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Abstract The design and characterisation of a mag-
netic vibration absorber (MVA), completely relying on
magnetic forces, is addressed. A distinctive feature of
the absorber is the ability of tuning the linear stiffness
togetherwith the nonlinear cubic and quintic stiffnesses
by means of repulsive magnets located in the axis of
the main vibrating magnetic mass, together with a set
of corrective magnets located off the main axis. The
tuning methodology is passive and relies only on three
geometrical parameters. Consequently, the MVA can
be adjusted to design either a nonlinear tuned vibra-
tion absorber, a nonlinear energy sink or a bi-stable
absorber with negative linear stiffness. The expressions
of the stiffnesses are given from a multipole expansion
of the magnetic fields of repulsive and corrective mag-
nets. A complete static and dynamic characterisation
is performed, showing the robustness of the modelling
together with the ability of the MVA to work properly
in different vibratory regimes, thus making it a suitable
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candidate for passive vibration mitigation in a wide
variety of contexts.
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1 Introduction

The vibration mitigation of mechanical structures is
a long-standing problem which receives a consider-
able and continuous interest due to its importance in
engineering applications. The most famous vibration
absorber is the linear tuned-mass damper (TMD), orig-
inally proposed by Frahm [11] and theoretically stud-
ied by Den Hartog [8]. Whereas the original work by
Ormondroyd and Den Hartog [33] considered the pri-
mary structure (PS) as a linear undampedoscillator, fur-
ther research extended their results to a damped oscil-
lator as PS, in order to derive the optimal parameter
values for a given set of optimisation criteria [3,40,48].
The extension of these results to flexible structures hav-
ing an infinite number of modes is also a topic for cur-
rent research, see e.g. [24].

The drawbacks of the TMD as a vibration absorber
are well known and documented. The main associated
problem is related to the narrow bandwidth of opti-
mal control, asking for an accurate tuning which must
continue over times. In the last decades, a number of
investigations have been conducted in order to over-
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come these limitations, one of the main ideas being
to use a nonlinearity in order to improve the vibra-
tion absorber design. The concept of a nonlinear energy
sink (NES) relies on a vanishing linear stiffness, giv-
ing rise to an essentially nonlinear restoring force.
Having no natural frequency, the NES can thus adapt
itself to the frequency of the PS [12,41,44]. A targeted
energy transfer (TET) can then occur in an irreversible
fashion [42,43]. The concept has been demonstrated
theoretically and experimentally in a series of papers
[13,15,25–27,31,32].

As also remarked by a number of investigators, the
frequency range over which a linear passive vibration
isolator is effective may be limited by the mount stiff-
ness required to support a static load. Hence, the idea
of selecting the eigenfrequency of the vibration isolator
as small as possible leads to the concept of “quasi-zero
stiffness” (QZS) absorber, which has been studied both
theoretically and experimentally [5,6,23,46].

Another idea which has emerged recently is to use
the nonlinearity of the absorber in order to control the
nonlinearity of the primary structure. As remarked in
[45], a TMD is less effective as soon as the PS is nonlin-
ear and exhibits typical features of nonlinear dynamics.
In this context, an extension of den Hartog’s equal peak
method has been proposed in [18], leading to the defin-
ition of a nonlinear tuned vibration absorber (NLTVA),
which can be used e.g. for suppressing the limit cycle
oscillations in a Duffing–Van der Pol system [19].

A recognised drawback of the NES is that a suffi-
cient energy level is required for the targeted energy
transfer to occur [42,43]. Recent studies have consid-
ered the case of a negative linear stiffness, leading to a
bi-stable vibration absorber device. For example, it has
been shown in [29,37] that such a vibration absorber
may bemore efficient than anNES as the energy barrier
for activation is smaller in the bi-stable case.

Numerous experimental devices have beenproposed
including for example thin rods with no pretension for
an NES [31], or vibro-impact oscillator [2,14]. For the
absorber with quasi-zero stiffness, the case of Euler
buckled beams has been proposed in [28]. Recent real-
isations of the NLTVA have been built with 3D printed
beams having a particular cross section in order to cor-
rectly tune linear and nonlinear characteristics [16,17].
The vibration suppression of beams using eddy current
dampers has been proposed in [4,10,38] for pendulum
and normal motions, respectively. A variety of nonlin-
ear absorbers of more general forms have also been

proposed including for example the case of centrifugal
pendulum for torsional vibration mitigation [20].

In this contribution, a passive magnetic vibration
absorber (MVA) is proposedwith the ability of properly
tuning its linear and nonlinear characteristics. Our goal
is to propose a flexible device that can be used as either
an NES, an NLTVA or a bi-stable vibration absorber,
all these tunings being realised passively with a simple
change in the system’s geometry. The device relies on
the use of magnetic forces in order to be able to tune
the stiffnesses. The idea of using magnetic forces for
designing a vibration absorber can be traced back to the
pioneering work of Yamakawa and Kojima [21,22,47].
In these articles, they use a simple arrangement with
a mobile magnet at centre in the repulsive magnetic
fields of fixed magnets. The device being vertical, the
gravity force was also taken into account (the centre
magnet being levitating), in order to design a QZS
absorber [36]. Other arrangements where the correc-
tion forces are provided by springs have also been stud-
ied in [7,46]. Moreover, the study of nonlinear mag-
netic systems goes over the vibration reduction field
with energy harvesting devices, see for example [30].
Finally, Al-Shudeifat proposes an asymmetric arrange-
ment of the initial design of Yamakawa and Kojima in
order to realise an NES [1]. In general, we note that the
realisation of vibration absorber devices is not flexible
and are tuned for the purpose of realising a specific
case, TMD, NES, NLTVA or bi-stable.

The paper is organised as follows. In Sect. 2, we
introduce the geometry of the device. The basic idea
is the same as those already used since Yamakawa and
Kojima, the originality being the use of a set of four
fixed corrective magnets placed at an offset position of
the main axis. A multipole expansion is used to model
themagnetic forces, so that the linear, cubic and quintic
nonlinear stiffnesses can be evaluated. Their variations
with respect to geometric parameters are studied in
order to show how one can select the desired absorber:
NES, NLTVA or bi-stable. Static and dynamic tests are
then experimentally conducted in Sects. 3, 4 in order
to obtain a complete characterisation of the MVA.

2 The magnetic vibration absorber (MVA)

2.1 Main characteristics

The proposed vibration absorber is shown in Fig. 1. It is
composed of seven permanent ring magnets located on
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Fig. 1 Schematic representation of the magnetic vibration
absorber (MVA)

plastic rods, shown in grey in Fig. 1. The length, inter-
nal and external diameters of the magnets are denoted
L , Dint and Dext respectively. The mass of the absorber
oscillating around the central position x = 0 is given by
the magnet 1. This mass can be easily tuned by adding
a massive object at centre as proposed e.g. in [2]. The
main vibration axis is horizontal so that the gravity has
no influence on the restoring force exerted on magnet
1. The other magnets, respectively, numbered 2, 3, 4, 5,

6 and 7, are fixed on the rods. The black and white parts
of eachmagnet indicate the direction of their axialmag-
netisation. Regarding the magnet (1), magnets 2 and 3
have an opposite magnetisation. As they apply a repul-
sive force on the magnet 1, pushing it in its central
position, they are named the repulsive magnets. The
amplitude of the repulsive force can be tuned by modi-
fying the geometric parameter r , or the magnetisation.
Magnets 4, 5, 6 and 7, named the corrective magnets,
have the same direction of magnetisation as magnet 1
and apply an attractive force on it. The amplitude of this
force is adjustable bymodifying the geometric parame-
ters R and d. Therefore, the total force applied on the
magnet 1 is tuned by the independent modifications of
the geometric parameters r , R and d.

2.2 Experimental realisation

Numerous experimental configurations can be built fol-
lowing the model of the proposed MVA, and a number
of them have been tested in the laboratory in order to
characterise the MVA. In this section, we focus on a
practical realisation, convenient for a number of static
and dynamical tests. A picture of this selected device
is shown in Fig. 2. In particular, the same type of

Fig. 2 Realisation of the
magnetic vibration absorber
with the definition of the
additional length L

r

L R

Table 1 Characteristics of the magnets

Length (L) (mm) Internal diameter (Dint) (mm) External diameter (Dext) (mm) Weight (Mmag) (g) Type Grade

5 10 20 10 NdFeB N42
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Fig. 3 Geometrical representation for computing the magnetic
force applied on the moment m, located at p and created by the
ringmagnet of external diameter Dext , internal diameter Dint and

length L . Angles are defined such as φ′ = ( ̂ex , ρ′
xz)with ρ′

xz the

orthogonal projection of ρ′ in the plane (ex , ez), ψ ′ = ( ̂ey, ρ′)
and θ = (êy, p)

ring magnets has been retained for vibrating, repulsive
and corrective magnets. The characteristics of these
ring magnets are given in Table 1. Of course, differ-
ent magnets can be used in the device for tuning the
desired properties. To get a corrective force that is large
enough in comparison with the repulsive force, the cor-
rective magnets are in fact composed of three rings
stuck together, in order to increase their total magnetic
moments. So as to fit with the schematic representa-
tion of Fig. 1, the length 2R corresponds to the dis-
tance between the two magnetic moments of the cor-
rective magnets located on the same axis. The mag-
netic moment is assumed to be located at the centre of
the 3 stuck magnets. Hence, R represents the distance
between the middle of the three corrective magnets and
the central position, as shown in Fig. 2. Consequently,
in the experimental realisation, the length R is set equal
to r−L , with L the thickness of onemagnet, see Fig. 2.
As this experimental device has beenmostly used in the
remainder of the study, we will generally select R as
R = r − L .

2.3 Theoretical expression of the stiffnesses

Let us now derive the expression of the force applied on
magnet 1. The mutual energy of two similar permanent
magnets with a magnetic moment m, a volume V and
creating a magnetic field B is given by

Ep = −
∫
V
M · BdV, (1)

where M = m/V is the corresponding uniform mag-
netisation. The force created by themagnetic field B(p)
on the vibrating magnet is given by

F(p) = ∇ (m · B(p)) , (2)

where p is the coordinates of the magnet 1 relative
to the fixed magnet as shown in Fig. 3. In this study,
a multipole expansion is used to give the expression
of the magnetic field in order to improve the dipole
approximation which could give inaccurate results for
small distance between magnets.

2.3.1 Multipole expansion

The multipole expansion is briefly presented here for
cylindrical permanentmagnets axiallymagnetised. The
calculation is first presented for a cylindrical magnet
without hole. The hole is taken into account at the end
of the calculation, by adding the magnetic field created
by another cylindrical permanent magnet with oppo-
site magnetisation, and a diameter equal to that of the
hole. The interested reader is referred to [35] for amore
detailed presentation of magnetic forces and multipole
expansion. The used approach is known to be relevant
if the distance between the magnets is larger than their
characteristic lengths (usually the radius of a sphere
containing the magnet). Figure 3 shows the geometric
parameters used for the computation when the fixed
magnet is located at the origin of the basis (ex , ey, ez)
and the magnet 1 at the origin of the basis (ep, eθ , ez).
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All primed variables are defined relative to the fixed
magnet for integration. The magnetic field reads

B(p) = μ0m

4πV

∑
nodd

(L/2)n+2

pn+2

(
(n+1)Dnep− dDn

dθ
eθ

)

=
∑
n odd

Bn( p), (3)

where μ0 is the void permeability and p and m
are, respectively, the magnitudes of the vector p
and of the magnetic moment m of the fixed mag-
net. Using the substitution γ = cos(ψ ′), the term(
(n + 1)Dnep − dDn

dθ
eθ

)
takes into account the shape

of the fixed magnet with

Dn( p, β) =
⎧⎨
⎩
2

∫ 1
1√
1+β2

∫ 2π
0

Pn( p̂·ρ̂′)
γ n+3 dφ′dγ, n odd,

0, n even,

(4)

whereβ = Dext/L if themagnet is a fully solid cylinder
and Pn() the Legendre polynomials. Using the nota-
tions of Fig. 3, ( p̂ · ρ̂

′
) = √

1 − γ 2 sin θ cos(φ′) +
γ cos(θ), with p̂ = p/|| p|| and ρ̂

′ = ρ′/||ρ′|| the unit
vector of the integration point in the fixed magnet.

Finally, rewritingm cos(θ)ep = p̂ p̂Tm andm sin(θ)

eθ = ( p̂ p̂T− I d)m, the first terms of themagnetic field
read

B1( p) = μ0

4π

1

p3

[
3 p̂ p̂T − I d

]
m,

B3( p) = μ0

4π

1

p5

(
L

2

)2 (
4 − 3β2

8

)

×
[(

35
(
m̂T p̂

)2 − 15

)
p̂ p̂T

−
(
15

(
m̂T p̂

)2 − 3

)
I d

]
m,

B5( p) = μ0

4π

1

p7

(
L

2

)4 (
15β4 − 60β2 + 24

64

)

×
[(

231
(
m̂T p̂

)4 − 210
(
m̂T p̂

)2 + 35

)
p̂ p̂T

−
(
105

(
m̂T p̂

)4 − 70
(
m̂T p̂

)2 + 5

)
I d

]
m,

B7( p) = μ0

4π

1

p9

(
L

2

)6(64−336β2+280β4−35β6

1024

)

×
[(

6435
(
m̂T p̂

)6 − 9009
(
m̂T p̂

)4

+3465
(
m̂T p̂

)2+315

)
p̂ p̂T−

(
3003

(
m̂T p̂

)6

−3465
(
m̂T p̂

)4+945
(
m̂T p̂

)2−35

)
I d

]
m, (5)

where I d is the unit matrix and T stands for the trans-
pose. As shown in Sect. 3.2, the first four terms (dipole,
quadrupole, hexapole and octupole) of the magnetic
field gives an accurate model for the MVA.

In order to take into account the shape of themagnet,
the ring is defined by the addition of two cylinders of
equal length L [35]. The magnetic field of the largest is
computed as previously using the diameter Dext and a
positive magnetisation M, whereas the magnetic field
of the hole is computed using the diameter Dint and a
negative magnetisation −M. The latter is simply com-
puted replacing Dext by Dint and m by −m in Eq. (5).

2.3.2 Total stiffness force

The total force applied onmagnet 1 due to the repulsive
and corrective magnets is computed using Eq. (2) for
magnets 2–7 and finally reads

FTot =
7∑

i=2

F
(
pi

)
, (6)

where pi is the vector between the centre of themagnets
i and 1.

For i = (2, 3), one has

| pi| = (r + x), (7)

while for i = (4, 5, 6, 7),

| pi| =
(
(R + x)2 + d2

)1/2
, (8)

where x is the displacement of the magnet 1 around
its central position. According to Eq. (7), the repulsive
force is tuned using the length r , while Eq. (8) shows
that the lengths R and d tune the corrective force. Trun-
cating the Taylor series around x = 0 at the fifth order,
the total force applied on themagnet 1 can be written as

FTot(x) ≈ − (
K rep
1 (r) − K cor

1 (R, d)
)
x

− (
K rep
3 (r) − K cor

3 (R, d)
)
x3

− (
K rep
5 (r) − K cor

5 (R, d)
)
x5, (9)

≈ −K1x − K3x
3 − K5x

5. (10)

Thismagnetic force is factorised to give a linear, a cubic
and a quintic stiffness terms. Modifying the geometric
parameters r , R and d, these three terms can be tuned to
change the properties of theMVA. The detailed expres-
sions of these coefficients are given in “Appendix”.
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Fig. 4 Theoretical evolution of the linear (first column), cubic
(second column) and quintic (third column) stiffness coefficients
as functions of r and d for R = r−L+20 mm (a–c), R = r−L
(d–f) and R = r−L−10mm (g–i). Zeros are shown using black

dashed lines. Configurations of Fig. 5 are denoted with the mark-
ers as: green triangle, red diamond and blue circle. (Color figure
online)

2.3.3 Stiffness cartography

The aim of this section is to show how the geometry of
the device, parametrised by r , R and d, can be used for
tuning the stiffnesses of the MVA. Figure 4 shows the
evolution of the coefficients K1, K3 and K5 as a func-
tion of r and d. As explained in Sect. 2.2, R is selected
as R = r − L in all this section. The central row of
Fig. 4, i.e. Fig. 4d–f, corresponds to the experimen-
tal device shown in Fig. 2 with R = r − L . In order
to explore numerically the possible stiffnesses of the

MVA, the first row, i.e. Fig. 4a–c, shows a case where
a larger value of R has been selected. More specif-
ically, denoting r0 the minimal distance numerically
computed (r0 = 20mm in Fig. 4), the length R has
been increased of r0. This minimum distance is arbi-
trarily chosen according to themodel limitations. Then,
in Fig. 4g–i, the distance R has been decreased so as
to observe the effect of a stronger correction brought
by the corrective magnets. In this case, R has been
decreased of r0/2.
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The stiffness cartography has been computed from
the model presented in the previous section, with as
input parameters two different magnetic moments, mr

and mc, respectively, for the repulsive and corrective
magnets. The selection of the numerical values relies on
an identification procedure for the MVA design shown
in Fig. 2 and used as a reference case for the study of
the stiffness variations. The parameter values aremr =
0.89 and mc = 0.71. Moreover, a shift �d = 3mm
is added to d in order to better fit the model with the
experimental realisation. The choice of this parameter
is more deeply explained in Sect. 3.2.

Figure 4 demonstrates that many stiffness configu-
rations can be reached using the proposed MVA. Mod-
ifying the geometric parameters, all the stiffness coef-
ficients can be either positive, equal to zero or negative.
According to Fig. 4a–c, for a large value of R, linear
(K1) and quintic (K5) coefficients are positive in almost
all geometric configurations while the cubic coefficient
K3 is always above zero. Largest values of the coeffi-
cients are found for small values of r . When the correc-
tive magnets are far from the magnet 1, the parameter d
has a small effect on stiffness coefficients. As shown in
Fig. 4d–f,when R is roughly equal to r , more geometric
configurations are able to producenegative coefficients.
The parameter d has now an important effect on the
coefficients. For example, K5 can be either positive or
negative by modifying d when r = 25mm, see Fig. 4f.
Finally, when R is smaller than r as in Fig. 4g–i, the
cartographies of the stiffness coefficients becomemore
complex. Interestingly enough, one can notice that in
this configuration, it is possible to have negative values
for the two nonlinear coefficients and a positive value
for K1. This could be useful to tuned the MVA as an
NLTVAfor the dampingof shells (or arches) vibrations.
Indeed, for somevalues of the curvature, a shallow shell
may exhibit a softening nonlinearity, see e.g. [34,39].
As the nonlinear term of an NLTVA should be tuned as
the “mirror” of the nonlinearity of the primary struc-
ture to be damped [18,45], then in this case one needs to
design anNLTVAwith a positive K1 and a negative K3.

To sum up the results of Fig. 4, the linear coeffi-
cient is large for small values of r , or in other words
when magnets are close together. Negative values of
K1 are given by large r . The extremum values of coef-
ficients can be increased by modifying the magnetic
properties of the device. For instance, a larger magneti-
sation may be used in order to increase the difference
between minimum and maximum values of K1. If one

changes themagnet grade fromN42 toN50, an increase
in the linear stiffness of the order of about 10% can be
awaited. Another option is to add more magnets to the
absorber. As the magnetisation is proportional to the
volume occupied by the magnetic material, a substan-
tial increase in the forces can be obtained.

In the following sections, R is equal to r − L as in
Fig. 4d–f. In order to investigate the behaviour of the
MVA, this paper focuses on the modification of the lin-
ear stiffness coefficient. In Fig. 4d, the blue, red and
green markers present geometric configurations where
K1 is, respectively, positive, equal to zero and negative.
Hence, in this three selected configurations, theMVA is
tuned as either a vibration absorber (TVA, marker blue
circle), a nonlinear energy sink (NES, red diamond)
or a bi-stable damper (green triangle), respectively. In
each case, the nonlinear coefficients are positive. The
remainder of the study is focused on these three dif-
ferent realisations. Numerous other test configurations
could have been investigated, by tuning the nonlinear
characteristic of theMVA (in order to obtain hardening
or softening nonlinearity), or by adjusting themagnetic
parameters, or themass of theMVA.However, all these
further case studies are postponed to the next step of
this research, where the MVA will be used in real con-
ditions on a given structure.

3 Static behaviour

The MVA is now experimentally studied. Static force
measurements are reported, in order to investigate the
behaviour of the absorber for the three cases indicated
with the markers in Fig. 4. A thorough identification of
the model parameters is then conducted.

3.1 Static force measurements

The proposed model of the tunable MVA is compared
with static force measurements for the three geomet-
ric configurations indicated with the markers in Fig. 4
and described by r and d in Table 2. The magnet 1 is
moved around its central position x = 0 with a 1mm
step. The static force applied on themagnet ismeasured
for each step and presented using blue crosses in Fig. 5.
The insets show the measurements around the central
position where the effects of the nonlinear terms can be
neglected. Therefore, the sign of the linear coefficient
K1 can be directly observed. Since the force is given by
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Table 2 Experimental fitted and theoretical optimised stiffness
coefficients

Param. Fig. 5a Fig. 5b Fig. 5c

r (mm) 47 47 47

d (mm) 36 24 22

KExp
1 (N/m) 29.90 1.84 −13.39

K1 (N/m) 25.59 −2.11 −12.77

KExp
3 (N/m3) 0.64 × 105 0.66 × 105 0.74 × 105

K3 (N/m3) 0.59 × 105 0.73 × 105 0.57 × 105

K Exp
5 (N/m5) 0.20 × 108 1.21 × 108 1.04 × 108

K5 (N/m5) 0.32 × 108 1.28 × 108 1.36 × 108

FTot(x) ≈ −K1x for small displacements, Fig. 5a–c
shows that the linear coefficient is, respectively, posi-
tive, quasi-equal to zero and negative. These results are
in agreementwith the theoretical conclusions of Fig. 4d
and demonstrate that the MVA can be experimentally
tuned as a TVA, an NES or a bi-stable damper, which
has a linear negative stiffness and thus possess two sta-
ble equilibria around the unstable central position.

3.2 Identification of the model parameters

In order to find the experimental values of the stiffness
coefficients, themeasurements are fitted usingEq. (10).
For the three configurations, the linear, cubic and quin-
tic fitted terms, named KExp

1 , KExp
3 and KExp

5 , are given
in Table 2. The plot of Eq. (10) using these values is

presented in Fig. 5 and shows that this simple func-
tion is able to accurately estimate the behaviour of the
MVA.

Then, the experimental linear stiffness coefficients
are used to optimise the model presented in Sect. 2.3.
In the expression of K1 detailed in “Appendix”, three
parameters are used for this optimisation. Since the the-
oretical value of the magnetic moment mtheo depends
on the approximate remanent magnetic field Br given
by the manufacturers, the two first variable parame-
ters are mr and mc. Moreover, to take into account the
errors of the length measurements, the third parame-
ter is a shift �d, added to the length d. This adjusting
parameter is used as an overall free variable taking into
account the measurement errors in geometry for each
magnet which occur when the experimental realisation
of the MVA is not perfectly symmetric. To optimise
these parameters, the method of least squares using the
experimental and the theoretical stiffness coefficients is
applied for a large number of geometric configurations
N . Thus, the cost function to minimise is

Fcost (mr,mc,�d)

=
N∑
i=1

(
KExp
1,i − K1,i (mr,mc,�d)

)2

=
N∑
i=1

(
KExp
1,i −

{
K rep
1,i (mr,�d)−K cor

1,i (mc,�d)
})2

.

Figure 6a shows the experimental linear coefficients
for 50 different configurations used to find the optimal
values of the variable parameters given in Table 3.

Fig. 5 Static force applied
on the magnet 1 as a
function of its displacement.
Measurement (blue plus
symbol), experimental fit
(red line) and theoretical
fitted model (black dashed
line). a K1 > 0, first column
of Table 2 and blue circle in
Fig. 4, b K1 ≈ 0, second
column of Table 2 and red
diamond in Fig. 4, c
K1 < 0, third column of
Table 2 and green triangle in
Fig. 4. (Color figure online)
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Fig. 6 Linear (a), cubic (b) and quintic (c) stiffness coefficients
for r = 35mm (dark blue line), r = 40mm (light blue line) and
r = 45mm (green line). Full lines are the results of the experi-

mental fit, dotted lines are the results of a dipole approximation,
anddashed lines are the results of themultipole expansion. (Color
figure online)

Table 3 Optimal values of the variable parameters

mr mc �d (mm)

0.89 0.71 3

In order to confirm these magnetic moment values
found from the fitting procedure, magnetic field mea-
surements along the axis of a ring magnet, as well as
shifted from the same axis, have been conducted. These
measurements clearly demonstrate that the optimised
value of mr is in good agreement with the magnetic
field measurements. Nevertheless, outside of the mag-
net axis, measurements show that the magnetic field

deviates from the multipole expansion theory. This is
the reasonwhy an equivalentmagneticmomentmc, dif-
ferent from mr, is introduced. Moreover, it is in good
agreement with the calculation of K1, K3 and K5. For
the three cases presented in Sect. 3.1, the stiffness coef-
ficients computed using the optimal model are given in
Table 2 and shown with black dashed lines in Fig. 5.
Since theoretical and experimental values are close, the
optimal model is believed to give a reliable description
of the MVA.

To conclude this section, a discussion on the accu-
racy of the multipole expansion as compared to the
dipole approximation is provided. For every configu-
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ration, the theoretical stiffness coefficients are com-
pared to the experimental results and presented in Fig.
6 with dashed and full lines, respectively. Each point
represents a geometric configuration corresponding to
a pair (r, d) linked together for the same r . The optimal
model gives very accurate results for the linear stiff-
ness which is always close to the experimental coeffi-
cient. When the distances r and d are large, the model
gives also very accurate results for the nonlinear coeffi-
cients K3 and K5. The accuracy of the model decreases
when r and d also decrease, see e.g. Fig. 6b, c. For
instance, K5 is incorrectly predicted when r = 35mm,
or r = 40mm and d < 30mm, but the figure definitely
shows that using a multipole expansion improves sig-
nificantly the accuracy of the model for small values.
Indeed, the dotted lines show the theoretical stiffness
coefficients given by a dipole approximation, whereas
the dashed line shows the result predicted with the
multipole expansion. Note that when using only the
dipole term, the optimisation procedure provides differ-
ent (though close) values: mr = 0.82, mc = 0.72 and
�d = 3mm. Figure 6a shows that the two models give
similar results for the linear stiffness coefficients. How-
ever, themultipole expansion provides better results for
themodelling of nonlinear coefficients as shown in Fig.
6b, c, and even for small values of r and d. For instance,
when r = 35mm, the error on K3 and K5 is divided by
2 almost everywhere using the multipole expansion.

To conclude this section, the model proposed in
Sect. 2 gives accurate results for the modelling of the
linear and cubic stiffness coefficients. For the quintic
term, the accuracy is ensured only for large values of
r and d. For almost every geometric configuration, the
multipole expansion is more accurate than the dipole
approximation, this being especially true for nonlinear
coefficients.

4 Dynamical behaviour

This section is devoted to the dynamical behaviour
of the MVA, tuned either as an NLTVA, an NES or
a bi-stable absorber. In order to investigate its gen-
eral dynamics, experiments are compared to numeri-
cal simulations for the three geometric configurations.
The MVA which has been used to study the NLTVA
and the NES is the experimental realisation presented
in Sect. 2.2. Nevertheless, the linear stiffness of the
NLTVA has been increased slightly in order to cope

sensor
displacement shaker

x

Fig. 7 Experimental set-up for dynamical measurements. The
external frame of the MVA (shown in black) is mounted on the
shaker. The displacement of the mobile magnet (shown in red)
is measured relatively to the displacement of the external frame.
(Color figure online)

with experimental limitations in low-frequency range
due to the use of a shaker. For practical reasons, the
MVA selected to study the bi-stable absorber is built
with smaller magnets. Thus, the characteristics of the
new magnets are L = 6mm, Dint = 6mm, Dext =
15mm, mmag = 6.6g, and the results of the optimisa-
tion step give mr = 0.67, mc = 0.54 and �d = 2mm.

4.1 Experimental set-up and model comparison

As shown in Fig. 7, the external frame of the MVA
is excited using a LDS V455 shaker and the displace-
ment x of the magnet 1 is measured with a Keyence
LS-7070M optical sensor. The absorber is placed hor-
izontally to avoid the gravity effect. Indeed, the restor-
ing force would be asymmetric in case of a vertical
MVA. The force applied on the vibrating magnet is
harmonic. For a given experiment, the amplitude of the
forcing is fixed and the frequency is varied. Increas-
ing and decreasing values of the forcing frequency are
used in a step-by-step experiment, as is usual for nonlin-
ear vibrations where hysteretic behaviours are awaited
due to the presence of multiple equilibria for a certain
frequency range. Using this experimental set-up, the
equation of motion for the vibrating magnet reads

mmag ẍ + χvisc ẋ + gμfricmmagsgn (ẋ) + K1x + K3x
3

+ K5x
5 = Fext sin (Ωt) , (11)

withmmag the mass of the vibratingmagnet, χvisc a vis-
cous damping coefficient,μfric a dry friction coefficient
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Table 4 Characteristics of
the studied configurations

Param. NLTVA (Sect. 4.2.1) NES (Sect. 4.2.2) Bi-stable absorber (Sect. 4.2.3)

r (mm) 38 47 37.5

d (mm) 38 24 16

mmag (g) 10 10 6.6

χvisc (kg/s) 0.09 0.044 0.079

μfric 0.4 0.4 0.4

K1 (N/m) 70.49 −2.11 −44.22

K3 (N/m3) 1.36 × 105 0.73 × 105 2.57 × 105

K5 (N/m5) 1.27 × 108 1.28 × 108 12.98 × 108

(and sgn(·) represents the sign function), g the gravi-
tational acceleration, K1, K3, K5 the stiffness coeffi-
cients andFext and Ω the amplitude and the frequency
of the external force, respectively. The identification of
all the model parameters (namely mmag, μfric, K1, K3,
K5 and χvisc) is realised as follows. The mass of the
vibrating magnet mmag is directly measured. The dry
friction coefficient μfric is found by comparing exper-
imental measurements and theoretical values. A set of
specific measurements have been realised by applying
a static force of increasing amplitude on a free mag-
net placed on the same lubricated plastic rod as those
used for the MVA. The measured force threshold ini-
tiating the magnet displacement gives approximately
μfric ≈ 0.4 with an accurate repeatability. This value
is exactly within the generic range of static frictional
coefficient between lubricated Plexiglas and steel (0.4–
0.5) found in tables. Therefore, the value of 0.4 has been
retained for all numerical simulations.

Then, one defines the selected geometry for the
MVA in order to use it as an NLTVA, an NES or a bi-
stable absorber. These three arrangements are given fix-
ing the geometric parameters r and d (with R selected
as r − L). From these parameters, together with the
magnetic moments derived from the static measure-
ments, the theoreticalmodel using themultipole expan-
sion of Sect. 2 provides the stiffnesses K1, K3 and K5.
The values of these parameters are given in Table 4 for
the three configurations.

The last parameter to evaluate is the viscous damp-
ing coefficient χvisc. This coefficient includes all loss
mechanisms which are not detailed in the model. For
example, these losses could be due to lubricated vis-
cous friction, heat transfer and eddy currents. As the
damping behaviour of the MVA in free vibration is
dominated by the dry friction for free oscillations,
χvisc is difficult to evaluate experimentally by using

free decay tests. Therefore, the value of the viscous
damping coefficient has been estimated by fitting mea-
sured and theoretical frequency response curve. Exper-
imental frequency–response curves are obtained with a
step-by-step increase and decrease in the excitation fre-
quency (with a step of 0.5Hz). Numerical solutions are
found by continuation, using a pseudo-arclength con-
tinuation method implemented in the software AUTO
[9]. All the values used to feed the model are given in
Table 4. One can observe that slight variations of the
viscous damping coefficients are found. They should be
due to different physical mechanisms: eddy currents
in the fixed magnets are present due to the oscilla-
tions of magnet 1. These damping forces depend on
the configuration used so that finding different values
of χvisc appears logical. Finally the lubrication on the
axis changes slightly from one experiment to another
one, once again explaining the observed differences.

4.2 Results

4.2.1 The NLTVA

First, the MVA is tuned as a TVA with a positive linear
stiffness K1. The case is termed “NLTVA” as we are
also interested in the nonlinear characteristics of the
MVA, which have been chosen positive for this case,
see the values given in Table 4, second column. Fig-
ure 8 shows the frequency–response curves for five
different amplitudes of the forcing, for a frequency
range in the vicinity of the eigenfrequency of the MVA
oscillator. For each amplitude of the external force,
experimental and numerical frequency response curves
give very close results. The typical backbone curve due
to nonlinear terms appears when the external force is
increased. As the K3 and K5 are both positive, a hard-
ening nonlinearity is observed. In order to illustrate
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Fig. 8 MVA tuned as an NLTVA. Maximum amplitude of the
displacement of the vibrating magnet for increasing external
forces: Fext = 0.02N (pink line), 0.08N (red line), 0.16N
(orange line), 0.20N (green line) and 0.32N (blue line). a

Measurements—forward (circle) and backward (plus symbol)
sweeps. b Simulations. Continuous line stable solutions, dotted
lines unstable solutions. (Color figure online)

Fig. 9 Examples
of experimental NLTVA
behaviour for (r, d) =
(38, 38)mm (dark green
circle), (36, 26)mm (light
blue circle), (30, 66)mm
(dark blue circle),
(30, 20)mm (violet circle)
and (30, 27.5)mm (pink
circle). Forward sweeps
with circles and backward
sweeps with (plus symbol).
(Color figure online)
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Table 5 Stiffness
coefficients for the NLTVA
examples of Fig. 9

Legend Dark green
circle

Light blue
circle

Dark blue
circle

Violet
circle

Pink
circle

r (mm) 38 36 30 30 30

d (mm) 38 26 66 20 27.5

K1 (N/m) 70.49 93.96 118.44 183.75 260.26

K3 × 105 (N/m3) 1.36 4.75 5.20 21.49 8.72

K5 × 108 (N/m5) 1.27 4.63 12.41 48.78 2.65

the tuning of the resonance frequency and of the back-
bone curve, Fig. 9 shows several NLTVA configura-
tions for the same external force Fext = 0.32N. These
examples demonstrate that the frequency response of
the MVA greatly depends on its geometric configura-
tion. According to Table 5, the frequency of the peaks
is tuned by K1 and the nonlinear terms saturate the
large amplitudes of the vibrations of the MVA. It must
be noticed that the maximum amplitude of the vibrat-
ing magnet depends on the geometric configuration.
Indeed, this amplitude is obviously limited by r . As

shown in Fig. 4, largest values of K1 are given for small
values of r . Thus, it seems not possible to have large
vibrating amplitude in high frequency. However, this
can be overcome by modifying other parameters like
magnet dimensions or magnetic characteristics.

4.2.2 The NES

The MVA is now tuned as an NES, the characteristics
of which are given in the third column of Table 4. Mea-
surements and simulation results are shown in Fig. 10.
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Fig. 10 MVA tuned as an NES. Maximum amplitude of the dis-
placement of the vibrating magnet for increasing external forces:
Fext = 0.15N (red line), 0.16N (orange line), 0.26N (green
line) and 0.37N (blue line). a Simulations—stable (straight line)
and unstable (dotted line) solutions. SN saddle-node bifurca-

tion point, PF pitchfork bifurcation point. b Measurements—
maximum of periodic orbits represented by circles for increasing
excitations and plus symbol for decreasing excitations. When a
quasi-periodic regime is observed, a Poincaré section is used to
represent the data with dots. (Color figure online)

Due to intrinsic limitations of the shaker used in the
experiments, applying a constant external force in low
frequency is out of reach, so that the smallest tested
excitation frequency is 10 Hz. Below this value, the
behaviour of the NES can be studied using the simula-
tion results.

Atfirst sight, the general behaviour of the frequency–
response curves share similarities with the case of the
NLTVA, the main difference being the vanishing reso-
nance frequency, implying a different behaviour of the
solution branches in the low-frequency part. However,
a main difference is found: the lower branch in high
frequencies presents an instability. More precisely, a
pitchfork bifurcation point is found numerically for a
frequency slightly larger than the saddle-node usual
limit point (see Fig. 10a where the bifurcation point is
indicated with a circle as PF for pitchfork bifurcation).
From this bifurcation point, the lower branch is unsta-
ble and a couple of stable periodic solutions arise. It has
also been found numerically that the basins of attrac-
tion of the stable periodic orbits emanating from the
pitchfork are very small. Hence, for these parameter
values, three solutions coexist in the phase space: a
quasi-periodic solution and two stable periodic orbits.
The solution that is most likely to be observed is the
quasi-periodic one. In fact, the only way to observe
the periodic solutions emanating from the pitchfork
is to continue the solutions slowly from the bifurca-
tion point with increasing excitation frequencies. Only
a small portion of the lower branch is stable, in the
vicinity of the saddle-node bifurcation point. Thus, in

an experiment with increasing and decreasing step-by-
step harmonic excitation, the following observations
are expected:

• When increasing the excitation frequency, the
upper branchwith large amplitude is followed, until
the jump point. At this point, the quasi-periodic
regime is expected.

• When decreasing the excitation frequency, the
quasi-periodic regime is first observed. Then, after
the pitchfork bifurcation point and before the jump
to the upper branch at the saddle-node point, peri-
odic orbits are observed, corresponding to the sta-
ble part of the lower branch. Finally, the jump to
the upper branch is observed.

Interestingly, the predicted stable and unstable areas
are also found in measurements with a very good accu-
racy as compared to the prediction, see Fig. 10b. In the
tests with increasing excitation frequencies, the upper
branch is observed until the jump, and then the quasi-
periodic solution is observed and represented thanks
to a Poincaré section in Fig. 10b, with a stroboscopic
acquisition at the forcing frequency. One can observe
that the range of amplitudes explored by the quasi-
periodic regime is rather limited, as shownby the extent
of the cloud of points from the Poincaré section. This is
illustrated in Fig. 11, which represents 10 s of the mass
displacement, for an excitation frequency of 30Hz and
an amplitude of 0.26N. This motion is composed of a
fast oscillation with the same frequency than the forc-
ing, modulated by an envelope oscillating at compara-
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Fig. 11 Time response of the vibrating magnet for the MVA
tuned as an NES, for Ω = 30Hz and Fext = 0.26N, for which
the quasi-periodic motion is observed. Inset shows a zoomed
portion for a better visualisation of the fast oscillation at the
forcing frequency

tively smaller frequencies. While the amplitude of the
fast oscillations is about 1mm, the modulation ampli-
tude is about 6mm.

Finally, when decreasing the excitation frequency
in Fig. 10b, the quasi-periodic is at hand. The pitch-
fork bifurcation point is retrieved experimentally as a
small portion of periodic orbits are found before the
jump to the upper branch (denoted with plus symbol in
Fig. 10b).

4.2.3 The bi-stable absorber

Finally, the MVA is tuned as a bi-stable absorber, the
characteristics of which are given in the last column
of Table 4. Due to the bi-stability, the behaviour of
such a damper is characterised by three distinct regimes
depending on the amplitude of the external force. In
order to describe these regimes, Figs. 12 and 13 present,
respectively, frequency response curves and the corre-
sponding time evolutions and phase plots of the vibrat-
ing mass.

For small forcing amplitude, the vibrating mass
is arbitrarily trapped in one of the two energy wells
located at stable equilibria shown in Fig. 5c. This
regime is named intrawell oscillations, and the corre-
sponding frequency response is presented in Fig. 12a.
In this regime, a softening type nonlinearity is at hand.
Figure 13a shows the time evolution and phase plot
of this low energy oscillation. The computation of the
central positions of the wells from the model predicts
xwell = ±10.5mm, which is close to the experimen-
tal value given in Fig. 13a and equal to ±8.9mm.
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Fig. 12 Maximum amplitude of the displacement of the vibrat-
ing magnet configurated as a bi-stable absorber. a, b, d–f experi-
ments, forward (circle) and backward (plus symbol) sweeps and
for several external forces. Fext = 0.08N (pink line), 0.16N
(red line), 0.20N (orange line), 0.23N (green line) and 0.24N

(blue line). Dots are the Poincaré sections and arrows indicate
the dynamic regimes detailed in Fig. 13. c numerical simula-
tion forFext = 0.08N (pink line), and 0.16N (red line), unstable
states reported with dotted lines. SN saddle-node bifurcation, PD
period-doubling. (Color figure online)
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Fig. 13 Experimental time evolutions (1) and phase plots (2)
extracted from measurements indicated with arrows in Fig. 12
and illustrating intrawell (a–c), aperiodic (d) and interwell (e, f)

oscillations. Fext = 0.08N (pink line), 0.16N (red line), 0.20N
(orange line) and 0.24N (blue line). (Color figure online)

By increasing the oscillation amplitudes, though still
observing them in the intrawell oscillations, one can see
that the limit cycle tends to the homoclinic trajectory,
so that the measured displacement, indicated with the
arrow located on the upper branch and detailed in Fig.
13b, departs from a sinusoidal motion with increasing
amplitudes of the harmonics.

Figure 12b considers the case of a slightly larger
external force, showing a more complex behaviour in
the frequency range [15, 18]Hz. In this region, peri-
odic orbits have become unstable in favour of a chaotic
motion. The chaotic oscillations are represented by
means of Poincaré sections in Fig. 12b. Interestingly,
whendecreasing the excitation frequency, a period dou-
bling is first observed and reported in Fig. 13c. The
chaotic motion, shown in Fig. 13d, is characterised
by aperiodic oscillations between the two wells. Once

again the numericalmodel is able to recover the charac-
teristics of these intrawell frequency–response curves,
as shown in Fig. 12c. In particular, the correct ampli-
tudes are predicted, and the period-doubling bifurca-
tion point is also found in the simulation, leading to the
large frequency range at centre of the frequency band
where no stable periodic orbits exist anymore.

The external force is increased again in Fig. 12d
leading to a wider frequency range of unstable oscil-
lations. Moreover, in low frequency the motion jumps
on an upper branch during the backward sweep. The
amplitude of this new periodic regime, named inter-
well oscillations and detailed in Fig. 13e, is large. The
magnet now oscillates between the two stable positions
with a periodic motion.

As shown in Fig. 12e, f, no aperiodic oscillation
occurs during the forward sweep for largest external
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forces. Indeed, themotion jumps on the upper branch in
the low frequency range and the nonlinear coefficients
lead to a hardening behaviour. For large amplitudes,
the magnet displacement is shown in Fig. 13f. Finally,
the larger the force, the shorter the frequency range
of the unstable oscillations and the longer the upper
branch in each direction are. It is interesting to notice
that the aperiodic vibrations favour the jump on the
upper branch during the backward sweep.

5 Conclusion

This contribution proposes the design and full char-
acterisation of a passive MVA, relying completely on
magnetic forces. Themobilemass of the absorber oscil-
lates in a magnetic field created by a set of repulsive
and corrective fixed magnets. The linear and nonlin-
ear stiffness coefficients of this original device can be
tuned easily, ensuring a great flexible use in different
mechanical contexts. This flexibility has been assessed
by tuning it either as an NLTVA, an NES or a bi-stable
absorber with negative linear stiffness. A model for the
absorber has been derived using a multipole expansion
of the magnetic field, the validity of which has been
verified by means of static measurements. The model
predicts the variations of the linear, cubic and quin-
tic stiffness coefficients of the absorber, for each geo-
metric configuration. The dynamical behaviour of the
MVAhas been also completely characterised in its three
main tunings of interest, showing once again the robust-
ness of the model as compared to the measurements.
The proposed design appears as an efficient absorber
for vibration mitigation which should be easily used
in a wide variety of context. Moreover, its versatility
should allow one to use the device with different damp-
ing properties in a completely passive manner, so that
its properties can be changed, depending on the tar-
geted example, or even during the lifetime of a struc-
ture. The next steps of this research will consist in test-
ing theMVA as an effective absorber mounted on a real
structure. It will also allow us to draw a comparative
study of the three families of absorber (NLTVA, NES
and bi-stable), in order to test their relative merits and
drawbacks on the same example given by a nonlinear
structure.
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Appendix

This appendix gives the details of the computation of
the stiffness coefficients. As the corrective magnets of
the MVA presented in Fig. 2 is made up of 3 mag-
nets bonded together, the corresponding coefficients
are multiplied by 3. Moreover, the magnetic moments
mc and mr of the corrective and repulsive magnets,
respectively, are different values and are used for the
optimisation presented in Sect. 3.2. The stiffness coef-
ficients of Eq. (10) come from the dipolar, quadrupolar,
hexapolar and octopolar terms of the magnetic field of
the repulsive and corrective magnets and are given by
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)
(
R2 + d2

)21/2 ,

K oct,cor
3 = 990coctmc

(
1024R12 − 33792R10d2 + 190080R8d4 − 295680R6d6 + 138600R4d8 − 16632R2d10 + 231d12

)
(
R2 + d2

)25/2 ,

K dip,cor
5 = 21

2
cdipmc

(
128R8 − 1792d2R6 + 3360d4R4 − 1120d6R2 + 35d8

)
(
R2 + d2

)17/2 ,

K quad,cor
5 = 315

2
cquadmc

(
256R10 − 5760R8d2 + 20160R6d4 − 16800R4d6 + 3150R2d8 − 63d10

)
(
R2 + d2

)21/2 ,

K hex,cor
5 = 693

2
chexmc(

1024R12 − 33792R10d2 + 190080R8d4 − 295680R6d6 + 138600R4d8 − 16632R2d10 + 231d12
)

(
R2 + d2

)25/2 ,

K oct,cor
5 = 9009

2
coctmc(

2048R14 − 93184R12d2 + 768768R10d4 − 1921920R8d6 + 1681680R6d8 − 504504R4d10 + 42042R2d12 − 429d14
)

(
R2 + d2

)29/2 ,

where

cdip = μ0m1

4π
,

cquad = μ0m1

4π

(
L

2

)2 3
(
β2
int − β2

ext

)
8

,

chex = μ0m1

4π

(
L

2

)4 15
(
β4
ext − β4

int

) + 60
(
β2
int − β2

ext

)
64

,

coct = μ0m1

4π

(
L

2

)6 35
(
β6
int − β6

ext

) + 280
(
β4
ext − β4

int

) + 336
(
β2
int − β2

ext

)
1024

,

and βint = Dint
L and βext = Dext

L .
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