
Example
1| cout << interval(4,dmax).set_eq(interval(4,dmax)) << " "
2 << interval::emptyset.set_eq(interval::empty_set) << endl;

3| = true true

bool interval::set _neq (const interval& /) const

22

Returns true if self and I are not equal when considered as sets of reals.

Example

1| cout << interval::universe.set_neq(interval::emptyset);
2| & true

bool interval::set _le (const interval& /) const

Returns true if the real set defined by self is strictly included in I.

Example
1| cout << interval(-4.5,3).set_le(interval(-10,10))
2 << interval::emptyset.set_le(interval(5,6))
3 << interval::emptyset.set_le(interval::emptyset);
4| = true false

bool interval::set leq (const interval& /) const

Returns true if the real set defined by self is included in I.

Example
cout << interval(4.5,6).set_leq(interval(4.5,6))

2 << interval(3.5,9).set_leq(interval(2,6))

3 << interval::emptyset.set_leq(interval::emptyset);
4| = true false true

bool interval::set _ge (const interval& I) const
Returns true if the real set defined by self strictly contains I.
bool interval::set _geq (const interval& /) const

Returns true if the real set defined by self contains I.

7.2 Certainly relations

bool interval::certainly eq (const interval& /) const

Returns true if self is certainly equal to I, which is true only when both in-
tervals are degenerate and contain the same floating-point number.

Example
1| cout << interval(3,4).certainly_eq(interval(3,4))

2 << interval(-6).certainly_eq(interval(-6,-6))

3 << interval::universe.certainly_eq(interval::universe)
4 << interval::emptyset.certainly_eq(interval::emptyset)
5| = false true false true

bool interval::certainly neq (const interval& /) const

23

Returns true if self is certainly not equal to L.
bool interval::certainly _le (const interval& /) const

Returns true if self is certainly strictly less than I.

Example

1| cout << interval(4,5).certainly_le(interval(6,9))

2 << interval(4,5).certainly_le(interval(5,9))

3 << interval::emptyset.certainly_le(interval(4,6));
4| = true false true

bool interval::certainly leq (const interval& /) const

Returns true if self is certainly less or equal to T

Example
1| cout << interval(4,5).certainly_leq(interval(6,9))
2 << interval(4,5).certainly_leq(interval(5,9))
3 << interval(5,9).certainly_leq(interval(4,5))
4 << interval(4,8).certainly_leq(interval(5,9))
5 << interval::emptyset.certainly_leq(interval(4,6));
6| =) true true false false true

bool interval::certainly _ge (const interval& /) const

Returns true if self is certainly strictly greater than I

Example
1| cout << interval(8,10).certainly_ge(interval(4,8))
2 << interval::emptyset.certainly_ge(interval::emptyset) ;
3| = false true

bool interval::certainly _geq (const interval& I) const

Returns true if self is certainly greater or equal to L

Example
1| cout << interval(8,10).certainly_geq(interval(4,8))
2 << interval::emptyset.certainly_geq(interval: :emptyset);
3| = true true

bool interval::certainly _positive (void) const

Returns true if self lower bound is greater or equal to zero.

Example

1| cout << interval::emptyset.certainly_positive()
2 << interval(4,5).certainly_positive()

3 << interval(-0.0,6).certainly_positive()

4 << interval(-6,0).certainly_positive();

5| =1 true true true false

24

bool interval::certainly _strictly positive (void) const

Returns true if self lower bound is strictly greater than zero.

Example
1| cout << interval::emptyset.certainly_strictly_positive()
2 << interval(4,5).certainly_strictly_positive()

3 << interval(-0.0,6).certainly_strictly_positive()

4 << interval(-6,0).certainly_strictly_positive();

5| = true true false false

bool interval::certainly negative (void) const

Returns true if self lower bound is lower or equal to zero.

Example

1| cout << interval::emptyset.certainly_negative()
2 << interval(4,5).certainly_negative()

3 << interval(-6,0).certainly_negative()

4 << interval(-6,-5).certainly_negative();

5| (= true false true true

bool interval::certainly _strictly negative (void) const

Returns true if self lower bound is strictly lower than zero.

Example

cout << interval::emptyset.certainly_strictly_negative()
2 << interval(4,5).certainly_strictly_negative()

3 << interval(-6,0).certainly_strictly_negative()

4 << interval(-6,-5).certainly_strictly_negative();
= true false false true

o

7.3 Possibly relations

bool interval::possibly _eq (const interval& /) const

Returns true if self is possibly equal to L.

Example
1| cout << interval(5,10).possibly_eq(interval(6,100))
2 << interval::emptyset.possibly_eq(interval::emptyset);
3| = true false

bool interval::possibly neq (const interval& /) const

Returns true if self is possibly not equal to I

Example

cout << interval(4,5).possibly_neq(interval(4,5))

2 << interval(4,4) .possibly_eq(interval(4,4))

3 << interval::emptyset.possibly_eq(interval::emptyset);
= true false false

IS

25

bool interval::possibly le (const interval& /) const

Returns true if self is possibly strictly less than I.

Example
1| cout << interval(4,5).possibly_le(interval(3,7))

2 << interval(4,5) .possibly_le(interval(2,4))

3 << ;interval(4,5) .possibly_le(interval::emptyset)
4| & true false false

bool interval::possibly leq (const interval& /) const

Returns true if self is possibly less or equal to L.

Example
cout << interval(4,5).possibly_leq(interval(3,7))
2 << interval(4,5) .possibly_leq(interval(2,4))
3 << ;interval(4,5) .possibly_leq(interval: :emptyset)

4| = true true false

bool interval::possibly _ge (const interval& /) const

Returns true if self is possibly strictly greater than I

Example
1| cout << interval(4,5).possibly_ge(interval(3,6))
2 << interval(4,5) .possibly_ge(interval(5,6))
3 << interval(4,5) .possibly_ge(interval(6,7))
4 << interval(4,5) .possibly_ge(interval::emptyset);
5| = true false false false false

bool interval::possibly _geq (const interval& I) const

Returns true if self is possibly greater or equal to L.

Example
1| cout << interval(4,5).possibly_geq(interval(3,6))
2 << interval(4,5) .possibly_geq(interval(5,6))
3 << interval(4,5) .possibly_geq(interval(6,7))
4 << interval(4,5) .possibly_geq(interval::emptyset);
5| = true true false false false

7.4 Relational Symbols

bool operator== (const interval& [I, const interval& [2)

Returns I1.set_eq(I2), I1.certainly_eq(I2), or
I1.possibly_eq(I2) depending on the default kind of relation chosen
when configuring gaol (see Section 2.2.2, page 4).

bool operator!= (const interval& /I, const interval& /2)

26

bool

bool

bool

bool

7.5

bool

o o e W N =

bool

Returns I1.set_neq(I2), I1.certainly_neq(I2), or
I1.possibly_neq(I2) depending on the default kind of relation cho-
sen when configuring gaol (see Section 2.2.2, page 4).

operator< (const interval& /1, const interval& /2)

Returns Il.set_le(I2), I1.certainly_le(I2), or
I1.possibly_le(I2) depending on the default kind of relation chosen
when configuring gaol (see Section 2.2.2, page 4).

operator<= (const interval& /1, const interval& [2)

Returns I1.set_leq(I2), I1.certainly_leq(I2), or
I1.possibly_leq(I2) depending on the default kind of relation cho-
sen when configuring gaol (see Section 2.2.2, page 4).

operator> (const interval& /1, const interval& /2)

Returns I1.set_ge(I2), I1.certainly_ge(I2), or
I1.possibly_ge(I2) depending on the default kind of relation chosen
when configuring gaol (see Section 2.2.2, page 4).

operator>= (const interval& /I, const interval& /2)

Returns I1.set_geq(I2), I1.certainly_geq(I2), or
I1.possibly_geq(I2) depending on the default kind of relation cho-
sen when configuring gaol (see Section 2.2.2, page 4).

Interval-specific relations

interval::straddles zero (void) const

Returns true if self contains zero.

Example
interval x(0,4), y, z(-12,-5);

cout << boolalpha << x.straddles_zero() << ’ ?
<< y.straddles_zero() << ? ?
<< z.straddles_zero() << endl;

= true true false

Note. I.straddles_zero() =I.set_contains(interval::Real(0))

interval::strictly _straddles zero (void) const

27

@

@

bool

bool

bool

bool

Returns true if zero is included in the interior of self.

Example

interval x(0,4), y, z(-12,-5);

cout << boolalpha << x.strictly_straddles_zero() << ’ ?
<< y.strictly_straddles_zero() << ’ ?
<< z.strictly_straddles_zero() << endl;

= false true false

Note. The methodcallto I.strictly_straddles_zero() is equivalent to
I.set_strictly_contains(interval::Real(0))

interval:tis_a double (void) const
Returns true whenever the left and right bounds of the interval are equal.

Example

interval x(-12.5), y;

cout << boolalpha << x.is_a_double() << ’ ?

<< y.is_a_double()

<< interval::emptyset.is_a_double() << endl;
= true false false

interval::iis_an_int (void) const

Returns true whenever the left and right bounds of the interval are equal and
castable into an integer (type int).

Example
interval x(-12.0), y;

cout << boolalpha << x.is_an_int() << ’ ’ << y.is_an_int()
<< interval::emptyset.is_an_int() << endl;
= true false false

interval::is_ canonical (void) const

Returns true if self contains at most two floating-point numbers.

Example
interval x(0), y(-14,9);
cout << boolalpha << x.is_canonical() << 7
y.is_canonical() << 7

interval::emptyset << 7 7 <<
interval::pi;
& true false false true

interval::is_empty (void) const

Returns true if self is an empty interval.

Example
cout << interval(4,5).is_empty()

<< interval(5,4).is_empty()

<< interval::emptyset.is_empty();
= false true true

28

bool interval::is zero (void) const

Returns true if self is equal to the interval containing only 0.

Example
1| cout << interval::zero.is_zero()
2 << interval(0.0,0.0).is_zero()
3 << interval(-0.0,+0.0).is_zero()
4 << interval(0,5).is_zero()
5 << interval::emptyset.is_zero();
6| = true true true false false

bool interval::is_symmetric (void) const

Returns true if the left bound of self is the opposite of the right bound.

Example
1| cout << interval(-5,5).is_symmetric()
2 << interval::emptyset.is_symmetric() << endl;
3| & true false

bool interval::is_ finite (void) const

Returns true if any of the bounds is an infinity.

Example

cout << interval("[4,inf]").is_finite()
2 << interval::emptyset.is_finite()
3 << interval(5,80).is_finite()

4| = false true true

29

Interval Arithmetic

The containment principle of (floating-point) interval arithmetic imposes that for

“w. »

any operation “o”, and any intervals I and J, the following does hold:
IoJ=0{iojli€el,je]}

where [J is a function mapping any real set to the smallest floating-point interval
containing it.
For example, if we consider the interval square root, we have:

VI=OWilxel
From monotonicity considerations, the square root of [1, 2] is then /[1, 2] =

[1, v2]. Now, another interpretation of the square root function is as follows:

V=0 eR|3iel: j2 =i}

This last definition stands for the relational square root and permits obtaining
both negative and positive values. Hence, we have:

Vi1, 21 =[-V2, V2]

This operator arises when we consider the relation

=y
which can alternatively be written
X=+/ry

Here, the functional square root is not suitable since it would induce the intersec-
tion of the domain of y with [0, +o0].

Some applications (mainly in the area of constraint programming) require the
availability of such operators. As a consequence, gaol offers both functional and
relational versions of the main arithmetic operators.

8.1 Functional Arithmetic

interval interval::operator+ (void) const

interval operator+ (const interval& /, double d)

interval operator+ (double d, const interval& I)

interval operator+ (const interval& /1, const interval& [2)

31

Addition of two intervals, or of one interval and a double.

interval interval::operator- (void) const

interval operator- (const interval& /, double d)

interval operator- (double d, const interval& /)

interval operator- (const interval& /1, const interval& [2)

Negation, or subtraction of two intervals, or of one interval and a double.

interval operator® (const interval& I, double d)
interval operator* (double d, const interval& [)
interval operator* (const interval& /1, const interval& /2)

Multiplication of two intervals, or of one interval and a double.

interval operator/ (const interval& /, double d)
interval operator/ (double d, const interval& /)
interval operator/ (const interval& /1, const interval& [2)

Functional division of two intervals, or of one interval and a double.
interval operator% (const interval& I, double d)

interval operator% (double d, const interval& /)
interval operator% (const interval& /1, const interval& [2)

Relational division of two intervals, or of one interval and a double.

interval sqrt (const interval& /)

Functional square root of I.

interval sqr (const interval& I)

Square of I

interval pow (const interval& /, int b)
interval pow (const interval& /1, const interval& /2)

Power function. The former computes I to the integral power b, while the
latter raises I1 to the interval power I2. If I2 is an int in disguise, the first
function is used to improve accuracy.

interval nth_root (const interval& /, int b)

Computes the bth functional root of L.

interval exp (const interval& /)

Exponential of I.

interval log (const interval& /)

Natural logarithm of L.

32

8.1.1 Trigonometric functions

interval cos (const interval& /)

Returns the cosine of I.

interval acos (const interval& /)

Returns the arccosine of I.

interval sin (const interval& /)

Returns the sine of I.

interval asin (const interval& /)

Returns the arcsine of L.

interval tan (const interval& /)

Returns the tangent of L.

interval atan (const interval& /)

Returns the arctangent of I.

8.1.2 Hyperbolic functions

interval cosh (const interval& /)

Returns the hyperbolic cosine of L.

interval acosh (const interval& /)

Returns the hyperbolic arccosine of L.

interval sinh (const interval& /)

Returns the hyperbolic sine of I.

interval asinh (const interval& /)

Returns the hyperbolic arcsine of L.

interval tanh (const interval& /)

Returns the hyperbolic tangent of I.

interval atanh (const interval& /)

Returns the hyperbolic arctangent of I.

Figure 8.1: Relational cosine

8.2 Relational Arithmetic

interval interval::operator% (double d) const
interval interval::operator% (const interval& /) const
interval operator% (double d, const interval& /)

Relational division.

8.2.1 (n+1)-aryrelational functions

Consider the relation y = cos x where x and y are interval variables. One would like
to be able to express this relation in the equivalent way: x = acosy. However, one
cannot use the acos function because its result is always included into the interval
[0,]. What we need here is a relational version of the acos function. But, since for
any value x there are infinitely many values y verifying x = acos y, we have to take
into account the domain of y. As a consequence, we define a new binary operator
acos_rel whose definition is as follows:

acos_rel(Y,X)=0O{xe X |3yeY: y=cosx}

This is to be contrasted with the previous definition of the acos function:

acos(Y)=0O{xeR|IyeY: x=acosy}

Figure 8.1 presents the different results obtained when computing either acos(J)
oracos_rel(J,I).
interval acos _rel (const interval& J, const interval& I)
Returns the relational arccosine of J w.r.t. L.
interval asin_rel (const interval& J, const interval& I)
Returns the relational arcsine of J w.r.t. I.
interval atan_rel (const interval& J, const interval& I)
Returns the relational arctangent of J w.r.t. L
interval sqrt_rel (const interval& J, const interval& I)

Returns the relational square root of J w.r.t. I.

interval nth_root_rel (const interval& J, unsigned int n,
const interval& [)

Returns the relational inverse b-th root of J w.r.t. L.
interval invabs _rel (const interval& J, const interval& I)

34

Returns the relational inverse absolute value of J w.r.t. I.

interval div_rel (const interval& K, const interval& J,
const interval&)

Returns the ternary relational division of K by J w.r.t. I

35

Interval functions

double interval::width (void) const

Returns the width of self. Returns -1.0 whenever the interval is empty.

Example
1| cout << interval(4,6).width()
2 << (interval(l,next_float (1)) .width()
3 == std::numeric_limits<double>::epsilon())
4 << interval::emptyset.width();

5| 2 true -1

[3] Eldon Robert Hansen. Global Optimization Us-
double interval::mig (void) const ing Interval Analysis. Pure and Applied Mathemat-
ics. Marcel Dekker Inc., 1992.
Returns the mignitude of se1£. See the book by Hansen [¢@-3] The migni-
tude of an interval [a, b] is the smallest absolute value of the numbers in the
interval, that is: 0 if the interval straddles 0, a if the interval is strictly positive,

and —b otherwise.

Note. The mignitude of the empty interval is a NaN.

Example
cout << interval(4,5).mig()

2 << interval(-6,-3) .mig()

3 << interval(-3,8) .mig();

1|4 30

[8] Volker Stahl. Interval Methods for Bounding the
Range of Polynomials and Solving Systems of Non-
linear Equations. Phd. thesis, Johannes Kepler Uni-

Returns the signed mignitude of self. See Stahl’s thesis (& d¢f. 13281 The versitit, Linz, September 1995.
signed mignitude of an interval [a, b] is 0 if the interval straddles 0, a if the
interval is strictly positive, and b otherwise.

double interval::smig (void) const

Note. The signed mignitude of the empty interval is a NaN.

Example
1| cout << interval(4,5).mig()

2 << interval(-6,-3) .mig()

3 << interval(-3,8).mig();

1= 4 -30

37

double interval::mag (void) const
Returns the magnitude of self. the magnitude of an interval [a, b] is the

greatest absolute value of the numbers in the interval.

Note. The magnitude of the empty interval is a NaN.

Example

1| cout << interval(4,5).mag()

2 << interval(-6,-3).mag()
3 << interval(-10,5) .mag(Q);
= 5 6 10

IS

double hausdorff (const interval& /1, const interval& [2)

Returns the Hausdorff distance between the two sets defined by intervals I1
and I2, that is:

hausdorff (1, I) = max(\l ~ I, [l - I2)

Example
1| cout << hausdorff(interval(4,8),interval(5,10))
2| = 2

double interval::midpoint (void) const

Returns the midpoint of self. Given a and b two finite floating-point
numbers and std: :numeric_limits<double>::max () the largest positive
floating-point number of type double, we have the following cases:

midpoint(9) = NaN

midpoint([-oo, +o0]) =0

midpoint([—oo, b]) = —std: :numeric_limits<double>: :max ()
midpoint([a, +o0o]) =std: :numeric_limits<double>: :max()
midpoint([a, b]) =l (a+b)/2]

interval interval::mid (void) const

Returns an interval enclosing the midpoint of self. The result is not guar-
anteed to be canonical though it is always included in self. With the same
notations as for midpoint (), we have the cases:

mid(J) =0
mid([—oo, +o0]) =10, 0]
mid([—oo, b]) =[-std: :numeric_limits<double>: :max()]

[
mid([a, +oo]) std: :numeric_limits<double>::max()]
(

=1
mid([a, b]) =[l(a+b)/2],1(a+Db)/21]

double interval::left (void) const

Returns the left bound of self. Note that this method may return a finite
floating-point number (i.e. neither a NaN, nor an infinity) even when the in-
terval itself is empty.

38

double interval::right (void) const

Returns the right bound of self. Note that this method may return a finite
floating-point number (i.e. neither a NaN, nor an infinity) even when the in-
terval itself is empty.

interval abs (const interval& /)

Returns the absolute value of L.

Example
1| cout << abs(interval(-5,6))
2 << abs(interval(-4,-2));
3= [0,6] [2,4]

double chi (const interval &/)

This function, introduced by Ratscheck and Rokne [7] characterizes the de-
gree of symmetry of intervals. Its definition is as follows:

-1 ifI=0
Forl =[a, b]l, chi(l)=< al/b iflal<|b|
bla otherwise
Example

1| cout << chi(interval(3,6))

2 << chi(interval(-6,3))

3 << chi(interval: :emptyset)

4 << chi(interval: :universe)

5 << chi(interval("[-5,inf]"));
s|= 0.5 -0.5 NaN 1 0

interval min (const interval &I, const interval &J)

Returns the minimum of two intervals.

Example
1| cout << min(interval(5,6),interval(3,9))
2 << min(interval::emptyset,interval(3,8));
s| & [3,6] [emptyl]

interval max (const interval &/, const interval &J)

Returns the maximum of two intervals.

Example
1| cout << max(interval(5,6),interval(3,9))
2 << max(interval::emptyset,interval(3,8));
3| [5,9] [empty]

interval floor (const interval &/)

39

[7] Helmut Ratschek and Jon Rokne. Interval meth-
ods. In Handbook of Global Optimization, pages
751-828. Kluwer Academic, 1995.

Example
1| cout << floor(interval(4.5,6.5))

2 << floor(interval("[-10.4,3.5]1"));
= [4,6] [-11,3]

w

interval ceil (const interval &)

Example
1| cout << ceil(interval(4.5,6.5))
2 << ceil(interval("[-10.4,3.5]1"));

& [5,7] [-10, 4]

w

interval integer (const interval &/)

Narrows down the bounds to the closest integers. Note that the resulting
bounds are still double numbers, and may therefore not be representable

with integral types.

Example
1| cout << integer(interval(4.5,6.5));
2| &[5, 6]

9.1 Splitting methods

void interval::split (interval& /1, interval& [2) const

Splits self into two parts using midpoint (); returns the left part in I1 and
the right part in I2.
I1 or I2 may be equal to self.

Example
1| interval Ila, I2a,
2 I3(1.0,next_float(1.0)),
3 I1b, I2b;
4| interval(4,5) .split(Ila,I2a);
5| I3.split(I1b,I2b);
sl cout << Ila << " " << J2a << " "
7 << (I1b==1.0) << " " << (I2b==I3) << endl;
s| = [4,4.5] [4.5,5] true true

interval interval::split_left (void) const

Splits self into two parts usingmidpoint () and returns the left part.

Example
1| cout << interval(4,5).split_left();
= [4,4.5]

™

interval interval::split _right (void) const

40

Splits self into two parts using midpoint () and returns the right part.

Note. The left bound of the result is rounded up such that there is the least
overlap possible with the interval returned by split_left ().

Example
cout << interval(4,5).split_left();
= [4.5, 5]

~

9.2 Union and intersection

interval operator& (const interval& 1, const interval& 12)

Returns the interval resulting from the intersection of I1 and I2.

Example
cout << interval(4,6) & interval(5,9);
=[5, 6]

o

interval operator| (const interval& 11, const interval& 12)

Returns the interval resulting from the union of I1 and I2.

Example
cout << interval(3,6) | interval(9,12);
= [3,12]

o

41

10

Input/output

10.1 Readingintervals

istream& operator>> (ostreamé& in, interval& I)

Reads an interval from the input stream in and assigns it to I. If the string read
is syntactically ill-formed, an input_format_error exception is thrown (see
Section 15.1, page 58) if the library was compiled with exceptions enabled
(see Section 2.2.2, page 4); alternatively, it prints an error message to cerr
and aborts if exceptions were disabled.

10.1.1 Input format

A string to be translated into an interval must have the following syntax (with ter-
minals in lower case and non-terminals in slanted upper case):

ITV_EXPR
: PARSED_INTERVAL

| ITV_EXPR + ITV_EXPR

| ITV_EXPR - ITV_EXPR

| ITV_EXPR * ITV_EXPR

| ITV_EXPR | ITV_EXPR

| - ITV_EXPR

| + ITV_EXPR

| ITV_FUNCTION_CALL

| (ITV_EXPR)

B

ITV_FUNCTION_CALL
: cos (ITV_EXPR)
| sin (ITV_EXPRT)
| tan (ITV_EXPR)
| atan2 (ITV_EXPR , ITV_EXPR)
| acos (ITV_EXPR)
| asin (ITV_EXPR)
| atan (ITV_EXPR)
| cosh (ITV_EXPR)

43

sinh (ITV_EXPR)

tanh (ITV_EXPR)

acosh (ITV_EXPR)

asinh (ITV_EXPR)

atanh (ITV_EXPR)

exp (ITV_EXPR)

log (ITV_EXPR)

pow (ITV_EXPR , ITV_EXPR)

sqrt (ITV_EXPR)

nth root (ITV_EXPR , ITV_EXPR)

PARSED_INTERVAL
: EXPRESSION

EXPRESSIO
I
I
I
I
I
I
I
I
I
I
I
I

s

FUNCTION_

empty

[EXPRESSION]

[EXPRESSION , EXPRESSION]
[empty]

N

: NUMBER

// Empty interval

// Empty interval

dmin // Smallest positive floating-point number
dmax // Largest positive floating-point number

pi

inf // Floating-point positive ¢‘infinity’’

EXPRESSION + EXPRESSION
EXPRESSION - EXPRESSION
EXPRESSION * EXPRESSION
EXPRESSION / EXPRESSION
- EXPRESSION

+ EXPRESSION
FUNCTION_CALL

(EXPRESSION)

CALL

: cos (EXPRESSION)

sin (EXPRESSION)

tan (EXPRESSION)

atan2 (EXPRESSION , EXPRESSION)
acos (EXPRESSION)

asin (EXPRESSION)

atan (EXPRESSION)

cosh (EXPRESSION)

sinh (EXPRESSION)

tanh (EXPRESSION)

acosh (EXPRESSION)

asinh (EXPRESSION)

atanh (EXPRESSION)

exp (EXPRESSION)

log (EXPRESSION)

pow (EXPRESSION , EXPRESSION)
sqrt (EXPRESSION)

44

N

| nth_root (EXPRESSION , EXPRESSION)

3

Spaces are not significant except in numbers. The “+” sign before numbers
and inf is optional. Note that the second argument of nth_root shall be a point
interval that can be evaluated as an integer.

If a rational number is not representable in the floating-point format, it is re-
placed by the smallest floating-point interval containing it. The notations "n" and
"[n]" are equivalent.

Example

interval x("[4, 6%7]");

interval y("[-inf, dmax]");

interval z("[3.14,3.15]1/8", "[3.14,3.151/7");
interval t("[3.14,3.151/([7,8]1");

Caution: case is significant for all the operators.

Expressions in bounds are evaluated using interval arithmetic; the left (resp.
right) bound is then used, depending on the side it appeared in.

Note that, as of version 3.1.1, the atan2 operator is not yet implemented for
interval expressions.

10.2 Writing intervals

Intervals may be printed into a stream like any other C++ primitive type by using
the “<<” operator.

ostream& operator<< (ostream& out, const interval& 1)

Prints the interval I to the output stream out. The way the intervals are ac-
tually displayed depends on the active format (see next section). However,
whatever the format, an empty interval is always displayed as [empty]

10.2.1 Converting intervals to strings

For convenience, the interval class provides a conversion operator into the stan-
dard C++ type string.

Example

interval I(3,4);
string s = "test line embedding " + string(I) + " as a string";
// Now, s is "test line embedding [3, 4] as a string"

10.2.2 Output format
Intervals may be displayed following four different formats:

1. by printing all the digits that are the same in the left and right bounds fol-
lowed by an interval containing the remaining digits:

“3.1417[5926, 6001]” stands for “[3.1415926, 3.1416001]”
2. by printing their left and right bounds between square brackets (e.g. “[-1, 11”).

Degenerate intervals whose left and right bound are equal are printed as
floating-point numbers (e.g. “0.5”);

45

3. by printing their midpoint and their width (e.g. “0 +/- 2”);

4. by printing the hexadecimal representation of their left and right bounds
(useful when one wants to know the precise value of the bound without be-
ing affected by the round-off error due to binary-to-decimal conversion);

Note that the second format is the only one recognized as an input (see previ-
ous section).

The choice of the format to use is made through the following static methods:

void interval::format (interval format::format t f) static
interval format::format_t interval::format (void) static

The first form of the method allows modifying the format to use in subsequent
printing of intervals. The second form reports what is the current form in
use. It returns a value of type interval_format::format_t (see below and
10.2.4 for an example of use).

interval _format struct

Structure type used to choose the ouput format for intervals. It has four pos-
sible values of type interval_format::format_t:

* interval_format::agreeing.
e interval_format: :bounds.

e interval_format::width.

e interval_format::center.

e interval_format: :hexa.

Example

interval I(interval::pi);

interval: :format (interval_format::agreeing);

cout << I << "\n";

// Prints 3.14159265358979~[3, 4]

// The ~[] part is dropped if the bounds agree on all digits

interval: :format (interval _format: :bounds);
cout << I << "\n";
// Prints [3.141592653589793, 3.141592653589794]

interval: :format (interval_format::width);
cout << I << "\n";
// Prints 3.141592653589793 (+/- 2.220446049250313e-16)

interval: :format (interval_format: :center);
cout << I << "\n";
// Prints 3.141592653589793

interval: :format (interval _format::hexa);
cout << I << "\n";
// Prints [400921fb54442d18, 400921fb54442d19]

46

N

IS

@

10.2.3 Choosing the number of digits to display

You can manipulate the number of digits to print by using the precision() static
methods of the interval class:

std::streamsize interval::precision (void)

Returns the current number of digits used for printing bounds of intervals.
See example below.

std::streamsize interval::precision (std::streamsize n)

Set the number of digits to use for printing bounds to n. In addition, returns
the number of digits previously used.
See example below.

10.2.4 Example

Example

#include <iostream>
#include <gaol/gaol.h>

using std::cout;
using std::endl;

int main(void)
{
gaol::init();
interval: :precision(4);
interval: :format (interval_format: :bounds);
cout << interval::pi << endl;

if (interval::format() != interval_format::bounds) {
cout << interval::pi << endl;
} else {

int old_prec = interval::precision(16);
interval: :format (interval_format::width);
cout << interval::pi << endl;

}

gaol: :cleanup();

On a Pentium-based PC, the previous program has the following output:
Output

[3.142, 3.142 1]
3.141592653589793 (+/- 2.220446049250313e-16)

The first call to interval: : format () is unnecessary since the default format
isinterval_format: :bounds.

Note. Translating an interval into a string and then reading it back as an interval
is likely to produce an inaccurate or plain wrong result if you choose a precision
different from 17. It is however useless to specify a precision greater than 17 for
the double format since the extra digits would be garbage.

The interval: :pi constant is a predefined canonical interval containing =
(see Section 6, page 19). Here, the width of the interval is equal to the € of the
format.

47

The interval_format: :width format may be useful whenever the number
of digits displayed is insufficient to know whether the result is a single floating-
point number or an interval whose size is very small (consider for example the first
result above), because we have the guarantee that if the actual width of an interval
is greater than zero, the width displayed will also be different from zero. Another
indication is that a degenerate interval is displayed as a floating-point number.

48

11

Floating-point numbers

11.1 Floating-point constants

In addition to the constants available through numeric_limits<double>, gaol
defines the following double constants:

Constant (double) Value
two_pi l2m]
pi {7
half_pi 151
pi_dn L]
pi_up Tm1
half_pi_dn 1%1
half_pi_up 121
1n2_dn |In2]
1n2_up 1In21
two_power_53 2%
GAOL_NAN NaN (quiet)
GAOL_INFINITY +00

11.2 Floating-point functions

bool feven (const double& x)

Returns true whenever x is even.
This function should not be used with infinity and NaN arguments.

Example
1 assert(feven(3.0)); // false
2 assert(feven(3.5)); // false
3 assert(feven(4.0)); // true
4 assert(feven(4.5)); // false
5 assert(feven(GAOL_INFINITY)); // always true
6 assert(feven(GAOL_NAN)); // always false

double next _float (double x)

49

Returns the smallest double greater than x.

double previous _float (double x)

Returns the greatest double smaller than x.

bool is__signed (double x)

Returns true whenever x is signed. No provision is made concerning the fact
that x is a NaN. If you only want to test for negative numbers (and —0), you
will have to test also whether x is a NaN by using the isnan() predicate in
math.h.

double minimum (double x, double y)

Returns the minimum double value of x and y. This function is commutative
and returns —0 when comparing —0 and +0, i.e.:

min(x, y) =min(y, x), Vx # NaN, Vy #NaN
min(x,NaN) =min(NaN,x)=NaN, Vx
min(-0,0) =min(0,-0) = -0

double maximum (double x,double y)

Returns the maximum double value of x and y. This function is commutative
and returns +0 when comparing —0 and +0, i.e.:

max(x, y) = max(y, x), Vx # NaN, Vy # NaN
max(x,NaN) =max(NaN,x)=NaN, Vx
max(—0,0) =max(0,-0)=0

ULONGLONGINT macro

Macro standing for an unsigned integral data type with a size equal to 8 bytes
(usuallyunsigned long long int).

ULONGLONGINT nb_fp numbers (double a, double b)

Returns the number of floating-point numbers in the interval [a, b]. In partic-
ular, we have:

* nb_fp_numbers(a,next_float(a)) ==

* nb_fp_numbers(a,a) ==
Note. As aprecondition, a shall be lower or equal to b.
Returns numeric_1limits<ULONGLONGINT>: :max() if either a or b is a NaN
or an infinity. In addition, raises an invalid_action_error exception (see

Section 15.1, page 58) or calls gaol_error depending on the way the library
was configured.

50

12

Manipulating the FPU

The gaol library provides functions to manipulate the FPU and its flags. The main
functions are the one described in the next section for modifying the rounding
direction. As for now, gaol provides these facilities for the following platforms:

¢ ix86 and compatibles under Linux
¢ SPARC under Solaris

¢ ISO C99-compliant platforms

Whenever possible, inline assembler versions are used.

12.1 Rounding functions

void round _downward (void)

Sets the rounding direction mode towards —co.

void round _nearest (void)

Sets the rounding direction mode to the nearest/even.

void round _ zero (void)

Sets the rounding direction mode to zero.

void round _upward (void)

Sets the rounding direction mode to +oo.

51

12.2 Manipulating the FPU flags

The following functions allow to manipulate the FPU flags. See the documentation
of the FPU for your machine for a description of these flags.

void clear _inexact (void)

Clears the inexact flag of the FPU.

Warning: This function is currently unavailable on some platforms. For
these platforms, a warning is issued when the function is called.

int get _inexact (void)

Returns a non-zero value whenever the last floating-point operation was per-
formed with rounding. The associated FPU flag is a persistent one. As a con-
sequence, you should always clear it by calling clear_inexact () before per-
forming the operation you want to test.

unsigned short get fpu__cw (void)
Returns the value of the FPU control word.

Warning: This function is currently unavailable on some platforms. For
these platforms, a warning is issued when the function is called.

unsigned short get fpu_sw (void)

Returns the value of the FPU status word.

Warning: This function is currently unavailable on some platforms. For
these platforms, a warning is issued when the function is called.

52

13

Version information

The library provides four constants to allow programs to determine at runtime
with which version they are dynamically linked with. The versioning scheme adopted
is the one used by the Apache Software Foundation described at http://apr.
apache.org/versioning.html.

unsigned int version _major const

Major version of the library.

unsigned int version minor const

Minor version of the library.

unsigned int version _patch const

Patch version of the library.

const char *const version const

Version of the library as a string.

Example
1| const char *const version = "1.0.3";

53

http://apr.apache.org/versioning.html
http://apr.apache.org/versioning.html

14

Additional functions

The following functions are utility functions not necessarily related to intervals or
floating-point numbers.

template <typename T>
bool odd (const T& x)

Returns true if x is odd and false otherwise. The T type may be any type
providing the & (“bitwise and”) operator with the same semantics as the one
for ints.

template <typename T>
bool even (const T& x)

Returns true if x is even and false otherwise. The T type may be any type
providing the & (“bitwise and”) operator with the same semantics as the one
for ints.

55

15

Error handling

A program that uses gaol may report errors in two different ways:
¢ by throwing an exception;
¢ or by setting the errno variable.

The mecanism in use depends on the way the library is configured. If you use
the option --enable-exceptions=yes, all errors are reported through exception
throwing; otherwise, the errno variable is used. Relying on exceptions is more in
the C++ spirit, though it may incur some overhead.

It is up to the user to comply with this mecanism when adding error reporting
code to ones program. Gaol defines the following macro to be used whenever one
wants to report an error.

gaol ERROR (excep,msg) macro

The behavior of the macro depends on the value chosen for the option
--enable-exceptions: if exceptions are enabled, exception excep is raised
with the message msg; otherwise, the program aborts with message msg.

Example
interval x;

[Code manipulating x]

w

s|if (x.is_empty()) {
gaol_ERROR(failure_error, "Emptyness of one interval");

=3

7|}

The gaol_error() function is defined as follows:

void gaol error (const char *const err)
void gaol error (const char *file, int line, const char *err)

Displays a message on the standard error output. The ternary version should
be called with the GAOL_FILE_POS macro for the first two parameters.

The GAOL_FILE_POS macro is described in the next section.

57

15.1 Exceptions

The library defines gaol_exception asa class to be used as a base class for all gaol
exceptions. All of them provide at least the name of the file and the line number
from where the exception has been thrown. As a facility, gaol defines the following
macro:

GAOL_FILE_POS macro

Expands itself into the first two arguments of any constructor for
gaol_exception or one of its derived classes:

Example

if ([some condition]) {
throw gaol_exception(GAOL_FILE_POS,
3 "No additional information");

™

All gaol exceptions can be sent to an output stream through the “<<” operator.

15.1.1 The gaol_exception exception

The gaol_exception class is the base class from which derive all gaol exceptions.
It inherits from the C++ standard class exception.

Every exception class deriving from it must at least provide the name of the file
and the line where the corresponding exception was thrown. As a consequence,
the constructors for gaol_exception are as follows:

gaol_exception::gaol _exception (const char* f, unsigned /)
gaol_exception::gaol _exception (const char* f, unsigned /,
const char* e)

Constructs a gaol_exception being thrown from file f at line I. The second
form permits adding some explanatory string e.

The class offers the following accessors:

const char* gaol exception::file (void) const

Return the name of the file from where the exception was thrown.

unsigned int gaol exception::line (void) const

Returns the line number in the file from where the exception was thrown.

const char* const gaol _exception::explanation (void) const

Returns a string explaining why the exception was thrown. Returns an empty
string if no additional information was provided.

58

15.1.2 The input_format_error exception

The input_format_error exception is thrown whenever one attempts to create

an interval from an invalid string. This situation may occur when reading an inter-

val from a stream with the >> operator, or when creating an interval from a string.
This class, as all gaol exceptions, derives from gaol_exception (see Section 15.1.1,

page 58). Its constructors have the same format than the ones for gaol_exception,

namely:

input_ format_error::input_format _error (const char* f, unsigned /)
input_ format_error::iinput_format _error (const char* f, unsigned /, const char*

e)

Constructs an input_format_error being thrown from file f at line I. The
second form permits adding some explanatory string e.

The methods of the class are inherited from gaol_exception (see Section 15.1.1,
page 58).

15.1.3 Theunavailable_feature_error exception

This exception is thrown whenever an unavailable feature is requested.

This class, as all gaol exceptions, derives from gaol_exception. (see Sec-
tion 15.1.1, page 58). Its constructors have the same format than the ones for
gaol_exception, namely:

unavailable _feature error::unavailable feature error
(const char* f, unsigned /)

unavailable _feature error::unavailable feature _error
(const char* f, unsigned /, const char* e)

Constructs an unavailable_feature_error being thrown from file f atline
L The second form permits adding some explanatory string e.

The methods of the class are inherited from gaol_exception (see Section 15.1.1,
page 58).

15.1.4 The invalid_action_error exception

This exception is thrown whenever a function is called with invalid arguments (e.g.
calling nb_£fp_numbers () with NaNs as parameters).

This class, as all gaol exceptions, derives from gaol_exception (see Section 15.1.1,
page 58). Its constructors have the same format than the ones for gaol_exception,
namely:

invalid_action__error::invalid _action _error (const char* f,
unsigned /)

invalid_action_error::invalid _action _error (const char* f,
unsigned /, const char* e)

Constructs an invalid_action_error being thrown from file f atline L. The
second form permits adding some explanatory string e.

The methods of the class are inherited from gaol_exception (see Section 15.1.1,
page 58).

59

15.2 Warnings

void gaol _warning (const char *warn)
void gaol _warning (const char *file, int line, const char *warn)

Prints the message warn on the standard error output. The second form
should be called with the GAOL_FILE_P0S macro for the first two parameters.

60

oW o =

o o

a

16

Debugging facilities

The debugging facilities described hereunder are available only if gaol has been
configured with the debugging facilities enabled (see the - -enable-debug option,
Section 2.2.2, p. 4).

int debug _level
Global variable used to remember the current value of the debugging level.

This variable is set when initializing the library. The variable is declared in the
gaol namespace.

GAOL_DEBUG (/vl,cmd) macro

Executes cmd if Ivl is lower or equal to the current debugging level (see the
variable debug_level above).

This macro defaults to nothing if the library was not configured with the
--enable-debug option.

A possible use for this macro is as follows:

Example
interval x(-10,10);

[Some code]
GAOL_DEBUG(1,cout << "The value of x is " << x);

x += double_interval(3.5,4.5);
GAOL_DEBUG(2,cout << "Now the value of x is " << x);

The first message will be displayed whenever gaol has been configured with de-
bugging facilities enabled (see the --enable-debug option). The second message
will be displayed only if the debugging level is greater or equal to 2.

GAOL _ASSERT macro
(cond) Tests whether cond holds. Aborts with an error message if it is not the
case.

This macro defaults to nothing if the library was not configured with the
--enable-debug option.

61

A possible use for this macro is as follows:

Example
int x;
cout << "Give an integer no greater than 5: ";
cin >> x;
GAOL_ASSERT(x <= 5);

62

17

Profiling

The following functions permit computing the time used for a computation. The
returned times are user times, meaning that delays induced by input/output oper-
ations and freezing during CPU switches in multi-programming environments are
not taken into account.

If you need to keep track of several events, consider using an object of the
timepiece class (see Section 17.1, page 64) instead of calling directly the func-
tions below.

Warning. The precision of the timing functions depends on the platform used.
For example, the precision on ix86-based machines is usually no better than 10
ms. What is more, despite the fact that the reported times are user times, they may
vary from an execution to another, and can get larger on heavily loaded machines.

long get time (void)

Returns the time in milliseconds since a certain unspecified moment.

This function should only be used to compute differences between two calls
since the starting point may vary depending on the availability of clock () or
getrusage () on the system.

Warning. if the function in use is the standard clock (), the time returned
will wrap approximately every 72 minutes. Consequently, it is not safe to use
get_time () in that case for processes requiring more than 72 minutes to ex-
ecute.

void reset _time (void)

Resets the time counter. To be called just before executing some code to be
profiled.

long elapsed _time (void)
Returns the time in milliseconds elapsed between now and the last call to
reset_time().

long intermediate _elapsed _time (void)

63

Returns the time in milliseconds elapsed between now and the last call to
reset_time() orto intermediate_elapsed_time().

Here is a typical example of use of the timing functions:

Example

int main(void)
{
reset_time();
for (unsigned int i=0;i<1000;++i) {
[Some time consuming operations]

}
cout << "Elapsed time: " << elapsed_time() << " ms." << endl;
return O;

17.1 The timepiece class

A timepiece object allows to keep track of the time spent to perform a particular
task. Since the counter used is local to the object, it is possible to monitor more
than one such process.

17.1.1 Methods of the timepiece class
void timepiece::start (void)

Starts the timepiece.

void timepiece::stop (void)
Stops the timepiece and accumulates the time spent since the last call to
start ().

void timepiece::reset (void)
Resets to zero the counter keeping track of the total time the timepiece was
running.

long timepiece::get _total _time (void) const

Returns the total amount of time the timepiece was running (time between
callsto start () and stops. The timepiece shall have been stopped by calling
the stop () method before calling this one.

long timepiece::get _intermediate _time (void) const

Returns the amount of time spent since the last call to start ().

64

Example

int main(void)

2| {

3 timepiece t;

4 t.start();

5 for (unsigned int i=0;i<1000;++i) {

6 [Some time consuming operations]

7 cout << "Intermediate time: "

8 << t.get_intermediate_time() << " ms." << endl;

s}

w| t.stop();

1 cout << "Elapsed time: " << t.get_total_time() << " ms." << endl;
12 return O;

13|}

65

18

Additional Documentation

18.1 Documentation on gaol

The primary reference is this manual. There is also an html reference for the code
itself, which might be of interest only to developers seeking to understand/modify
gaol.

18.2 References

The following articles and books have inspired in some way or another the devising
of the gaol library and/or the writing of this manual.

e [Interval Arithmetic Specification. Dmitri Chiriaev and G. William Walster.
Draft revised May 1998.

¢ The Extended Real Interval System. G. William Walster. April 1998.

o C++ Interval Arithmetic Programming Reference. Sun Microsystems, Inc. Oc-
tober 2000, revision A.

o Interval Arithmetic: From Principles to Implementation. T. Hickey, Q. Ju,
and M. H. van Emden. Tech. Rep. CS-99-202, CS Dept. Brandeis U, July
1999.

67

19

Reporting bugs

All bugs and suggestions for improvement shall be submitted through the appro-
priate form available on the web site:

http://sourceforge.net/projects/gaol/

69

http://sourceforge.net/projects/gaol/

20

Contributors

The main implementor and lead designer for the gaol library is Frédéric Goualard
(goualard@users.sourceforge.net).

The interval pow(const interval&, const interval&) functionwasde-
signed by Marc Christie (christie@users.sourceforge.net).

The code for the multiplication and the division is largely inspired from the one
presented by Tim Hickey, Qun Ju and Maarten Van Emden in Interval Arithmetic:
from Principles to Implementation Journal of the ACM 48(5):1038-1068, september
2001.

71

mailto:christie@users.sourceforge.net
mailto:goualard@users.sourceforge.net

Library Copying

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright © 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it
goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee
your freedom to share and change free software-to make sure the software is free
for all its users.

This license, the Library General Public License, applies to some specially des-
ignated Free Software Foundation software, and to any other libraries whose au-
thors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the library, or if you
modify it.

For example, if you distribute copies of the library, whether gratis or for a fee,
you must give the recipients all the rights that we gave you. You must make sure
that they, too, receive or can get the source code. If you link a program with the
library, you must provide complete object files to the recipients so that they can
relink them with the library, after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library,
and (2) offer you this license which gives you legal permission to copy, distribute
and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified
by someone else and passed on, we want its recipients to know that what they
have is not the original version, so that any problems introduced by others will not
reflect on the original authors’ reputations.

73

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that companies distributing free software will individually ob-
tain patent licenses, thus in effect transforming the program into proprietary soft-
ware. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License, which was designed for utility programs. This license, the
GNU Library General Public License, applies to certain designated libraries. This
license is quite different from the ordinary one; be sure to read it in full, and don’t
assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they
blur the distinction we usually make between modifying or adding to a program
and simply using it. Linking a program with a library, without changing the library,
is in some sense simply using the library, and is analogous to running a utility pro-
gram or application program. However, in a textual and legal sense, the linked ex-
ecutable is a combined work, a derivative of the original library, and the ordinary
General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License
for libraries did not effectively promote software sharing, because most developers
did not use the libraries. We concluded that weaker conditions might promote
sharing better.

However, unrestricted linking of non-free programs would deprive the users
of those programs of all benefit from the free status of the libraries themselves.
This Library General Public License is intended to permit developers of non-free
programs to use free libraries, while preserving your freedom as a user of such
programs to change the free libraries that are incorporated in them. (We have not
seen how to achieve this as regards changes in header files, but we have achieved
it as regards changes in the actual functions of the Library.) The hope is that this
will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification
follow. Pay close attention to the difference between a “work based on the library”
and a “work that uses the library”. The former contains code derived from the
library, while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public
License rather than by this special one.

Terms and Conditions for Copying, Distribution and Mod-
ification

0. This License Agreement applies to any software library which contains a no-
tice placed by the copyright holder or other authorized party saying it may
be distributed under the terms of this Library General Public License (also
called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so
as to be conveniently linked with application programs (which use some of
those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has
been distributed under these terms. A “work based on the Library” means
either the Library or any derivative work under copyright law: that is to say,
awork containing the Library or a portion of it, either verbatim or with mod-
ifications and/or translated straightforwardly into another language. (Here-
inafter, translation is included without limitation in the term “modification”.)

74

“Source code” for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running a program us-
ing the Library is not restricted, and output from such a program is covered
only if its contents constitute a work based on the Library (independent of
the use of the Library in a tool for writing it). Whether that is true depends
on what the Library does and what the program that uses the Library does.

. You may copy and distribute verbatim copies of the Library’s complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and dis-
claimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and distribute a copy of this License along
with the Library.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifi-
cations or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating
that you changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all
third parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data

to be supplied by an application program that uses the facility, other
than as an argument passed when the facility is invoked, then you must
make a good faith effort to ensure that, in the event an application does
not supply such function or table, the facility still operates, and per-
forms whatever part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a
purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied func-
tion or table used by this function must be optional: if the application
does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Library, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part
of a whole which is a work based on the Library, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to

75

control the distribution of derivative or collective works based on the Li-
brary.

In addition, mere aggregation of another work not based on the Library with
the Library (or with a work based on the Library) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must
alter all the notices that refer to this License, so that they refer to the ordi-
nary GNU General Public License, version 2, instead of to this License. (If
a newer version than version 2 of the ordinary GNU General Public License
has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies
and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

. You may copy and distribute the Library (or a portion or derivative of it,
under Section 2) in object code or executable form under the terms of Sec-
tions 1 and 2 above provided that you accompany it with the complete corre-
sponding machine-readable source code, which must be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for soft-
ware interchange.

If distribution of object code is made by offering access to copy from a des-
ignated place, then offering equivalent access to copy the source code from
the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the ob-
ject code.

. A program that contains no derivative of any portion of the Library, but is de-
signed to work with the Library by being compiled or linked with it, is called
a “work that uses the Library”. Such a work, in isolation, is not a derivative
work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an
executable that is a derivative of the Library (because it contains portions
of the Library), rather than a “work that uses the library”. The executable is
therefore covered by this License. Section 6 states terms for distribution of
such executables.

When a “work that uses the Library” uses material from a header file that is
part of the Library, the object code for the work may be a derivative work of
the Library even though the source code is not. Whether this is true is espe-
cially significant if the work can be linked without the Library, or if the work
is itself a library. The threshold for this to be true is not precisely defined by
law.

If such an object file uses only numerical parameters, data structure layouts
and accessors, and small macros and small inline functions (ten lines or less
inlength), then the use of the object file is unrestricted, regardless of whether
it is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)

76

Otherwise, if the work is a derivative of the Library, you may distribute the
object code for the work under the terms of Section 6. Any executables con-
taining that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a “work
that uses the Library” with the Library to produce a work containing portions
of the Library, and distribute that work under terms of your choice, provided
that the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library
is used in it and that the Library and its use are covered by this License.
You must supply a copy of this License. If the work during execution dis-
plays copyright notices, you must include the copyright notice for the Li-
brary among them, as well as a reference directing the user to the copy of
this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in
the work (which must be distributed under Sections 1 and 2 above);
and, if the work is an executable linked with the Library, with the com-
plete machine-readable "work that uses the Library", as object code
and/or source code, so that the user can modify the Library and then
relink to produce a modified executable containing the modified Li-
brary. (It is understood that the user who changes the contents of defi-
nitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b. Accompany the work with a written offer, valid for at least three years,
to give the same user the materials specified in Subsection 6a, above,
for a charge no more than the cost of performing this distribution.

c. If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified
materials from the same place.

d. Verify that the user has already received a copy of these materials or
that you have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable
from it. However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the op-
erating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of
other proprietary libraries that do not normally accompany the operating
system. Such a contradiction means you cannot use both them and the Li-
brary together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-
side in a single library together with other library facilities not covered by
this License, and distribute such a combined library, provided that the sep-
arate distribution of the work based on the Library and of the other library
facilities is otherwise permitted, and provided that you do these two things:

77

10.

11.

a. Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities. This must
be distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part
of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

. You may not copy, modify, sublicense, link with, or distribute the Library

except as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compli-
ance.

You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Li-
brary or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Library
(or any work based on the Library), you indicate your acceptance of this Li-
cense to do so, and all its terms and conditions for copying, distributing or
modifying the Library or works based on it.

Each time you redistribute the Library (or any work based on the Library),
the recipient automatically receives a license from the original licensor to
copy, distribute, link with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

78

12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Library under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of
the Library General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Library speci-
fies a version number of this License which applies to it and "any later ver-
sion", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foun-
dation. If the Library does not specify a license version number, you may
choose any version ever published by the Free Software Foundation.

14. Ifyouwish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to
ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISKAS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. INNO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO
OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute

79

and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

one line to give the library’s name and a brief idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Library General Public License as pub-
lished by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software Foun-
dation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a “copyright disclaimer” for the library, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library
‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

That'’s all there is to it!

80

Index

| |, see downward rounding debug_level, 61
11, seeupward rounding debugging
abs, 39 option, 5
acos, 33 div_rel, 35
acos_rel, 34 downward rounding (| |), 10
acosh, 33 doxygen, 4
APMathlib, vii, 4, 10

configuration option, 5 elapsed_time, 63
asin, 33 empty
asin_rel, 34 interval: printing, 45
asinh, 33 [empty], 45
assembler, 5 error
atan, 33 raising an exception, 5
atan_rel, 34 even, 55
atanh, 33 exp, 32

explanation, 58
bison, 4
F, 10

C++ feven, 49

standard, 4 file, 58
canonical interval, 11, 11 flex, 4
ceil, 40 floor, 39
cell, vii format, 46
certainly_eq, 23 function
certainly_ge, 24 undocumented, 1
certainly_geq, 24
certainly_le, 24 gaol
certainly_leq, 24 namespace, 9
certainly_negative, 25 pronunciation, 1
certainly_neq, 23 web page, 3
certainly_positive, 24 GAOL_ASSERT, 61
certainly_strictly_negative, 25 GAOL_DEBUG, 61
certainly_strictly_positive,25 gaol_ERROR, 57
chi, 39 gaol_error, 57
cleanup, 13 gaol_exception, 58
clear_inexact, 52 GAOL_FILE_POS, 58
compiling gaol_warning, 60

a file using gaol, 10 get_fpu_cw, 52
configure, 4 get_fpu_sw, 52
containement property, 10 get_inexact, 52
cos, 33 get_intermediate_time, 64
cosh, 33 get_time, 63
CppUnit, 4 get_total_time, 64

81

Graphviz, 4

hausdorff, 38
header

and namespace, see namespace
help

on configuration, 4

init, 10,13
input_format_error, 59
integer, 40
intermediate_elapsed_time, 63
interval
canonical, see canonical interval
computation site (web), 1
conversion to string, 45
interval_format, 46
invabs_rel, 34
invalid_action_error, 59
is_a_double, 28
is_an_int, 28
is_canonical, 28
is_empty, 28
is_finite, 29
is_signed, 50
is_symmetric, 29
is_zero, 29

LD_LIBRARY_PATH, 6
left, 38
library

shared, 6
LIBRARY_PATH, 6
line, 58
log, 32

mag, 38

max, 39

maximum, 50

messages

avoiding printing of, 5

mid, 38

midpoint, 38

mig, 37

min, 39

minimum, 50

namespace
gaol, 9
nb_fp_numbers, 50
next_float, 49
nextafter
nextafter
extern, vii
nth_root, 32

82

nth_root_rel, 34

odd, 55
operator
operator
=, 26
relational, 1
operatorx, 32
operatorx=, 17
operator+, 31
operator+=,17
operator-, 32
operator-=,17
operator/, 32
operator/=, 18
operatorx, 27
operator<=, 27
operator<x, 45
operator==, 26
operator>, 27
operator>=, 27
operator>>, 43
operator, 32, 34
operator, ,34
operator’=, 18
operator’= ,18
operatoré, 41
operator&=, 17
optimization

configuration option, 5

outward rounding, 10

possibly_eq, 25
possibly_ge, 26
possibly_geq, 26
possibly_le, 26
possibly_leq, 26
possibly_neq, 25
pow, 32
precision, 47
previous_float, 50

R, 10
references

on interval arithmetic, 1

relation, 5

relational operator, 1
reset, 64
reset_time, 63
right, 39
round_downward, 51
round_nearest, 51
round_upward, 51
round_zero, 51
Rounding

to nearest, 11
rounding
downward, 10
outward, see outward rounding
preserving, 10
preserving (gcc), 5
upward, 10

self, 17
set_contains, 21
set_disjoint, 22
set_eq ,22
set_ge, 23
set_geq, 23
set_le, 23
set_leq, 23
set_neq, 22
set_strictly_contains, 22
shared, seelibrary
sin, 33
sinh, 33
smig, 37
solaris
installing gaol on, 3
sparc
installing gaol on, 3
split, 40
split_left, 40
split_right, 40
sqr, 32
sqrt, 32
sqrt_rel, 34
start, 64
stop, 64
straddles_zero, 27
strictly_straddles_zero, 27
string
converting interval to, see inter-
val
strtord
strtord
extern, vii

tan, 33
tanh, 33
this, 17
tool
mandatory ~ to compile gaol, 4

ULONGLONGINT, 50
unavailable_feature_error, 59
undocumented

use of ~ functions, 1
upward rounding (1 1), 10

verbose mode, 5
version, 53

version_major, 53
version_minor, 53
version_patch, 53

width, 37

83

	Copyright
	Introduction
	Installation
	Getting the software
	Installing gaol from the source tarball on Unix and Linux
	Prerequisites
	Configuration
	Building
	Installation

	Installing gaol as a rpm package
	Installing gaol on MS Windows 95--XP
	Installing gaol with the auto-installing program
	Compiling and installing gaol under Windows

	An overview of gaol
	The trust rounding mode
	Common errors
	Floating-point arithmetic and rounding

	Initialization and cleanup
	Interval creation and assignment
	Constructors
	Straight assignment
	Assignment combined with an operation

	Interval constants
	Interval relations
	Set relations
	Certainly relations
	Possibly relations
	Relational Symbols
	Interval-specific relations

	Interval Arithmetic
	Functional Arithmetic
	Trigonometric functions
	Hyperbolic functions

	Relational Arithmetic
	(n+1)-ary relational functions

	Interval functions
	Splitting methods
	Union and intersection

	Input/output
	Reading intervals
	Input format

	Writing intervals
	Converting intervals to strings
	Output format
	Choosing the number of digits to display
	Example

	Floating-point numbers
	Floating-point constants
	Floating-point functions

	Manipulating the FPU
	Rounding functions
	Manipulating the FPU flags

	Version information
	Additional functions
	Error handling
	Exceptions
	The gaol_exception exception
	The input_format_error exception
	The unavailable_feature_error exception
	The invalid_action_error exception

	Warnings

	Debugging facilities
	Profiling
	The timepiece class
	Methods of the timepiece class

	Additional Documentation
	Documentation on gaol
	References

	Reporting bugs
	Contributors
	Library Copying

