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Introduction

These lectures were designed to give an understanding of the basic ideas of dy-
namo theory, as applied to the natural dynamos occurring in planets and stars.
The level is appropriate for a graduate student with an undergraduate background
in electromagnetic theory and fluid dynamics. There are a number of recent re-
views which cover some of the material here. In particular, I have drawn exten-
sively from the recent book Mathematical Aspects of Natural Dynamos, edited by
Emmanuel Dormy and Andrew Soward (2007), and from the article on Dynamo
Theory by Andrew Gilbert [24] which appeared in the Handbook of Mathemati-
cal Fluid Dynamics, edited by Susan Friedlander and Denis Serre (2003). Some
older works, which are still very valuable sources of information about dynamo
theory, are Magnetic field generation in electrically conducting fluids by Keith
Moffatt [38] (1978), Stretch, Twist, Fold: the Fast Dynamo by Steve Childress
and Andrew Gilbert [9] (1995), and the article by Paul Roberts on Fundamentals
of Dynamo Theory [48] (1994).

1. Kinematic dynamo theory

1.1. Maxwell and Pre-Maxwell equations

Maxwell’s equations are the basis of electromagnetic theory, and so they are the
foundation of dynamo theory. They are written (e.g. [12])

∇×E = −∂B
∂t
, ∇×B = µj +

1

c2
∂E

∂t
, (1.1.1, 1.1.2)

∇·B = 0, ∇·E =
ρc

ε
. (1.1.3, 1.1.4)

Here E is the electric field, B the magnetic field, j is the current density, µ is
the permeability. We use S.I. units throughout (metres, kilogrammes, seconds),
and in these units µ = 4π × 10−7 in free space. c is the speed of light, ρc is the
charge density and ε is the dielectric constant. In free space ε = (µc2)

−1
.

(1.1.1) is the differential form of Faraday’s law of induction. In physical terms
it says that if the magnetic field varies with time then an electric field is produced.
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In an electrically conducting body, this electric field drives a current, which is the
basis of dynamo action.

(1.1.3) says there are no magnetic monopoles. That is there is no particle from
which magnetic field lines radiate. However, (1.1.4) says that there are electric
monopoles from which electric field originates. These are electrons and protons.

Maxwell’s equations are relativistically invariant, but in MHD we assume the
fluid velocity is small compared to the speed of light. This allows us to discard

the term
1

c2
∂E

∂t
. If the typical length scale is L∗ (size of planet, size of star, size

of experiment) and the timescale on which B and E vary is T∗, then

|E|
L∗

∼ |B|
T∗

from (1.1.1) so then

|∇×B| ∼ |B|
L∗

and
1

c2
|∂E
∂t

| ∼ |B|
L∗

L2
∗

c2T 2
∗

.

So the term
1

c2
∂E

∂t
� ∇×B provided L2

∗/T
2
∗ � c2. The dynamos we consider

evolve slowly compared to the time taken for light to travel across the system.
Even for galaxies this is true: light may take thousands of years to cross the
galaxies, but the dynamo evolution time is millions of years.

The MHD equations are therefore

∇×E = −∂B
∂t

, ∇×B = µj (1.1.5, 1.1.6)

∇·B = 0, ∇·E =
ρc

ε
(1.1.7, 1.1.8)

Equation (1.1.6) is called Ampére’s law, or the pre-Maxwell equation.
The final law required is Ohm’s law, which relates current density to electric

field. This law depends on the material, so has to be determined by measure-
ments. In a material at rest the simple form

j = σE (1.1.9)

is assumed, though as we see in section 1.3 below, this changes in a moving
frame. In some astrophysical situations, (1.1.9) no longer holds, and new effects,
such as the Hall effect and Ambipolar diffusion become significant.
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1.2. Integral form of the MHD equations

1.2.1. Stokes’ theorem
Stokes’ theorem says that for any continuous and differentiable vector field a and
simply connected surface S, enclosed by perimeter C,

∫

S

(∇×a) · dS =

∫

C

a · dl. (1.2.1)

Ampére’s law then becomes
∫

S

µj · dS =

∫

C

B · dl. (1.2.2)

If a current of uniform current density j = jẑ in cylindrical polars (s, φ, z) flows
inside a tube of radius s, then the magnetic field generated is in the φ̂ direc-
tion, and has strength Bφ = πs2µj/2πs = µjs/2. Since the z-component of

∇×B is
1

s

∂

∂s
sBφ = µj this is consistent with the differential form (1.1.6). It is

convenient to think of the field B being created by the current.

1.2.2. Potential fields
If there is no current in a region of space, ∇×B = 0 there, and so the magnetic
field is a potential field. This means that B = ∇V , for some scalar potential V ,
and (1.1.7) gives

∇2V = 0, (1.2.3)

which is Laplace’s equation. If there are no currents anywhere and V → 0 at
infinity, the only solution of (1.2.3) is V = 0, so no currents anywhere means
no field. In the Earth’s core there are currents, but outside there is comparatively
low conductivity, so outside the core we have approximately equation (1.2.3). In
spherical geometry the general solution of (1.2.3) which decays at infinity can be
written

V =
a

µ

∞∑

l=1

l∑

m=0

Pm
l (

a

r
)l+1(gm

l cosmφ+ hm
l sinmφ) (1.2.4)

in spherical polar coordinates (r, θ, φ). Here the Pm
l are the Schmidt normalised

associated Legendre functions, and if a is the radius of the Earth, the gm
l and

hm
l are the Gauss coefficients of the Earth’s magnetic field, listed in geomagnetic

tables. Several different normalisations of the associated Legendre functions are
given in the literature: see e.g. [37]. (1.2.4) can be written as the real part of a
complex form, and the expression

Pm
l (

a

r
)l+1eimφ = Y m

l (θ, φ) (1.2.5)
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Fig. 1. Left: Axial dipole field, Right: axial quadrupole field.

defines the spherical harmonic Ym
l . The l = 1, m = 0 component is the axial

dipole component, and the l = 1, m = 1 component is called the equatorial
dipole component, because it has the form of a rotated axial dipole field. The
dipole component dominates at large r. If we are a long way away from a planet,
star or experiment, all we see is the dipole component of the magnetic field. At
the surface of the conducting region the field may be, probably is, a complicated
superposition of spherical harmonics, and inside the conducting fluid it is not
even a potential field. The l = 2,m = 0 component is called the axial quadrupole
term. Note that it has a different parity about the equator from the axial dipole
component.

1.2.3. Faraday’s law
It is also useful to apply Stokes’ theorem to Faraday’s law, (1.1.5). Then we get

∫

C

E · dl = − ∂

∂t

∫

S

B · dS. (1.2.6)

∫

C

E · dl is called the e.m.f. around the circuit, and it drives a current which can

be measured. So if the magnetic field inside a loop of wire changes, a current
flows. Faraday originally deduced his law by moving permanent magnets near
loops of wire and measuring the resulting currents.

1.3. Electromagnetic theory in a moving frame

The Maxwell equations are invariant under Lorentz transformations. The Pre-
Maxwell MHD equations are invariant under a Galilean transformation, which is
simply a shift to a uniformly moving frame,

x′i = xi − uit, t′ = t, ui being a constant vector, (1.3.1)
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In the moving frame, the electric, magnetic fields and current become

E′ = E + u×B, B′ = B, j′ = j (1.3.2, 1.3.3, 1.3.4).

To see where these come from, note that from Galilean invariance, the MHD
equations in the moving frame (1.1.5)-(1.1.8) are

∇′×E′ = −∂B
′

∂t′
, ∇′×B′ = µj′ (1.3.5, 1.3.6)

∇′·B′ = 0, ∇′·E′ =
ρ′c
ε

(1.3.7, 1.3.8)

where ∇′ =
∂

∂x′i
. The chain rule for transforming variables gives

∂

∂x′i
=

∂

∂xi
,

∂

∂t′
=
∂xi

∂t′
∂

∂xi
+
∂t

∂t′
∂

∂t
(1.3.9)

so using (1.3.1)
∂

∂t′
= ui

∂

∂xi
+

∂

∂t
(1.3.10)

From (1.3.9), ∇′ = ∇, so (1.3.6) and (1.3.7) are consistent with (1.3.3) and
(1.3.4), but (1.3.10) means E′ is not simply E. If we substitute (1.3.2) into (1.3.5)
we get

∇×E + ∇×(u×B) = −∂B
∂t

− u · ∇B, (1.3.11)

and since u is constant, using (1.1.7) gives ∇×(u×B) = −u · ∇B so (1.3.11)
reduces to (1.1.5) as required. This shows that (1.3.2-1.3.5) are consistent with
Maxwell’s equations being invariant under a Galilean transformation. For a
derivation of the transformations of the full Maxwell equations under the Lorentz
transformation see [24]. In this case, B′ is not the same as B as there is a correc-
tion of order u2/c2.

A surprising consequence of these transformation laws is that

ρ′c
ε

=
ρc

ε
+ ∇·(u×B) (1.3.12)

so the charge density changes in the moving frame. ∇·(u×B) = −u ·∇×B =
−µ(u · j), and since current is just moving charge, in a moving frame current can
be equivalent to charge. By the same argument, the current should change in a
moving frame, and it does, but only by a negligible amount if u � c which is
why in MHD we have (1.3.4).
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σ Sm−1 η m2s−1

Earth’s core 4 × 105 2
Jupiter’s core 105 8
Sodium 2.1 × 107 0.04
Gallium 6.8 × 106 0.12
Solar convection zone 103 103

Galaxy 10−11 1017

Table 1

Electrical conductivity and magnetic diffusivity.

1.4. Ohm’s law, induction equation and boundary conditions

We have already mentioned that Ohm’s law in a stationary medium is given by
(1.1.9), a simple proportionality between current and electric field. However, we
now know that in a moving frame E must be replaced by E+u×B while j stays
the same. So in MHD Ohm’s law is

j = σ(E + u×B). (1.4.1)

The SI unit of electrical conductivity is Siemens/metre. It is also useful to define
the magnetic diffusivity

η =
1

µσ
, (1.4.2)

which has dimensions metre2/second. So poor conductors have large magnetic
diffusivity η and the perfectly conducting limit is η → 0.

1.4.1. Lorentz force
In a static medium, the force on an electron is eE. If the electron moves with
speed u, the force is

F = e(E + u ×B). (1.4.3)

Since current is due to the movement of charge, the force on a moving conductor
is the Lorentz force

F = j ×B. (1.4.4)

Here F is actually the force per unit mass of conductor.

Ohm’s law can be derived on the assumption that the electrons and ions whose
movement gives the current are continually colliding with neutrals. This gives
rise to a ‘drag force’ which balances the electric force. The drag force is propor-
tional to j just as in viscous fluid a small particle experiences a drag proportional
to its velocity u. Ohm’s law therefore assumes that the ions and electrons are
accelerated to their final speeds in a very short time.
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1.4.2. Induction equation
Dividing Ohm’s law (1.4.1) by σ and taking the curl eliminates the electric field
to give

∇×(
j

σ
) = ∇×E + ∇×(u ×B) = −∂B

∂t
+ ∇×(u ×B), (1.4.5)

and using (1.1.6) to eliminate j,

∂B

∂t
= ∇×(u ×B) − ∇×η(∇×B), (1.4.6)

remembering (1.4.2). (1.4.6) is the induction equation, and is the fundamental
equation of dynamo theory. If the conductivity is constant we can use the vector
identity curl curl = grad div -del2 and (1.1.7) to write the constant conductivity
induction equation as

∂B

∂t
= ∇×(u ×B) + η∇2B. (1.4.7)

An alternative form of the constant diffusivity induction equation is

∂B

∂t
+ u · ∇B = B · ∇u + η∇2B, (1.4.8)

where we have assumed incompressible flow, ∇·u = 0 and (1.1.7).

1.4.3. Boundary conditions
We usually have to divide the domain in different regions, and apply boundary
conditions between them. If one of the domains is perfectly conducting, it is
possible to have surface charges and surface currents. Denoting [.] as the value
just outside a surface S, n being the outward pointing normal, integrating (1.1.5)-
(1.1.8) gives

[n · E] =
ρS

ε
, [n ·B] = 0, [n×B] = µjS , [n ×E] = 0.

(1.4.9a, b, c, d)
Unless we have a perfect conductor involved, there are no surface currents, and
(1.4.9b and c) imply B is continuous, provided µ is constant. This is all we need
if the outside region is an insulator. If it is not, then ∇ ·B = 0 implies the
normal derivative of n · B is also continuous. However, the normal derivatives
of the tangential components of B are not necessarily continuous. If we take n×
(1.4.1), Ohm’s law,

n× j = σ[n ×E + (n · B)u− (n · u)B]. (1.4.10)
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Now from (1.4.9d) n×E is continuous across the boundary, but σ may well not
be. At a no-slip boundary, u = 0 so then the ratio of the tangential current across
the boundary is just the ratio of the conductivities. In general, the continuity con-
ditions on the normal derivatives of B will involve the velocity at the boundary.
However, if this is known, then the continuity of n×E across the boundary gives
the required relations between the currents across the layer, and hence the normal
derivatives of the tangential field components.

If the outside of the region is a static perfect conductor, it may have a trapped
magnetic field which cannot change, but the usual assumption is there is no mag-
netic field inside the perfect conductor. Then assuming no normal flow across the
boundary (1.4.9a) and (1.4.10) give

n · B = 0, n× j = 0, (1.4.11)

in the fluid. This gives

Bz =
∂Bx

∂z
=
∂By

∂z
= 0, (1.4.12)

at a Cartesian boundary z = constant, or

Br =
∂(rBθ)

∂r
=
∂(rBφ)

∂r
= 0, (1.4.13)

at a spherical boundary r = constant.

1.5. Nature of the induction equation: Magnetic Reynolds number

There are a number of important limits for the induction equation. If u = 0,
(1.4.7) reduces to the diffusion equation,

∂B

∂t
= η∇2B. (1.5.1)

If there is no fluid motion to maintain the dynamo, the field diffuses away. More
precisely, if there is no field at infinity it diffuses away to zero, but if a conductor
is immersed in a uniform field, the field inside the conductor eventually becomes
uniform. How long does this diffusion process take? Suppose at time t = 0
B = (B0 sin ky + B1, 0, 0) in Cartesian coordinates, so we have a uniform field
of strength B1 with a sinusoidal field of strength B0 superimposed. Then the
solution of (1.5.1) is B = (B0 sin ky exp(−ηk2t) +B1, 0, 0). The sinusoidal
part decays leaving the constant field. If we require B → 0 at infinity, we must
have B1 = 0, so then the whole field disappears at large time. The e-folding
time is the time taken for the field amplitude to drop by a factor e, which is here
1/k2η. A field with half wavelength L = π/k, with L = 1 metre (large sodium
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experiment) and η = 0.04 will have an e-folding time of 1/(0.04π2), about 2
seconds. Diffusion acts rather quickly in experiments! The radius of the Earth’s
core is about 3.5× 106 metres, so now k = π/3.5× 106 ∼ ×10−6. With η = 2,
the e-folding time is about 5 × 1011 seconds or about 20,000 years! In large
bodies like the Earth, the diffusion time is long, though not so long as the age
of the Earth, so there must be motion in the Earth’s core to maintain a dynamo.
The Sun is much bigger than the Earth, and so the diffusion time is longer still.
Indeed, some relatively short lived stars may not have a dynamo at all, the field
being a ‘fossil field’ left over from the star formation process.

The opposite limit to the diffusion limit is the perfect conductor limit where
η = 0. Then (1.4.6) becomes

∂B

∂t
= ∇×(u ×B). (1.5.2)

This is the frozen flux limit, so called because the flux through any closed loop,
that is the surface integral of B over the loop, remains fixed as the loop moves
around with the fluid velocity (Alfvén’s theorem). This means we can think of
magnetic field as being frozen in the fluid. This is no longer true if there is
diffusion, because diffusion allows field lines to slip through the fluid.

To measure the relative importance of the two terms ∇×(u ×B) and η∇2B

in (1.4.7) we need to non-dimensionalise the induction equation. We choose a
typical length scale L∗ which is the size of the object or region under consider-
ation and a typical fluid velocity U∗. This may be an imposed velocity in some
problems or may be the root mean square velocity in others. Then introduce
scaled ˜ variables

t =
L∗

U∗
t̃, x = L∗x̃, u = U∗ũ (1.5.3)

so that ∇ = ∇̃/L∗, and (1.4.6) becomes

∂B

∂t̃
= ∇̃×(ũ ×B) +Rm−1∇̃2B, Rm =

U∗L∗

η
, (1.5.4, 1.5.5)

Rm being the dimensionless magnetic Reynolds number. Large Rm means in-
duction dominates over diffusion, close to the perfect conductor limit, small Rm
means diffusion dominates over induction. In astrophysics and geophysics Rm
is almost always large, but in laboratory experiments it is usually small, though
values up to ∼ 50 can be reached in large liquid sodium facilities.

1.6. The kinematic dynamo problem

The kinematic dynamo problem is where the velocity u is a given function of
space and possibly time. The dynamic, or self-consistent, dynamo problem is
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when u is solved for using the momentum equation, usually in the form of the
Navier-Stokes equation. The simpler kinematic dynamo problem is linear in B.
The most commonly studied case is when u is a constant flow, that is u indepen-
dent of time. Then we can look for solutions with

B = B0(x, y, z)e
pt, B0 → 0 as x → ∞. (1.6.1)

In general there are an infinite set of eigenmodes B0 each with a complex eigen-
value

p = σ + iω. (1.6.2)

σ is the growth rate, and ω the frequency. Most of the eigenmodes are very
oscillatory, and are dominated by the diffusion term, and so have σ very negative.
These modes decay, but if there is one or more modes that have σ positive, we
have a dynamo. A random initial condition will have some component of the
growing modes, and these dominate at large time. These kinematic dynamos go
on growing for ever. In reality, the field affects the flow through the Lorentz force
in the equation of motion and changes u so the dynamo stops growing. This is
the nonlinear saturation process, which is beyond the scope of kinematic dynamo
theory.

If ω = 0, the mode is a steady growth, so these are called steady dynamos. If
the mode has ω 6= 0 (the more usual case) the growth is oscillatory, and we have
growing dynamo waves.

If the flow is periodic rather than constant, (1.4.7) is a linear equation with
periodic coefficients, so Floquet theory applies. Solutions have the form of a
periodic function multiplied by an exponential time dependence (the Floquet ex-
ponents), so the story is similar, though numerical calculation is significantly
harder.

Unfortunately, even the kinematic dynamo problem is quite hard. We discuss
two kinematic dynamos, the Ponomarenko dynamo and the G.O. Roberts dynamo
in detail in the next lecture.

1.7. Vector potential, Toroidal and Poloidal decomposition.

1.7.1. Vector Potential
Because ∇·B = 0, we can write

B = ∇×A, ∇·A = 0, (1.7.1)

where A is called the vector potential. The condition ∇ ·A = 0 is called the
Coulomb gauge, and is necessary to specify A because otherwise we could add
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on the grad of any scalar. The Biot-Savart integral means we can write A explic-
itly as

A(x) =
1

4π

∫
y − x

|y − x|3 ×B(y) d3y, (1.7.2)

the integral being over all space. (Exercise: show this is consistent with ∇·A =
0). The induction equation in terms of A is then

∂A

∂t
= (u × ∇×A) + η∇2A + ∇φ, ∇2φ = ∇·(u×B). (1.7.3)

1.7.2. Toroidal-Poloidal decomposition
Since the magnetic field has three components, but ∇ ·B = 0, only two inde-
pendent scalar fields are needed to specify B. In spherical geometry, we can
write

B = BT + BP , BT = ∇×T r, BP = ∇×∇×P r. (1.7.4)

T and P are called the toroidal and poloidal components respectively. (Note
some authors have the unit vector in the r-direction in place of r in the definition).
This expansion (1.7.4) is used in many numerical methods, having the advantage
that then ∇·B = 0 exactly. The radial component of the induction equation and
its curl then give equations for the poloidal and toroidal components. If we define
the ‘angular momentum’ operator

L2 = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2
, (1.7.5)

then
L2P = r · B, L2T = r · ∇×B. (1.7.6)

Also the radial component of the diffusion term and its curl can be separated into
purely poloidal and toroidal parts. The only coupling arises from the induction
term. Note that these relations suggest that expanding P and T in spherical
harmonics Y m

l (see 1.2.4) is a good idea, because of the very simple property

L2Y m
l = l(l+ 1)Y m

l . (1.7.7)

Toroidal poloidal decomposition can be useful in Cartesian coordinates too, but
care is needed! You have to write

B = ∇×gẑ + ∇×∇×hẑ + bx(z, t)x̂ + by(z, t)ŷ, (1.7.8)

including the mean field terms bx and by otherwise your expansion is not com-
plete. [Problem: explain why in spherical polars any field can be expanded as
(1.7.4) but in Cartesians you need to have these additional terms].
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1.7.3. Axisymmetric field decomposition
If the magnetic field and the flow are axisymmetric (a non-axisymmetric flow
always creates a non-axisymmetric field, but a non-axisymmetric field can be
created from an axisymmetric flow), a simpler decomposition is

B = Bφ̂ + BP = Bφ̂ + ∇×Aφ̂, u = sΩφ̂ + uP = sΩφ̂ + ∇×
ψ

s
φ̂,

s = r sin θ. (1.7.9)

The induction equation now becomes quite simple,

∂A

∂t
+

1

s
(uP · ∇)(sA) = η(∇2 − 1

s2
)A, (1.7.10)

∂B

∂t
+ s(uP · ∇)(

B

s
) = η(∇2 − 1

s2
)B + sBP · ∇Ω. (1.7.11)

This gives some important insight into the dynamo process. Both equations have
a (uP · ∇) advection term, which moves field around, and a (∇2 − 1

s2 ) diffu-
sion term, which cannot create field. The azimuthal field can be generated from
poloidal field through the term sBP · ∇Ω term, provided there are gradients of
angular velocity along the field lines. Poloidal field is stretched out by differen-
tial rotation ∇Ω to generate azimuthal field. However, the poloidal field itself
has no source term, so it will just decay unless we can find a way to sustain it.
This requires some nonaxisymmetric terms to be present.

1.7.4. Symmetry
Y m

l is symmetric about equator if l −m is even, antisymmetric if l −m is odd.
Poloidal field with P ∼ Ym

l , l − m odd, has Br, Bφ antisymmetric and Bθ

symmetric. Other way round if l−m even. A toroidal field has T with T ∼ Ym
l ,

l −m odd, also has Br, Bφ antisymmetric and Bθ symmetric. Other way round
if l −m even.

In the Earth and Sun, dominant modes have P with l − m odd and T with
l −m even.

1.7.5. Free decay modes
Seek solutions with u = 0, the free decay modes. There are poloidal and toroidal
decay modes,

∂P

∂t
= η∇2P,

∂T

∂t
= η∇2T, r < a (1.7.12)

∇2P = 0, T = 0, r > a (1.7.13)
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P , ∂P/∂r and T are continuous at r = a. The toroidal decay mode solution is

T = r−1/2Jl+ 1

2

(kr)Y m
l e−σt, σ = ηk2 =

ηx2
l

a2
(1.7.14)

xl being the lowest zero of Jl+ 1

2

. For l = 1, this is x1 = 4.493. The e-folding

time is a2/ηx2
1. Poloidal decay modes have

P = r−1/2Jl+ 1

2

(kr)Y m
l e−σt, σ = ηk2, r < a, (1.7.15)

P =
A

rl+1
Y m

l e−σt, r > a. (1.7.16)

Matching at r = a gives

∂

∂r
(r−1/2Jl+ 1

2

) + (l + 1)r−3/2Jl+ 1

2

= 0, at r = a (1.7.17)

Using the Bessel function recurrence relations this gives just

Jl− 1

2

(ka) = 0. (1.7.18)

For the dipole l = 1, the lowest zero is π, so the e-folding time is a2/ηπ2. This
is the least damped mode.

1.8. The Anti-Dynamo theorems

Theorem 1. In Cartesian coordinates (x, y, z) no field independent of z which
vanishes at infinity can be maintained by dynamo action. So its impossible to
generate a 2D dynamo field.

If the field is 2D, the flow must be 2D. In Cartesian geometry, the analogue of
(1.7.9)-(1.7.11) is

B = Bẑ + BH = Bẑ + ∇×Aẑ, u = uzẑ + uH = uzẑ + ∇×ψẑ, (1.8.1)

∂A

∂t
+ (uH · ∇)(A) = η∇2A, (1.8.2)

∂B

∂t
+ (uH · ∇)B = η∇2B + BH · ∇uz. (1.8.3)

Multiply (1.8.2) by A and integrate over the whole volume,

∂

∂t

∫
1

2
A2 dv +

∫
∇· 1

2
uA2 dv = −η

∫
(∇A)2 dv (1.8.4)
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The divergence term vanishes, because it converts into a surface term which by
assumption vanishes at infinity. The term on the right is negative definite, so the
integral of A2 continually decays. It will only stop decaying if A is constant, in
which case there is no field. Once A has decayed to zero, BH is zero, so there
is no source term in (1.8.3). We can then apply the same argument to show B
decays to zero. This shows that no nontrivial field 2D can be maintained as a
steady (or oscillatory) dynamo.

Note that if A has very long wavelength components, it may take a very long
time for A to decay to zero, and in that time B might grow quite large as a result
of the driving by the last term in (1.8.3). But ultimately it must decay.

Theorem 2. No dynamo can be maintained by a planar flow

(ux(x, y, z, t), uy(x, y, z, t), 0).

No restriction is placed on whether the field is 2D or not in this theorem.
The point here is that the z-component of the field decays to zero. The z-

component of (1.4.8) is

∂Bz

∂t
+ u · ∇Bz = η∇2Bz, (1.8.5)

because the B · ∇uz is zero because uz is zero. Multiplying (1.8.5) by Bz and
integrating, again the advection term gives a surface integral vanishing at infin-

ity, and so Bz decays. If Bz = 0, then
∂Bx

∂x
+
∂By

∂y
= 0 means we can write

Bx =
∂A

∂y
, By = −∂A

∂x
for some A, and then the z-component of the curl of the

induction equation gives

∂

∂t
∇2

HA+ ∇2
H (u · ∇A) = η∇2

H∇2A, ∇2
H =

∂2

∂x2
+

∂2

∂y2
. (1.8.6)

If we take the Fourier transform of this in x and y, the ∇2
H operator leads to

multiplication by k2
x + k2

y which then can be cancelled out, so (1.8.6) is just
(1.8.2) again, which on multiplying through by A leads to the decay of A again.
So the whole field decays if the flow is planar.

Theorem 3. Cowling’s theorem [11]. An axisymmetric magnetic field vanishing
at infinity cannot be maintained by dynamo action.

This is just the polar coordinate version of theorem 1. We first show that
(1.7.10) implies the decay ofA, and then (1.7.11) has its source term removed, so
it decays as well. Multiplying (1.7.10) by s2A and integrating, and eliminating
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the divergence terms by converting them to surface integrals which vanish at
infinity, we get

∂

∂t

∫
1

2
s2A2 dv = −η

∫
|∇(sA)|2 dv (1.8.7)

which shows that sA decays. Exercise: write this out fully, with divergence terms
included! Note that sA = constant would give diverging A at s = 0 which is
not allowed. Once A has decayed, BP = 0 in (1.7.11), and now multiplying
(1.7.11) by B/s2 gives

∂

∂t

∫
1

2
s−2B2 dv = −η

∫
|∇(

B

s
)|2 dv (1.8.8)

and since we don’t allowB proportional to s, which doesn’t vanish at infinity, this
shows that B must decay also. So there can be no steady axisymmetric dynamo.

Note this theorem disallows axisymmetric B not axisymmetric u. The Pono-
marenko dynamo and the Dudley and James dynamos (see section 2 below) are
working dynamos with axisymmetric u but nonaxisymmetric B.

Theorem 4. A purely toroidal flow, that is one with u = ∇×T r cannot maintain
a dynamo. Note that this means that there is no radial motion, ur = 0.

This is the polar coordinate version of theorem 2. First we show the radial
component of field decays, because

∂

∂t
(r · B) + u · ∇(r · B) = η∇2(r ·B), (1.8.9)

so multiplying through by (r ·B) and integrating does the job. Then a similar ar-
gument to that used to prove theorem 2 shows that the toroidal field has no source
term and so decays. For details see Gilbert (2003) p 380. It is not necessary to
assume either flow or field is axisymmetric for this theorem. Exercise: fill in the
details of the toroidal flow theorem!

2. Working kinematic dynamos

2.1. Minimum Rm for dynamo action

If the magnetic Reynolds number Rm is too small, diffusion dominates over
induction and no dynamo is possible. There are a number of ways in which a
minimumRm can be estimated. These are merely lower bounds on possibleRm.
Just because a particular dynamo has Rm above these bounds is no guarantee it
will work, but if Rm is below the bound it cannot possibly work.
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2.1.1. Childress bound
Following Childress (1969) The magnetic energy equation is formed by taking
the scalar product of the induction equation with B/µ,

∂

∂t

∫
B2

2µ
dv =

∫
j · (u ×B) dv −

∫
µηj2 dv. (2.1.1)

Multiplying by µ and rearranging,

µ
∂EM

∂t
= −η

∫
|∇ ×B|2 dv +

∫
(∇×B) · (u ×B) dv. (2.1.2)

The last term is a vector triple product, and since a·b×c ≤ |a||b||c| with equality
only when all three vectors are perpendicular, then we have the inequality

∫
(∇×B) · (u ×B) dv ≤ umax

(∫
|∇ ×B|2 dv

)1/2 (∫
|B|2 dv

)1/2

(2.1.3)
Now a general result for divergence free fields confined in a sphere of radius a
matching to a decaying potential outside is that

∫
|∇ ×B|2 dv ≥ π2

a2

∫
|B|2 dv (2.1.4)

This can be proved by expanding B in poloidal and toroidal functions. (Exercise:
see if you can do it!). So

∫
(∇×B) · (u ×B) dv ≤ aumax

π

∫
|∇ ×B|2 dv. (2.1.5)

Putting this in (2.1.2) gives

µ
∂EM

∂t
≤

(aumax

π
− η

) ∫
|∇ ×B|2 dv. (2.1.6)

So a growing dynamo requires

Rm =
aumax

η
≥ π (2.1.7)

2.1.2. Backus bound
An alternative approach was provided by Backus [1],

∫
(∇×B) · (u ×B) dv = −

∫
BiBj

∂uj

∂xi
≤ emax

∫
|B|2 dv (2.1.8)
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where emax is the maximum of the rate of strain tensor,

eij =
1

2

(
∂uj

∂xi
+
∂ui

∂xj

)
(2.1.9)

This gives using (2.1.4)

µ
∂EM

∂t
≤

(
emax − ηπ2

a2

) ∫
|B|2 dv (2.1.10)

So a growing dynamo requires

Rm =
a2emax

η
≥ π2 (2.1.11)

defining Rm in a slightly unusual way.

2.2. Faraday disc dynamos

Fig. 2. (a) Original Faraday disc dynamo. Magnetic field supplied by permanent magnet. (b) Ho-
mopolar dynamo. Magnetic field now supplied by current flowing through loop of wire.

2.2.1. Original Faraday disc dynamo
Assume uniform magnetic field through the disc,Bẑ. If no current flows through
meter,

j = σ(E + u×B) = 0, u = sΩφ̂ (2.2.1)

so E = −u×B = −ΩsBŝ, and the voltage drop between axis and rim is

V =

∫ a

0

E · dl = −
∫ a

0

(u ×B) · dl =
1

2
Ωa2B (2.2.2)

If wire completing circuit has resistance RW , and current I flows through wire,
voltage drop across wire is VR = IRW . Suppose the current in the disc flows
through a cross-section Σ, and j = jŝ, then I = Σj.
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Now integrate (2.2.1) along the disc radius
∫ a

0

j · dl = σ

∫ a

0

E · dl + σ

∫ a

0

(u ×B) · dl

so
Ia

Σ
= −σVR +

1

2
σΩa2B = −σIRW +

1

2
σΩa2B, (2.2.3)

giving

I =
ΩBa2

2(RD +RW )
, RD =

a

Σσ
. (2.2.4)

RD being the resistance of the disc. Rotate the disc faster, or get a bigger disc, to
get more current. Since a is in units of meters and B is in units of Tesla, and 1
Tesla is a very big field, (strongest laboratory magnets are a few Tesla) dynamo
is not very efficient. Commercial dynamos have the field cutting through many
turns of wire, thus multiplying the induction effect.

Note electric field is in −ŝ direction, counter-acting u × B, but current is in
+ŝ direction

2.2.2. Homopolar self-excited dynamo
Now the field is generated by a current through the loop according to Ampère’s
law. The steady dynamo is similar to the original disc problem, but if the dynamo
grows or decays B through disc will vary. We replace Ba2 by Φ/π where Φ is
the integral of B through the disc.

Dynamo more interesting if we allow time-dependence. Now the field varies
through the disc and the loop. According to Faraday’s law, an e.m.f. around the
rim of the disc is generated, so there is an azimuthal current as well.

Also, the flux through the wire loop changes, generating an additional e.m.f.
there too.

2.2.3. Moffatt’s segmented homopolar dynamo
The segmentation ensures separation into a radial current Is and an azimuthal
current Iφ around the rim.
Is flows through the wire, and so produces magnetic flux through the disc. Iφ

produces a magnetic flux through the wire, and its rate of change alters the e.m.f.
round the wire loop.

2.2.4. Hompolar disc equations
If the current density through the wire is j, the magnetic flux through the disc is
from Biot-Savart

ΦD =

∫

disc

B(x) · dS =

∫
{ µ
4π

∫
j(y)(x − y)

|x − y|3 dy} · dS(x). (2.2.5)
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Fig. 3. Homopolar dynamo has segmented disc, to prevent azimuthal current in disc interior; from
[39].

Rather than evaluate this we just write ΦD = MIs, where M is called the mu-
tual inductance. j = Isφ̂/ΣW where ΣW is wire cross-section, so M can be
evaluated by doing the integral.

There are also magnetic fluxes through the wire due to the current through the
wire, and fluxes through the disc, so

ΦD = MIs + LDIφ, ΦW = MIφ + LW Is (2.2.6)

LD, LW being the self-inductance of the disc and wire.
Round the wire loop circuit, let the total resistance beRW (includes resistance

along radial path in disc). The sources of e.m.f. are the rotation of the disc and
the changing flux through the wire loop.

RW Is =
ΩΦD

2π
− dΦW

dt
(2.2.7)

(minus sign in Faraday’s law). If RP is resistance round the perimeter,

RP Iφ = −dΦD

dt
. (2.2.8)

so we obtain a pair of coupled ODE’s for ΦW and ΦD,

dΦW

dt
= −a11ΦW + a12ΦD,

dΦD

dt
= −a21ΦW + a22ΦD, (2.2.9)

a11 =
RWLD

LDLW −M2
, a12 =

RWM

LDLW −M2
+

Ω

2π
,

a21 =
RPM

LDLW −M2
, a22 =

RPLW

LDLW −M2
. (2.2.10)
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We seek solutions proportional to exp(pt), giving

p2 + (a11 + a22)p+ a11a22 − a12a21 = 0. (2.2.11)

Now LDLW −M2 > 0, so Ω > 0 guarantees two real roots, and one is positive
if a12a21 > a11a22, i.e.

Ω >
2πRW

M
. (2.2.12)

So its a growing dynamo if Ω is large enough. If Ω is very large,

p2 ∼ Ω

2π

RPM

LDLW −M2
. (2.2.13)

So the dynamo requires resistance RP , because the growth rate is small if RP

is small. The growth rate becomes zero if the resistance is small, which is a
characteristic of a slow dynamo; see section 4 below.

2.3. Ponomarenko dynamo

Fig. 4. (a) Sketch of the Ponomarenko flow, solid body screw motion inside cylinder s = a. (b) Riga
dynamo experiment configuration; sketch from [24].

The Ponomarenko flow is given by

u = sΩφ̂ + U ẑ, s < a, u = 0, s > a,

in polar coordinates (s, φ, z), so the flow has a discontinuity s = a. The flow has
helicity,

H = u · ∇ × u = u · ω = U
1

s

∂

∂s
s2Ω = 2UΩ. (2.3.1)
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The discontinuity of u at s = a provides strong shearing. The dynamo evades
the cylindrical coordinate version of the planar motion anti-dynamo theorem (2)
through U , so U = 0 cannot give a dynamo. We define the magnetic Reynolds
number as

Rm =
a
√
U2 + a2Ω2

η
(2.3.2)

based on maximum velocity. We seek a nonaxisymmetric field of the form

B = b(s) exp[(σ + iω)t+ imφ+ ikz] (2.3.3)

thus evading Cowling’s antidynamo theorem (3). The induction equation (1.4.7)
is

∂B

∂t
+ u · ∇B = B · ∇u + η∇2B.

Using the definition of u,

(u · ∇)B = (ikU + imΩ)B− ΩBφŝ + ΩBsφ̂, (2.3.4)

and
(B · ∇)u = −ΩBφŝ + ΩBsφ̂, (2.3.5)

so

p2bs = ∆mbs −
2im

s2
bφ, p2bφ = ∆mbφ +

2im

s2
bs, (2.3.6)

where

∆m =
1

s

∂

∂s
s
∂

∂s
− 1

s2
− m2

s2
. (2.3.7)

Inside, s < a, p = pi,

ηp2
i = σ + iω + imΩ + ikU + ηk2. (2.3.8)

Outside, s > a, p = pe,
ηp2

e = σ + iω + ηk2. (2.3.9)

Defining b± = bs ± ibφ,
p2b± = ∆m±1b±. (2.3.10)

Solutions of (2.3.10) that are finite at r = 0 and decay at infinity are

b± = A±
Im±1(pis)

Im±1(pia)
, s < a, A±

Km±1(pes)

Km±1(pea)
, s > a, (2.3.11)

Im and Km are the modified Bessel functions (like sinh and cosh) that are zero
at = 0 and zero as s→ ∞ respectively.
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With this choice, the fields are continuous at s = a. One condition between
the coefficientsA± is set by ∇·B = 0, and we also needEz continuous (1.4.8d),
so η(∇×B)z + uφBs has to be continuous giving

η

(
∂bφ
∂s

|s→a+ − ∂bφ
∂s

|s→a−

)
= aΩbs(a). (2.3.12)

Writing the jump as [.],

2η

[
∂b±
∂s

]
= ±iaΩ(b+(a) + b−(a)). (2.3.13)

Defining

S± =
piI

′
m±1(pia)

Im±1(pia)
− peK

′
m±1(pea)

Km±1(pea)
(2.3.14)

the dispersion relation is

2ηS+S− = iaΩ(S+ − S−). (2.3.15)

This needs a simple MATLAB code to sort it out.
We non-dimensionalise on a length scale a and a timescale a2/η, so that the

dimensionless parameters are the growth-rate a2s/η, the frequency a2ω/η, the
pitch of the spiral χ = U/aΩ, ka and m. The diffusion coefficient η/a2Ω =
(1 + χ2)1/2Rm−1. To find marginal stability we set σ = 0. For given χ, ka
and m we adjust Rm and ω until the real and imaginary parts of 2ηS+S− −
iaΩ(S+ − S−) = 0. We can use an iterative method such as Newton-Raphson
iteration to do this automatically. Then we minimise Rm over m and ka to get
the critical mode, and over χ to get the optimum pitch angle.

2.3.1. Ponomarenko dynamo results
When all this is done, we find Rmcrit = 17.7221, kacrit = −0.3875, m = 1,
a2ω/η = −0.4103 and χ = 1.3141. The poloidal ẑ and toroidal φ̂ components
of the flow have similar magnitudes. This is a low value of Rm bearing in mind
the lower bounds arguments in section 2.1. The magnetic field is strongest near
s = a where it is generated by shear.

At large Rm, there is a significant simplification, because then mΩ + kU is
small, so pe = pi and the ηk2 terms are small. Bessel functions have asymp-
totic simplifications at large argument which we can exploit. The fastest growing
modes are given by

|m| = (6(1 + χ−2))−3/4

(
a2Ω

2η

)1/2

, s = 6−3/2Ω(1 + χ−2)−1/2. (2.3.16)
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Fig. 5. Magnetic field for the Ponomarenko dynamo at large Rm. Surface of constant B shows
spiralling field following flow spiral, and located near the discontinuity; from [24].

2.3.2. Smooth Ponomarenko dynamo
Most fluids have viscosity, so the discontinuity in the Ponomarenko flow is not
very realistic. At high Rm, the field is concentrated at the discontinuity. The
high Rm analysis can be extended to the case

u = sΩ(s)φ̂ + U(s)ẑ

where there is no discontinuity (see e.g [24]). The magnetic field is then concen-
trated near the point s = a where

mΩ′(a) + kU ′(a) = 0, (2.3.17)

so the magnetic field is aligned with the shear at this radius. Not all choices of
Ω(s) and U(s) lead to dynamo action. A condition

a|Ω
′′(a)

Ω′(a)
− U ′′(a)

U ′(a)
| < 4 (2.3.18)
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must hold for positive growth rates. A helical flow alone is not sufficient for
dynamo action!

2.4. G.O. Roberts dynamo

Fig. 6. The G.O. Roberts flow field at a section z = 0. The + and - denote the direction of flow in the
z-direction, and there is no flow in the z-direction on the separatrices joining the stagnation points;
from [45].

The G.O. Roberts flow is two-dimensional, independent of z, but has a z-component.

u = (cos y, sinx, sin y + cosx). (2.4.1)

This avoids the planar antidynamo theorem (2) through z velocity.
The Ponomarenko dynamo has a single roll, and the field at low Rm is on

scale of the roll, smaller at highRm, so it models a small scale dynamo in which
the length scale of the field is comparable with the length-scale of the flow. The
G.O Roberts dynamo has a collection of rolls and the field can be coherent across
many rolls, so the magnetic field can have a larger length-scale than the flow.

The Roberts flow is a special case of the ABC flows (named after Arno’ld,
Beltrami and Childress)

u = (C sin z +B cos y,A sinx+ C cos z,B sin y +A cosx) (2.4.2)

with A = B = 1, C = 0. These flows have ∇× u = u, so vorticity = velocity.
Clearly ABC flows have helicity.
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The G.O. Roberts flow is integrable, and can be written in terms of a stream-
function

u =

(
∂ψ

∂y
,−∂ψ

∂x
, ψ

)
, ψ = sin y + cosx. (2.4.3)

The generated magnetic field has to be z-dependent (anti-dynamo theorem 1) so
it can be taken to be of the form

B = b(x, y) exp(pt+ ikz), (2.4.4)

where b(x, y) is periodic in x and y, but it has a mean part independent of x and
y which spirals in the z-direction.

To solve the problem, Roberts inserted the form of B into the induction equa-
tion, using a double Fourier series expansion of b(x, y) truncated at a sufficiently
large number of terms. The coefficients then form a linear matrix eigenvalue
problem for p. The results are shown as the solid lines in figure 7. There is an
optimum value of k, the wavenumber in the z-direction, which maximises the
growth rate.

p

k

Fig. 7. Growth rate p as a function of z wavenumber, k for various ε = Rm−1 . Solid lines: G.O.
Roberts numerical results. Dashed lines, A.M. Soward’s asymptotic large Rm theory; from [9].
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Fig. 8. Figure 6 rotated through 45◦. At large Rm, generated field is expelled into boundary layers.
This gives enhanced diffusion, leading to lower growth rates and ultimately to decay; from [24].

2.4.1. Large Rm G.O. Roberts dynamo
At large Rm the dynamo can be analysed in terms of the flows between the
stagnation points, see figure 8. It is convenient to rotate figure 6 through 45◦. The
field generation occurs primarily in the flows along the separatrices between the
stagnation points; see [50] for details. The asymptotic theory agrees qualitatively
with the numerical results, as shown in figure 7. Since p → 0 as Rm → ∞,
although it only decays logarithmically withRm, this means the dynamo is slow,
because a fast dynamo requires finite p in the limit Rm→ ∞.

2.4.2. Other periodic dynamos
G.O.Roberts also looked at

u = (sin 2y, sin 2x, sin(x+ y)) (2.4.5)

which has zero mean helicity. Nevertheless, dynamo action can occur! However
the growth rates much smaller than in the ABC case.

To quote H.K. Moffatt, ‘Helicity is not essential for dynamo action, but it
helps’

2.5. Spherical Dynamos

Following Bullard and Gellman, [4], the velocity for kinematic spherical dy-
namos can be written

u =
∑

l,m

tm
l + sm

l (2.5.1)
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where tm
l and sm

l are the toroidal and poloidal components

tm
l = ∇× r̂tml (r, t)Y m

l (θ, φ), sm
l = ∇×∇× r̂sm

l (r, t)Y m
l (θ, φ)

(2.5.2a, b)
where −l ≤ m ≤ l.

Bullard and Gellman used u = εt0
1 + s2

2 with t01(r) = r2(1 − r), s22(r) =
r3(1 − r)2. In their original calculations, they found dynamo action, but subse-
quent high resolution computations showed they were not dynamos. Warning:
inadequate resolution can lead to bogus dynamos!

2.5.1. Dudley and James dynamos

Fig. 9. The flow in the Dudley and James dynamos, [15].On the right the meridional flow, on the left
the azimuthal flow direction is indicated.

Dudley and James looked at 3 models,

u = t0
2 + εs0

2 (a), u = t0
1 + εs0

2 (b), u = t0
1 + εs0

1 (c) (2.5.3a, b, c)

with
t01 = s01 = r sinπr, t02 = s02 = r2 sinπr. (2.5.4a, b)

All steady axisymmetric flows. The t components give azimuthal flow only, the
s components give meridional flow.

All three models give dynamo action. Since the flow is axisymmetric, the field
has exp imφ dependence, and m = 1 is preferred. The three models studied in
detail are (2.5.3a,b,c), sketched in figure 9, with (a) ε = 0.14 has Rmcrit ≈ 54
(steady). (b) ε = 0.13 hasRmcrit ≈ 95 (oscillatory). (c) ε = 0.17 hasRmcrit ≈
155 (oscillatory).

In all cases, the toroidal and meridional flows are of similar magnitude. The
field is basically an equatorial dipole, which in oscillatory cases rotates in time.
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Fig. 10. The Kumar-Roberts fluid flow defined by (2.5.5). (a) Contours of uφ controlled by ε0 (b)
streamlines of the meridional circulation controlled by ε1, (c) streamlines of the convection rolls
controlled by ε2 and ε3, [26].

The Dudley-James flow is probably the simplest spherical dynamo, but it doesn’t
look like convective flows, which are non-axisymmetric. The Kumar-Roberts
flow sketched in figure 10 is more complex,

u = ε0t
0
1 + ε1s

0
2 + ε2s

2c
2 + ε3s

2s
2 (2.5.5)

where 2c means cos 2φ and 2s means sin 2φ. The last two terms make the flow
nonaxisymmetric, so more like a convective flow.

Gubbins et al. [26] studied these flows for a range of ε values. Various radial
dependences were also considered. They define the relative energy in the flow
as D + M + C = 1, where D is the differential rotation energy, the ω-effect,
determined by ε0, M is the energy of the meridional circulation, measured by
ε1, and C is convection energy from the other two terms. They then vary D and
M to see which effects give dynamos at any Rm, see figure 11. Surprisingly,
there are large areas in the diamond shaped domain where no dynamo occurs at
any Rm. This is due to flux expulsion. As soon as a magnetic field tries to get
going, it is expelled into the narrow regions between the convecting cells where it
decays because of enhanced dissipation. This suggests that time-dependent flows
of a convecting type might make better dynamos, because then the flow moves
on before flux expulsion is established.
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Fig. 11. The Love diamond. Upper diamond marks regions in D - M space where steady dynamos
occur. The letters A-F denote regions of growth. The lower diamond is helicity; [26].

2.5.2. Braginsky limit
If ε2 and ε3 are small, the Kumar-Roberts flow is almost axisymmetric. Fol-
lowing Braginsky [3], we can seek fields which are almost axisymmetric. We
can then do a perturbation expansion, axisymmetric quantities being large, non-
axisymmetric quantities first order. Induction from the nonaxisymmetric quanti-
ties gives a mean part u′ ×B′ which is second order. At first sight, this doesn’t
seem to help sustain the leading order axisymmetric dynamo. However, it is the
diffusion that makes the axisymmetric dynamo impossible. If we assume the
diffusion is the same order as u′ ×B′ we can get a self-consistent solution. So
we assume large Rm, and take Rm−1 as second order and balance the induc-
tion from the averaged nonaxisymmetric terms and the diffusion of the leading
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order axisymmetric field to get a working dynamo. This is Braginsky’s ‘nearly
axisymmetric dynamo’

2.6. More specimens from the dynamo zoo!

2.6.1. Gailitis Dynamo

Fig. 12. The Gailitis dynamo; [19].

The flow is in two axisymmetric ring vortices. There is no toroidal flow. The
field of form exp iφ. Two types of solution are found corresponding to different
parities. (a) The lower ring generates a poloidal field B1 which permeates the
upper ring, and is stretched by the flow to give a current F2 in the upper ring.
The corresponding field B2 generates the current in the lower ring. For details,
see [17].

Gailitis analysed the dynamo using the Biot-Savart integral. This example
shows that a purely poloidal flow can be a dynamo. Recall the antidynamo the-
orem 4 that showed a purely toroidal dynamo cannot exist. The helicity is zero
and the critical Rm is quite large, so this is not a particularly efficient dynamo.

2.6.2. Herzenberg Dynamo
In the Herzenberg dynamo, the flow is a solid body rotation of spheres„ with
inclined rotation axes. The case with three such spheres is sketched in figure 13.
The case with two spheres is sufficient to generate a magnetic field. This was an
early model that demonstrated that dynamo action is possible despite Cowling’s
theorem.

2.6.3. Lowes-Wilkinson Dynamo Experiment
Lowes and Wilkinson constructed a laboratory dynamo based on the Herzenberg
dynamo. The cylinders were copper, embedded in mercury. The cylinders were
rotated by powerful motors, to achieve a high value of Rm. The experiment was
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Fig. 13. The Herzenberg dynamo; [25].

Fig. 14. The Lowes-Wilkinson dynamo experiment; [34].

successful, and a large field was generated. The Lorentz force generated by the
magnetic field was often large enough to bring the motors to a stop, and hence
blow them out! This illustrates the way that dynamo action can be limited by
nonlinear effects inhibiting the flow, in this case the rotation rate of the cylin-
ders. The field generated in the Lowes-Wilkinson experiment showed chaotic
reversals.

3. Mean field dynamo theory

This subject divides into two areas
(i) The underlying theory of mean field dynamo theory, or MFDT, the con-

ditions for its validity, its relationship to turbulence theory and its extension to
include nonlinear effects
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(ii) The solutions of MFDT equations and the new types of dynamos they
create: dynamo waves, αω dynamos and α2 dynamos.

There is surprisingly little interaction between these two activities. Vastly more
papers have been written on (ii), almost all accepting the MFDT equations as
a useful model. There are, however, many important questions about (i) which
have not yet been answered, so although MFDT is a useful source of ideas about
dynamo behaviour, results dependent on it are not yet on firm basis.

3.1. Averaging the Dynamo Equations

The basic idea is to split the magnetic field and the flow into mean and fluctuating
parts,

B = B + B′, u = u + u′ (3.1.1)

and apply the Reynolds averaging rules: assume a linear averaging process

B1 + B2 = B1 + B2, u1 + u2 = u1 + u2 (3.1.2)

and once its averaged it stays averaged, so

B = B, u = u. (3.1.3)

So averaging (3.1.1)
B′ = u′ = 0. (3.1.4)

Also, assume averaging commutes with differentiating, so

∂B

∂t
=

∂

∂t
B, ∇B = ∇B. (3.1.5)

Now we average the induction equation (1.4.7)

∂B

∂t
= ∇× (u ×B) + η∇2B. (3.1.6)

Using the Reynolds averaging rules,

∂B

∂t
= ∇× (u ×B) + η∇2B. (3.1.7)

The interesting term is (u ×B).

u ×B = (u + u′) × (B + B′) = u ×B + u×B′ + u′ ×B + u′ ×B′.
(3.1.8)
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3.1.1. Mean Field Induction equation.
We can therefore write the induction equation as

∂B

∂t
= ∇× (u ×B) + ∇× E + η∇2B, E = u′ ×B′. (3.1.9)

E is called the mean e.m.f. and it is a new term in the induction equation. We
usually think of the primed quantities as being small scale turbulent fluctuations,
and this new term comes about because the average mean e.m.f. can be nonzero
if the turbulence has suitable averaged properties.

No longer does Cowling’s theorem apply! With this new term, we can have
simple axisymmetric dynamos, a liberating experience. Not surprisingly, most
authors have included this term in their dynamo work, though actually it can be
hard to justify the new term in astrophysical applications.

3.1.2. Evaluation of (u′ ×B′)
If we subtract the mean field equation (3.1.7) from the full equation (1.4.7),

∂B′

∂t
= ∇× (u ×B′) + ∇× (u′ ×B) + ∇× G + η∇2B′,

G = u′ ×B′ − u′ ×B′. (3.1.10)

This is a linear equation for B′, with a forcing term ∇ × (u′ × B). B′ can
therefore be thought of as the turbulent field generated by the turbulent u′ acting
on the mean B. We can therefore plausibly write

Ei = aijBj + bijk
∂Bj

∂xk
+ · · · . (3.1.11)

where the tensors aij and bijk depend on u′ and u.
We don’t know u′ and its unobservable, so we assume aij and bijk are simple

isotropic tensors

aij = α(x)δij , bijk = −β(x)εijk . (3.1.12)

We now have the mean field dynamo theory (MFDT) equations in their usual
form,

∂B

∂t
= ∇× (u ×B) + ∇× αB −∇× (β∇×B) + η∇2B. (3.1.13)

If β is constant, ∇× (β∇×B) = −β∇2B so the β term acts like an enhanced
diffusivity. Even if it isn’t constant, we recall from (1.4.6) that the term has the
same form as the molecular diffusion term.

We can now justify taking a large diffusion, choosing it to give agreement with
observation.
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3.2. Validity of MFDT.

The α-effect does wonderful things, allowing simple dynamo solutions. But the
argument given is very heuristic. There are two ways of trying to justify it, (i)
examining the mathematical assumptions, (ii) trying to build a physical model.

3.2.1. The averaging process.
For what sort of averaging are the Reynolds rules (3.1.1-3.1.5) valid?

A. Ensemble averages

If we had thousands of identical copies of the Sun, we could start them off with
the same mean field, let them run and average all the results to get the ensemble
average. Not very practical, but something similar is done in numerical weather
forecasting to get a ‘probability of rainfall’ by running many different simula-
tions.

B. Length scale separation

If the turbulence is small-scale and the mean field is large-scale, we can average
over an intermediate length scale,

F (x, t) =

∫
F (x + ξ, t) g(ξ) d3ξ,

∫
g(ξ) d3ξ = 1. (3.2.1)

We choose the weight function g to go to zero on the intermediate length scale,
so the fluctuations average out but the mean field doesn’t,

∫
F ′(x + ξ, t) g(ξ) d3ξ = 0,

∫
F (x + ξ, t) g(ξ) d3ξ = F . (3.2.2)

For this to be strictly valid, the velocity spectrum must have a gap, i.e. all the
energy is either in large or small scales. Otherwise the Reynolds rules don’t
work.

C. Time scale separation

We can do the same if the turbulence has a short correlation time, i.e. average
over an intermediate timescale

F (x, t) =

∫
F (x, t+ τ) g(τ) dτ,

∫
g(τ) dτ = 1. (3.2.3)

D. Average over a coordinate

Braginsky [3] averaged over φ, so

F (r, θ, t) =
1

2π

∫
F (r, θ, φ, t) dφ. (3.2.4)
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This only applies to axisymmetric dynamo models, but it can be related to nu-
merical simulations. However, Braginsky justified his ‘almost axisymmetric dy-
namo’ by assuming the non-axisymmetric components are small compared to
the mean field. This is a fairly drastic assumption, and is not usually the case in
numerically simulated dynamos.

3.2.2. Evaluation of (u′ ×B′), a closer look.
Is it necessarily true that B = 0 means B′ = 0? We look again at (3.1.5),

∂B′

∂t
= ∇× (u ×B′) + ∇× (u′ ×B) + ∇× G + η∇2B′,

G = u′ ×B′ − u′ ×B′. (3.2.5)

If there is no mean field or mean flow, we have the small-scale induction equation
for the primed quantities, but this could be a dynamo! If so, we could have a non-
zero E even when there is no mean field. So to justify having B′ proportional to
B we need to assume the turbulent Rm is small.

Even if there is no small-scale dynamo, the solution of (3.1.10) is actually of
the form

E(x, t) =

∫ ∫
Kij(x, t; ξ, τ)Bj(x + ξ, t+ τ) d3ξdτ (3.2.6)

for some kernel Kij . Only if the turbulence has a short correlation length and
time compared to B, will E depend on the local B as required for (3.1.11). If
Braginsky averaging is adopted, this may not be true, or at least is an additional
assumption.

If we have short correlation, then we can Taylor expand B in (3.2.6),

Bj(x + ξ) = Bj(x) + ξk∂kBj(x) +
1

2
ξkξm∂kmBj(x) + · · · (3.2.7)

and since |ξ| is small compared to the length scale of variation of B, the series
converges rapidly, justifying the neglect of higher order terms, and so justifying
(3.1.11). The time-derivative terms of B can be removed using the mean field
equation for B [38].

3.3. Tensor representation of E

Now we look more closely at (3.1.11)

Ei = aijBj + bijk
∂Bk

∂xj
+ · · · . (3.3.1)
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aij tensor:

Split this into a symmetric part (aij + aji)/2 = αij and the antisymmetric part,
(aij − aji)/2 = εijkAk. Then

E = αijBj + A ×B. (3.3.2)

We already have a u × B term, so the A term just modifies the mean velocity.
The symmetric part will have three principal axes, and in general three different
components along these axes, but isotropic turbulence gives

αij = αδij , (3.3.3)

leading to the usual MFDT alpha-effect term.

β effect

The bijk tensor is treated by splitting ∂jBk into symmetric, and antisymmetric,
parts

∂jBk = (∇B)s − 1

2
εjkm(∇×B)m. (3.3.4)

The symmetric part is not believed to do much. To simplify the antisymmetric
part, we decompose the 2nd rank tensor bijkεjkm into its symmetric and anti-
symmetric parts to get

Ei = −βij(∇×B)j − δ × (∇×B). (3.3.5)

The β-effect is in general an anisotropic eddy diffusion, usually taken as isotropic
in applications. The δ-effect term has been discussed recently.

3.4. First order smoothing

The tensor approach is very general, but it gives lots of unknowns. Can we solve
for B′ in terms of u′? With a short correlation length `, the mean velocity term
(which is constant over the short length scale) can be removed by working in
moving frame. Then we have

∂B′

∂t
= (B · ∇)u′ + ∇× (u′ ×B′ − u′ ×B′) + η∇2B′, (3.4.1)

O(B′/τ) O(Bu′/`) O(B′u′/`) O(ηB′/`2) (3.4.2)

where (3.4.2) gives the order of magnitude of the corresponding terms in (3.4.1).
If the small-scale magnetic Reynolds number u′`/η is small, the awkward curl
term is negligible. This is the first order smoothing assumption, and gives

∂B′

∂t
= (B · ∇)u′ + η∇2B′. (3.4.3)



Dynamo Theory 43

This implies B′ << B, which is probably not true in Sun. Now suppose the
turbulence to be a random superposition of waves,

u′ = Re{u exp i(k · x − ωt)}. (3.4.4)

Then using (3.4.3)

B′ = Re{ i(k ·B)u

ηk2 − iω
exp i(k · x − ωt)} (3.4.5)

Now evaluate E ,

u′ ×B′ =
1

2

iηk2(k ·B)

η2k4 + ω2
(u∗ × u), (3.4.6)

where ∗ denotes complex conjugate, equivalent to

aij =
1

2

iηk2

η2k4 + ω2
kjεimnu

∗
mun. (3.4.7)

3.4.1. Connection with helicity
If the turbulence has no preferred direction, i.e. it is isotropic,

αij =
1

2

iηk2

η2k4 + ω2
δijkiεimnu

∗
mun. (3.4.8)

Now consider the helicity

H = u′ · ∇ × u′ = −1

2
ik · (u∗ × u). (3.4.9)

Taking the trace of (3.4.8) gives

α = −1

3

ηk2H

η2k4 + ω2
. (3.4.10)

This means that under first order smoothing, the mean e.m.f. is proportional to
the helicity of the turbulence. Helical motion is ‘Ponomarenko’ type motion, left-
handed or right-handed. Mirror-symmetric turbulence has zero helicity. Rotating
convection has non-zero helicity in general.

3.4.2. Connection with G.O. Roberts dynamo
The G.O. Roberts dynamo had a flow which is an organised superposition of
waves, see (2.4.1). In the case where the magnetic Reynolds number Rm based
on the cell size length is small, we can do a two scale analysis (for details see [24]
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in which the length scale of the mean field is large,O(Rm−2), and the perturbed
field is O(Rm). B′ is then given by the first order smoothing equations as a
consequence of the expansion, and so u′ ×B′ can be evaluated using the same
procedure as above.

The mean field then satisfies an equation on the large length scale X and a
slow timescale T = tRm3

∂B

∂T
= ∇X × (αijBj) + ∇2

XB (3.4.11)

where α11 = α22 = α, all other components being zero. (3.4.11) has growing
solutions on the large length scale

B = (± sinKZ, cosKZ, 0) (3.4.12)

which is the helical form found in G.O. Roberts numerical solutions.
This analysis gives a more definite meaning to the mean field picture, but it

also reveals a major weakness. The large scale modes grow alright, but only
on the very slow T = tRm3 timescale. The modes where the mean field and
fluctuating field have the same length scale (and where mean field theory is not
valid) grow on a much faster timescale.

3.5. Parker loop mechanism

Mean field theory predicts an e.m.f. parallel to the mean magnetic field,

∂B

∂t
= ∇× (u ×B) + ∇× αB + ηT∇2B. (3.5.1)

This contrasts with u×B which is perpendicular to the mean field. With constant
α, the α-effect predicts growth of field parallel to the current µ∇×B. Recalling
that the α-effect depends on helicity, we can picture this process as in figure
15. A rising twisting element of fluid brings up magnetic field. A loop of flux
is created, which then twists due to helicity. The loop current is parallel to the
original mean field. Poloidal field has been created out of azimuthal field.

Note that if there is too much twist, the current is in the opposite direction.
First order smoothing assumes small twist.

3.5.1. Joy’s law
A sunspot pair is created when an azimuthal loop rises through solar photosphere.
The vertical field impedes convection producing the cool dark spot. Joy’s law
says that sunspot pairs are systematically tilted, with the leading spot being nearer
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Fig. 15. Parker loop mechanism; from [48].

the equator. Assuming flux was created as azimuthal flux deep down, this sug-
gests that loop has indeed twisted through a few degrees as it rose. This provides
some evidence of the α-effect at work, and this idea is the basis of many solar
dynamo models.

3.6. Axisymmetric mean field dynamos

The mean field dynamo equations with isotropic α are derived from (1.7.10) and
(1.7.11) with the alpha-effect included,

∂A

∂t
+

1

s
(uP · ∇)(sA) = αB + η(∇2 − 1

s2
)A, (3.6.1)

∂B

∂t
+ s(uP · ∇)(

B

s
) = ∇× αBP + η(∇2 − 1

s2
)B + sBP · ∇Ω. (3.6.2)

The The α-effect term is the source for generating poloidal field from azimuthal
field, as envisaged by Parker [41], and Babcock & Leighton.

There are two ways of generating azimuthal field B from poloidal field BP :
the α-effect or the ω-effect. If the α-effect dominates, the dynamo is called an
α2-dynamo. If the ω-effect dominates its an αω dynamo. We can also have α2ω
dynamos where both mechanisms operate.

3.6.1. The Omega-effect
In figure 16, an initial loop of meridional field threads through the sphere. The
inside of the sphere is rotating faster than the outside: so we have differential
rotation. The induction term sBP · ∇Ω generates azimuthal field by stretching.
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Fig. 16. An initial dipole field is sheared by differential rotation in the sphere to generate a large
toroidal field.

As we see in figure 16, opposite signBφ is generated on either side of the equator,
as in the Sun.

3.6.2. Dynamo waves
The simplest analysis of dynamo waves uses Cartesian geometry, and we assume
the waves are independent of y.

B = (−∂A/∂z,B, ∂A/∂x), u = (−∂ψ/∂z, uy, ∂ψ/∂x), (3.6.3)

∂A

∂t
+
∂(ψ,A)

∂(x, z)
= αB + η∇2A, (3.6.4)

∂B

∂t
+
∂(ψ,B)

∂(x, z)
=
∂(A, uy)

∂(x, z)
−∇ · (α∇A) + η∇2B. (3.6.5)

Set ψ = 0, α constant, uy = U ′z, a constant shear, ignore the α term in the B
equation (αω model) and set A = exp(σt + ik · x). The dispersion relation is
then

(σ + ηk2)2 = ikxαU
′, (3.6.6)

giving

σ =
1 + i√

2
(αU ′kx)1/2 − ηk2 (3.6.7)

with a suitable choice of signs. This gives growing dynamo waves if the αU ′

term overcomes diffusion.
If the wave is confined to a plane layer, kz = π/d gives the lowest critical

mode, and there is a critical value of kx for dynamo action. The dimension-
less combination D = αU ′d3/η2 is called the dynamo number, and in confined
geometry there is a critical D for onset.
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Note fastest growing waves in unbounded geometry have kz = 0, so they
propagate perpendicular to the shear direction z. If αU ′ > 0, a +ve kx gives
growing modes with Im(σ) > 0, so they propagate in the -ve x-direction. the
direction of propagation depends on sign of αU ′.

3.6.3. α2 dynamos
Now set ψ = uy = 0, α constant, A = exp(σt + ik · x) to get the dispersion
relation

(σ + ηk2)2 = α2k2 (3.6.8)

σ = ±αk − ηk2 (3.6.9)

which means we can have growing modes with zero frequency. There are no
dynamo waves in the α2-dynamo, but a steady dynamo results. In bounded ge-
ometry there is a critical α for dynamo action.

3.7. Spherical αω dynamos

Fig. 17. Dipolar oscillatory solution of axisymmetric αω-dynamo in a sphere. (a)-(h) goes through
one period. Right meridional field, left azimuthal field. α = f(r) cos θ, ω = ω(r). B antisymmetric
about equator, A symmetric; from [47].

Figures 17 and 18 were obtained by integrating the spherical geometry mean
field dynamo equations (3.6.1) and (3.6.2) with α = f(r) cos θ and u = sω(r)̂φ.
Various choices of the functions f(r) and ω(r) were considered in [47]. As
expected from our simple analysis of plane dynamo waves, these α ω dynamos
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Fig. 18. As in Figure 17, but a quadrupolar oscillatory solution of axisymmetric αω-dynamo in a
sphere. B antisymmetric about equator, A symmetric; from [47].

give oscillatory solutions. Both dipolar and quadrupolar dynamos can occur. A
dipolar solution is shown in figure 17, a quadrupolar one in figure 18. Dipolar
dynamos generally onset before quadrupolar dynamos if αω′ < 0.

A brief summary of the numerical findings about spherical MFDT models is

(i) Generally, α2 models give steady dynamos, αω dynamos give oscillatory so-
lutions. But, some α distributions, particularly if there are positive and negative
values in the same hemisphere, can give steady αω dynamos.

(ii) Meridional circulation, non-zero ψ, can also help to steady αω dynamos.

(iii) Unfortunately, it seems that a vast range of different dynamo behaviour can
be found depending on the spatial α distribution, even if α is restricted to the
isotropic case. This is a major problem for modelling, as there is little prospect
of determining α by observation. In practice, α-distributions are determined by
adjusting until the numerical results agree with the observations, but such tuning
of the parameters to fit the data is not a very satisfactory way to proceed.
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4. Fast and slow dynamos

If the magnetic diffusion time is much longer than the turn-over time of the flow,
the induction equation (1.4.8) can be written

∂B

∂t
+ u · ∇B = B · ∇u + ε∇2B.

where ε = Rm−1 is small. Time is scaled on the turnover time L/U , L being
the length scale of the object, U a typical velocity.

For steady flow, a dynamo driven magnetic field grows exponentially, B ∼
eσt, and if γ = Re(σ) the flow is a fast dynamo if

lim
ε→0

γ(ε) = γ0 > 0.

The flow is a slow dynamo if

lim
ε→0

γ(ε) = γ0 ≤ 0.

Fast dynamos grow on the turnover time (months in the Sun) not the magnetic
diffusion time (millions of years in the Sun). The solar magnetic cycle operates
on a twenty-two year cycle, much shorter time than the diffusion time, so it must
be a fast dynamo.

4.1. Magnetic helicity

Magnetic helicity is defined in terms of the vector potential A, where B = ∇×
A. The magnetic helicity,

Hm =

∫
A · B dv. (4.1.1)

Recalling the induction equation for A (1.7.3),

∂A

∂t
= u× (∇×A) + η∇2A + ∇φ, ∇2φ = ∇ · (u×B)

and the induction equation for B (1.4.6),

∂B

∂t
= ∇× (u ×B) −∇× η(∇×B),

multiplying the first by B, the second by A, and adding,

∂

∂t
A·B = ∇·(φB)+A·∇×(u×B)−A·∇×η(∇×B)−η(∇×B)·B. (4.1.2)
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By using standard vector identities we can write

A · ∇ × (u ×B) = (u ×B) · ∇ ×A−∇ ·A × (u ×B)

= ∇ ·B(A · u) − u · ∇(A · B). (4.1.3)

Also,

−A · ∇ × η(∇×B) = ∇ · (A × (η∇×B)) − ηB · ∇ ×B, (4.1.4)

so

D

Dt
A · B = ∇ · [B(φ+ u ·A)] + ∇ · A× (η∇×B) − 2ηµB · j. (4.1.5)

The first divergence term can usually be eliminated by defining φ suitably. The
second divergence term is resistive. If we integrate over the volume of the fluid
region, and ignore the surface terms arising from the divergences in ((4.1.5),

∂

∂t

∫
A · B dv = −2ηµ

∫
B · j dv, (4.1.6)

so the total magnetic helicity is conserved if η is small (largeRm). B · j is called
the current helicity.

4.2. The Stretch Twist Fold dynamo

Fig. 19. Schematic diagram of the stretch twist fold dynamo; after [56].

A loop of flux is first stretched to twice its length, reducing the cross-section by
half. Alfvèn’s theorem tells us that the integrated flux through the loop cannot
change if diffusion is small, so since the area is halved, the field strength must
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double. Now twist the loop to get to (b), and then fold to get to (c). Apply small
diffusion at X to reconnect. Since the two loops in (d) both have the same flux
as in (a), because each has half the area and double the field strength, we have
doubled the total flux. Repeating the process doubles the flux again, so we have
exponential growth in this process.

The stretching phase of the process did work against the hoop stresses. The
Lorentz force can be written as

j×B =
1

µ
(B · ∇B) − 1

2µ
∇B2. (4.2.1)

If B = Bφ̂,

j ×B = −B
2

sµ
ŝ− ŝ

∂

∂s

B2

2µ
− ẑ

∂

∂z

B2

2µ
(4.2.3)

and the term −B2ŝ/sµ is called the hoop stress. Energy conservation means
that, because energy is needed to generate magnetic field, the fluid flows must be
doing work against the magnetic forces. This work must come from an energy
source, such as thermal convection or mechanical driving.

This is a fast process, because it happens on the fluid velocity turn over time,
L/U . It does however, appeal to ‘small diffusion’ to reconnect in step (c) to
(d). The hope is that this reconnection occurs over a very short length scale over
which diffusion can act quickly, so the small diffusion does not slow the process
down significantly.

4.2.1. Stretching and folding in 2D

Fig. 20. Stretching and folding in 2D

Stretch-Twist-Fold is inherently 3D. Why can’t we just stretch out field in 2D?
We know that planar dynamos don’t work from theorem 2, but what is wrong
with just 2D stretching and folding? It is clear from figure 20 that stretching
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in 2D generates more field just as it does in the stretch, twist and fold dynamo.
The problem is that the fields generated have opposite sign. As stretching con-
tinues, opposite signed flux gets close together and diffusion acts fast over short
distances. Diffusion wipes out field as fast as stretching generates it.

4.3. Baker’s maps and stretch, fold, shear

Fig. 21. The baker’s map; from [24]

These ideas can be put on a more formal basis using maps. The two stages of the
baker’s map shown in figure 21 are

(x, y) → (2x, y/2), 0 ≤ x ≤ 1

2
, (x, y) → (2x−1, (1+y)/2),

1

2
< x ≤ 1

(4.3.1)
The baker’s map is the basis of bread-making. This process has doubled the flux,
but its a cheat, because how do you cut fluid in a continuous process? Now we

Fig. 22. The folded baker’s map; from [24]

put the top slice the other way round as in figure 22.

(x, y) → (2x, y/2), 0 ≤ x ≤ 1

2
, (x, y) → (2−2x, (1−y)/2),

1

2
< x ≤ 1

(4.3.2)
This less of a cheat, because we could fold the fluid round to achieve this. No
cutting necessary. But its a 2D motion, so we have adjacent opposite signed field,
and this process alone cannot give a dynamo.
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Fig. 23. Stretch Fold Shear. Grey regions have field in +ve x direction, white regions in -ve x

direction; from [24]

4.3.1. Stretch Fold Shear, SFS
We can modify the folded baker’s map of figure 22 by adding shear in the third
dimension, as illustrated in figure 23. (a) is a stretch in the x-direction, stretching
out the field in the x-direction. (b) is the folded baker’s map. Note that when it is
folded back, the grey region goes white because the x-component of field is now
in the opposite direction. (c) Shear in the z-direction. We now have all white
field on back and front faces, all black in between. The shear step means field no
longer cancels across z-planes.

Fig. 24. Stretch Fold Shear. The magnetic field; from [24]

This stretch, fold and shear mechanism is illustrated again in figure 24. (a) Initial
mean field is now taken in the y-direction. It is periodic in z, proportional to
exp ikz.
(b) After the stretch in the y-direction and the fold in the x-direction. (c) is the
same state as (b) but viewed from above. (d) After the shear. The fluid was given
a shift in the z-direction by an amount proportional to x.

Note the bottom left hand corner in (c) has to be pulled down, and the bottom
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right pushed up, to keep the phase of (d) the same as (a). The net effect is that the
final field configuration is close to that in (a), but the stretching means the field
strength is increased.

4.3.2. Stretch Fold Shear in G.O. Roberts dynamo
In Figure 8 the flow in the G.O. Roberts dynamo at large Rm was sketched. The
flow is

u = (ψy,−ψx,
√

2ψ), ψ = sinx sin y (4.3.3).

Near the stagnation points the field is stretched out. This would lead to cancella-
tion if there were no flow in the z-direction, but the z-flow provides the crucial
shear, which is non-zero at the stagnation point because of the helicity. Thus a
flow uz = cosx cos y, which has zero net helicity, wouldn’t give the required
stretch fold shear mechanism.

We can consider the production of mean y-field from mean x-field in the
Roberts cell. We take L to be half the wavelength in the z-direction. If the mean
x-field is at z = 0, after shearing, there is mean negative y-field at z = −L/2,
and mean positive field at z = L/2. Mean y-field is therefore L/2 out of phase
with mean x-field, so the field turns as z increased. This spiralling of the mean
field with z is a characteristic of the G.O Roberts dynamo.

4.4. ABC dynamos

The general ABC flow is

u = (C sin z +B cos y,A sinx+ C cos z,B sin y +A cosx) (4.4.1)

The G.O. Roberts flow was A = B = 1, C = 0, but now look at A = B = C =
1. This is not integrable, and the streamlines got by solving

ẋ = ux, ẏ = uy, ż = uz (4.4.2)

are chaotic. Figure 25 shows a Poincaré section of the ABC flow, that is a tra-
jectory is integrated forward in time, and each time the plane z = 0 is cut, the
corresponding x, y values are plotted as a point. This flow is believed to be a fast
dynamo. Because the chaotic regions which give stretching are small, it is quite
difficult to show it is a fast dynamo numerically. However, in figure 26, where
the growth rate γ has been computed numerically, it seems to be tending to 0.07
at large Rm.

4.5. Stretching properties

Take a point a and a small vector v whose origin is at a. Now integrate the
particle path ODE’s with initial conditions x1 = a and x2 = a +v, and monitor
d = |x1 − x2|. If stretching is occurring, d will grow exponentially.
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Fig. 25. Typical Poincaré section shows chaotic regions and ordered regions. Ordered regions called
KAM regions, or KAM tori. ‘Normal’ in chaotic ODEs. The ABC = 1 flow is unusual in having
rather large KAM regions and small chaotic regions; from [14]

The Liapunov exponent is

Λ(a) = max
v

lim
t→∞

sup
ln d

t
(4.5.1)

The maximum Liapunov exponent is found by taking the supremum over all a.
It can be computed, but it is expensive! A practical definition of chaos is that the
Liapunov exponent is positive. In a given chaotic region, Λ is usually the same
for different trajectories in that region, but Λ is zero in KAM regions.

4.5.1. Line Stretching
As a material curve is carried round by a chaotic flow, its length increases. If the
length of the curve C is M(C, t), then

hline = sup lim
t→∞

1

t
ln |M(C, t)|. (4.5.2)

hline is generally larger than Λ because the line gets twisted up, whereas the
infinitesimal vectors v stay straight.

We might reasonably expect that fast dynamo growth rates will be a bit less
than hline, because diffusion acting over the short length scales will make the
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Fig. 26. Dynamo growth rate γ against log10 Rm. The circle is the flux growth rate, and the square
is hline, which are defined in the text; from [20]

field grow a bit slower. This seems to be true of the known fast dynamos, and
hline is shown in figure 26.

4.5.2. Flux growth rate
Alfvèn’s theorem says flux is conserved at large Rm so it is natural to define the
flux growth rate. Choose a material surface S and define the flux through it as
Φ(S, t) =

∫
S B · dS. Then the flux growth rate is

Γ(S, ε) = lim
t→∞

sup
1

t
log |Φ(s, t)| (4.5.3)

This may exist even at ε = 0, infinite Rm. In a given chaotic region, Γ becomes
independent of S and the initial choice of B. Clearly, there is tricky mathematical
analysis involved in these definitions, and proofs are complicated.

4.6. Time dependent flow fields

An alternative way of generating fast dynamos is rather than have a fully 3D
steady flow field, like A = B = C = 1, stay 2D but have a time-dependent flow.
Field still has exp ikz dependence, which makes the numerics a lot easier.

The Galloway-Proctor CP (circularly polarized) flow is an example of this
approach:

u = ∇× (ψ(x, y, t)ẑ) + γψ(x, y, t)ẑ, ψ = sin(y + sin t) + cos(x+ cos t)
(4.6.1)

It is very like the G.O. Roberts flow, except the stagnation point pattern rotates
round in a circle. Galloway and Proctor also defined an LP (linearly polarized)
flow, with ψ = sin(y + cos t) + cos(x + cos t). These flows are now non-
integrable, and they have positive Liapunov exponents. In figure 27 the Lia-
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Fig. 27. Left: Liapunov exponents: blue regions have little or no stretching, green/red has order one
stretching. Right: snapshot of the normal field Bz . Note the good correlation between strong field
and strong stretching; courtesy of D.W. Hughes and F. Cattaneo

Fig. 28. Galloway-Proctor dynamo results for the CP flow. Growth rate against wavenumber k,
exp ikz, for Rm = 800, Rm = 2, 000 and Rm = 10, 000; from [21]

punov exponents and the normal fieldBz for the CP flow of the Galloway-Proctor
dynamo are shown. As in the ABC flow there are regions of strong stretching
where the Liapunov exponent is strongly positive, and other regions where not
much stretching occurs. It is clear from figure 27 that the stretching is crucial for
generating the field.

In figure 28, the growth rate for the CP flow dynamo is shown as a function of
k. This suggests that the optimum value of k does not change as Rm→ ∞, and
the growth rate at the maximum k has attained its asymptotic value of about 0.3
by Rm = 1000.

Another time-dependent model, similar to the Galloway-Proctor model is Otani’s
modulated wave and flow dynamo, known as the MW+ flow dynamo. The flow
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is a little simpler than the Galloway-Proctor flow,

u = 2 cos2 2t(0, sinx, cosx) + 2 sin2 t(sin y, 0,− cosy). (4.6.2)

The magnetic field has the form

B(x, y, z, t) = exp(ikz + σt)b(x, y, t) (4.6.3)

where σ is the Floquet exponent and b is a 2π periodic function of time. There
is rapid convergence of Re(σ) = γ ≈ 0.39 with k ≈ 0.8 as Rm → ∞. The
dynamo mechanism appears to be an SFS type.

Fig. 29. Otani dynamo. (a) Eigenfunctions b(x, y, t) at a snapshot in t. ε = Rm−1 = 5 × 10−4.
Actually, magnetic energy |b|2 is plotted. (b) As above with ε = Rm−1 = 5 × 10−5flow MW+
eigenfunctions; from [40]

5. Nonlinear dynamos

5.1. Basic ideas in nonlinear dynamos

The induction equation is linear in B, so it predicts dynamos that either decay
or grow for ever. The field strength at which the dynamo stops growing is deter-
mined by terms nonlinear in B. The Lorentz force j × B = (∇× B) × B/µ is
the key nonlinear term.

Nonlinear dynamos therefore require analysis of the equation of motion. The
dynamo stops growing when the Lorentz force changes the flow so that dynamo
action is reduced. This process is called dynamo saturation. In the simplest mod-
els, Lorentz force only drives a large-scale flow, the dynamo being driven by
an α-effect. More recently, models have been developed without an α-effect, in
which the flow is driven by either a body force or by convection. An example of
such a nonlinear dynamo is the plane layer dynamo driven by rotating convection
at fixed Rayleigh number. In figure 30, the logarithm of the Magnetic Energy is
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Fig. 30. A plane layer dynamo model is driven by rotating convection at fixed Rayleigh number.
Log(Magnetic Energy) plotted against time on magnetic diffusion timescale; from [30]

plotted against time measured on the magnetic diffusion timescale. For time less
than 0.5, the logarithm of the energy grows approximately linearly, which corre-
sponds to the exponential growth we would expect with a kinematic dynamo. In
this convection driven model, the flow is chaotic, which accounts for why the en-
ergy fluctuates over short times, but the overall exponential growth is quite clear.
At about t = 0.5 the dynamo stops growing, i.e. it saturates. This happens when
the field strength is large enough to change the flow significantly.

5.1.1. Dynamical regimes

Saturation is poorly understood, and is probably different in different dynamical
regimes. Here we focus on three problems: (i) dynamo saturation in moderately
rotating systems, e.g. the Sun. (ii) dynamo saturation in rapidly rotating systems,
dominated by Coriolis force, e.g. the Earth’s core, and (iii) dynamo saturation in
experiments.

The essential difference between (i) and (ii) is whether the rotation rate is fast
or slow compared to the flow turnover time. The Rossby number is defined by
U/LΩ, and is the dimensionless measure of this difference. In the interior of
the Sun, Ro is about unity (it is larger near the surface). In the Earth’s core it is
∼ 10−7, corresponding to very rapid rotation.

Dynamo experiments lie in a different regime again, because although they
are strongly turbulent,Rm is only just above critical.
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5.2. Stellar dynamo saturation mechanisms

Three different mechanisms of saturation have been proposed for stellar dy-
namos:

(i) omega-quenching, (ii) magnetic buoyancy, (iii) alpha-quenching.

Omega-quenching: in most solar dynamo models, differential rotation generates
toroidal field from poloidal field. The Lorentz force acts to stop the differential
rotation, because the tension in the field lines opposes the shear.
Magnetic buoyancy: a magnetic flux tube is lighter than its surroundings. Mag-
netic pressure in the tube means the gas pressure is reduced. From the gas law,
this means the density is reduced, assuming thermal equilibrium. Flux tubes
therefore float upwards, removing themselves from the active dynamo region.
Alpha-quenching: the magnetic field will stop the helical small-scale motions
that create the mean field. We therefore expect the helicity to drop when the
field strength is large, and thus dynamo action to cease. This is primarily a mean
field dynamo mechanism. There is a large and controversial literature on alpha-
quenching. Many models suggest that the alpha-effect should be quenched at
relatively low field strengths, but nevertheless the Sun appears to achieve strong
fields.

In convection driven dynamos, the field can affect the stretching properties
of the flow. Unfortunately, subtle changes in the flow pattern can radically alter
stretching properties. The rate of creation of magnetic energy is through u ·j×B.
At large Rm, u and B are often nearly parallel. This means small changes in the
angle between u and j ×B can strongly affect field generation.

5.2.1. Modelling saturation mechanisms
We illustrate how these saturation mechanisms can be modelled in the context of
a plane layer αω dynamo From (3.6.4) and (3.6.5),

∂A

∂t
= αB + η∇2A,

∂B

∂t
=
∂A

∂x

∂v

∂z
+ ηg∇2B, (5.2.1, 2)

together with the y-component of the equation of motion,

∂v

∂t
=

1

µρ

∂A

∂x

∂B

∂z
+ ν∇2v + F. (5.2.3)

Here Bŷ is the toroidal field, ∇ × Aŷ the poloidal field, and v is flow in ŷ, so
∂v/∂z is differential rotation.

To model alpha-quenching and buoyancy set

α =
α0

1 + κB2
, g = 1 + λB2. (5.2.4)
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This is quite arbitrary, but it does model our physical expectations from saturation
mechanisms (i) and (ii). As mentioned above, there has been much discussion
about the magnitude of κ. The quenching rate shouldn’t depend on sign of B, so
the appearance of B2 in the denominator is less controversial. The formula for
g reflects magnetic buoyancy giving enhanced diffusion removing flux from the
dynamo region.

5.2.2. A truncated system
These equations were originally solved by expanding in trig functions in x and
Legendre polynomials in z and severely truncating the expansion so that only the
first few terms are retained.

Ȧ = 2D(1 + κ|B|2)−1 −A, Ḃ = i(1 + v0)A− 1

2
iA∗v + (1 + λ|B|2),

(5.2.5, 6)

v̇0 =
1

2
i(A∗B −AB∗) − ν0v0, v̇ = −iAB − νv. (5.2.7, 8)

Here A, B are complex coefficients of exp ikx, because the system has dynamo
waves. v0 is the mean differential rotation, complex v the exp 2ikx part. We can
explore various combinations of κ, λ, ν and ν0. D is the dynamo number, set
above critical.

With ω-quenching switched off, stable periodic dynamo waves result. Stellar
observations suggest |B| increases with the convective velocity, and hence with
D, and the frequency increases also. In the α-quenched model, the cycle pe-
riod remains constant with D, though this result is somewhat model-dependent.
With ω-quenching only, particularly when v dominates v0, we can get chaotic

Fig. 31. Aperiodic oscillations of 6th order system with ν0 → ∞ for D = 8 and D = 16; from [57]

behaviour, including ‘Maunder minima’. The Maunder minimum was a period
of about 70 years when there was reduced dynamo activity. The suggestion from
this model, therefore, is that it was due to a reduced differential rotation, possibly
at the bottom of the convection zone.
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5.3. α-quenching

Writing the α-quenching formula as

α =
α0

1 +B2/B2
(5.3.1)

highlights the fact that quenching occurs when B ∼ B. The value of B is more
important than the exact functional form.

The simplest argument is to consider the force balance in turbulent convection.
The buoyancy force ρgαT ′ẑ balances the z-component of ρu · ∇u ∼ ρu2/L.
Lorentz force is significant in this balance when

|(∇×B) ×B/µ| ∼ B2/Lµ ∼ ρu2/L (5.3.2)

B2/2µ is the magnetic energy per unit volume, ρu2/2 is the kinetic energy per
unit volume, so we expect energy equipartition, which determines B i.e. B =
Beq ∼ (ρµ)1/2u. Then the Alfvèn speed and the flow speed are comparable.

5.3.1. α-quenching: Small or Large scale?
It is assumed in this argument that the length scale L is the same in the Lorentz
force and the acceleration terms. Also, the acceleration term is really an eddy
diffusion term ρνturb∇2u with νturb ∼ UL. This still gives ρU2/L, but again
only by assuming the same L everywhere.

Numerical simulations suggest B � Beq , possibly even B ∼ Rm−1/2Beq .
Why does (5.3.2) not hold in these simulations? The field is generated on short
length scales, so the current is B/`, and ` is small. Flux expulsion arguments
suggest `/L ∼ Rm−1/2, which would imply saturation occurs at very low field
strengths, because Rm is large in astrophysics.

5.3.2. α-quenching: magnetic helicity
If a and b are small-scale fluctuating components of the magnetic vector potential
and magnetic field respectively, with a constant uniform mean field but no mean
flow,

∂a

∂t
= u× (∇×A) + u × (∇× a) + η∇2a + ∇φ, (5.3.3)

∂b

∂t
= ∇× (u ×B) + ∇× (u × b) −∇× η(∇× b) (5.3.4)

Multiply by b and a respectively and take the average

∂

∂t
a · b = −2B · u × b− 2η(∇× b) · b + divergence terms. (5.3.5)
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Now u× b = αB from the definition of α, so in a steady state

α = −ηµ j · b
B

2
, (5.3.6)

which is a small value of α since η is small. This argument ignores the divergence
terms, and it has been suggested that possibly helicity leaks through boundary to
give a larger value of α. However, at face value this argument supports the idea
that α-quenching is controlled by the value of the small scale field rather than the
large scale field, as supposed in (5.3.1).

5.3.3. β-quenching
If the Lorentz force limits α by reducing the helicity, we might also expect the
turbulent diffusion to be reduced. This is called β-quenching. It is an open
question whether it exists, and whether the B for α-quenching is the same for
β-quenching.

Also, nonlinear β effects may be highly anisotropic, whereas in most appli-
cations to solar and stellar dynamos simple isotropic formulae are used. Both α
and β quenching are the subject of ongoing numerical experiments.

5.4. Saturation in rapidly rotating systems

The motivation here is the dynamos in planetary cores. The fluid velocity is then
very slow, so inertia is probably negligible, except on the smallest length scales.
Viscosity is also small, so the dominant balance is between magnetic forces,
buoyancy and Coriolis force. Archimedean for buoyancy gives the acronym
MAC balance. Pressure is also important! Numerical simulations won’t work
without viscosity, but the aim is to reduce the viscous terms to as small a value
as possible, which means getting the Ekman number E = ν/ΩL2 � 1.

5.4.1. Busse rolls
In rapidly rotating convection, the convective rolls are tall and thin, see figure 32.
At onset, they have thickness E1/3a, the sphere radius being a. In the nonlinear
regime, we still get thin columns though they very time-dependent. The roll-
width may then be controlled by the balance of inertial advection and vortex
stretching, which leads to the Rhines scale, (Ua/Ω)1/2. As mentioned above,
because of the low velocity, the Rhines scale in planetary cores is still rather
small, so this picture still has the convection occurring in tall thin columns
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Fig. 32. Sketch of convection rolls in a rapidly rotating sphere; from [5]

5.4.2. J.B. Taylor’s constraint

If we integrate the φ-component of the equation of motion over a co-axial cylin-
der S (see figure 33),

∂

∂t

∫
ρuφ ds+

∫
2ρusΩ ds =

∫
(j ×B)φ ds− 2πs

uφ(2E)1/2

(1 − s2)1/4
(5.4.1)

ignoring any Reynolds stress. The last term comes from the drag at the boundary
produced by Ekman suction. The Coriolis term is zero, because there is no net
flow across the cylinder. The pressure term cancels out because the pressure at
φ = 2π is the same as at φ = 0. The buoyancy term has no φ-component.

On a short timescale, (5.4.1) predicts torsional oscillations, damped by the
Ekman suction term. On longer timescales, after the oscillations have decayed
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Fig. 33. Sketch of the co-axial cylinder used for Taylor’s constraint.

away, ∫
(j ×B)φ ds = 0, (5.4.2)

which is called Taylor’s constraint. We have ignored viscosity, since as men-
tioned above, it is very small in planetary cores.

So what happens if a dynamo generated field doesn’t satisfy Taylor’s con-
straint (5.4.2)? In general, the field distribution is given by the growing eigen-
functions of the dynamo problem, so there is no reason (5.4.2) will be satisfied.
The torque on each cylinder then has to be balanced by viscosity (Ekman suc-
tion), so the field strength is small, O(E1/4). However, Malkus and Proctor [35]
suggested that in the nonlinear regime the field would adjust; the Lorentz force
alters the large scale flow until the generated field satisfies Taylor’s constraint.
Then it is no longer necessary to balance the magnetic torque on the cylinder
against small viscous terms, and the amplitude of the field rises to reach a new
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Fig. 34. Sketch of the field as a function of dynamo number, illustrating the Malkus-Proctor scenario;
[28].

equilibrium as illustrated in figure 34. This behaviour is known as the Malkus-
Proctor scenario. This problem was solved numerically [52] for an axisymmetric
α2-dynamo, and the Malkus-Proctor scenario was found to occur.

5.4.3. Elsasser number
The new field level reached when Taylor’s constraint satisfied has the Elsasser
number Λ ∼ O(1), i.e.

Λ =
B2

µρΩη
∼ 1. (5.4.3)

This makes the Coriolis force 2Ω × u the same order as the Lorentz force, pro-
vided U ∼ η/L, i.e. Rm ∼ 1. Also, this is the field-strength level when the
magnetic field breaks the Proudman-Taylor theorem and the flow is no longer
columnar. The Proudman-Taylor theorem says that steady inviscid motion has u

independent of z. This breaks down when the Lorentz force is significant, which
happens at Elsasser number about unity.

5.5. Dynamo models and Taylor’s constraint

Numerical dynamo models have viscosity for numerical reasons, and the field is
always changing with time. Nevertheless at the lowest Ekman numbers attainable
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it appears that Taylor’s constraint is becoming satisfied. The ‘Taylorization’
∫
(j ×B)φ ds∫
|(j ×B)φ| ds

(5.5.1)

is computed, and it does appear to go to zero as E is lowered. The field strength
usually has Elsasser number order 1 in rapidly rotating dynamo models.

5.5.1. Equipartition in rapid rotation?
In non-rotating systems, we saw that magnetic and kinetic energy are expected
to be approximately equal. In rapidly rotating systems, B2/µ ∼ ρΩη. Rm =
UL/η and Ro = U/LΩ so B2/µ ∼ ρU2/(RoRm). In planetary cores, Ro ∼
10−7, Rm ∼ 103, so the magnetic energy is much greater than the kinetic
energy. There is therefore no equipartition; there is no fundamental law saying
that the magnetic and kinetic energies are comparable in electrically conduct-
ing fluids. However, it can be difficult to get Ro small in computations, so in
simulations there often is approximate equipartition.

5.5.2. Dissipation time
Christensen and Tilgner [10] argued that the time taken to dissipate field in a
turbulent medium is

τdiss ∼
∫

B2 dv∫
η(∇×B)2 dv

∼ L2

ηRm
(5.5.2)

where L is the integral length scale, the size of the container. This is an empir-
ical law, derived from numerical and laboratory experiments, but it is consistent
with the idea that the magnetic field is expelled by eddies into ropes of length
LRm−1/2 where it is dissipated by diffusion.

In rapidly rotating convection-driven dynamos, the energy input (the rate of
working of buoyancy, which is simply related to the heat flux passing through the
system) is mainly dissipated as ohmic dissipation, so

∫
η(∇×B)2 dv ∼ gαFµ

cp
(5.5.3)

where F is heat flux through the convecting system.
If we eliminate the current terms from (5.5.2) and (5.5.3) we get an expression

for the magnetic energy in terms of F the heat flux, which leads to an estimate of
the field. We obtain

B ∼ µ1/2L1/2

(
gαF

cp

)1/2
1

U1/2
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which is entirely independent of diffusivities, including η. It does, however, re-
quire knowledge of the typical velocity. This is then a different estimate from
the Elsasser number order one estimate which is dependent on η. Arguments for
the Elsasser number being of order one are based on the flow having moderate
Rm, and when this is the case the two estimates are not necessarily in conflict. It
is also possible to estimate U in terms of the heat flux, using convection theory
arguments. The resulting formula for B is then given in terms of the heat flux
through the system: see [29] for details.

5.6. Dynamo saturation in experiments

In dynamo experiments, it is hard to get large Rm. Even if the container con-
tains cubic metres of sodium and is stirred very vigorously„ although Re � 1,
typically Rm is only just above critical.

If we ignore the largeRe, we can look at a slightly supercritical Ponomarenko
dynamo to see at what level it saturates. The required flow is forced. Fauve &
Petrelis [16] show that weakly nonlinear theory predicts

B2 ∼ ρνηµ

L2
(Rm−Rmcrit)

a balance between Lorentz force and viscosity. This is a rather small field strength,
far from energy equipartition.

What happens at largeRe? We expect the viscosity to be unimportant, because
of the turbulent cascade. If we use a simple mixing length argument to replace
the laminar viscosity ν by an eddy viscosity UL, setting

U ∼ Rmcrit
η

L

gives

B2 ∼ ρη2µ

L2
Rmcrit(Rm−Rmcrit)

which gives reasonable agreement with experiments. This formula can also be
obtained from dimensional arguments. We only get energy equipartition at large
Rm.

6. Numerical methods for dynamos

The majority of numerical dynamo simulations are done with spectral methods.
Cartesian geometry and spherical geometry are the most commonly used. We
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illustrate first with Cartesian Geometry. Spectral methods are commonly used
for:
(i) Eigenvalue problems for kinematic dynamos
(ii) Forced nonlinear dynamos: here an arbitrary body force drives the flow
(iii) Convection driven dynamos

6.1. The pseudo-spectral method for a convection-driven plane layer dynamo

We take a horizontal plane layer of electrically conducting fluid bounded between
z = ±0.5d. Gravity and the rotation axis are usually in the ẑ direction, though
sometimes the rotation axis is tilted. The layer is heated from below, usually with
constant temperature on the boundaries.

We assume periodic boundary conditions in the x and y directions. Why do
we not also assume periodicity in z? There is trouble with the ‘elevator’ mode of
convection, independent of z, in which fluid elements simply rise and fall without
moving sideways. This the preferred mode of convection if there is periodicity in
z, and being two-dimensional, it does not give a dynamo (theorem 2).

We can assume there is electrically insulating material outside the fluid layer,
though a perfect conductor is another popular choice. The equation of motion,
the induction equation and the temperature equation give

∂u

∂t
+ (u · ∇)u + 2Ωẑ× u = −∇p+

1

ρ
j ×B + gαT ẑ + ν∇2u, (6.1.1)

∂B

∂t
= ∇× (u ×B) + η∇2B (6.1.2)

∂T

∂t
+ u · ∇T = κ∇2T +H, (6.1.3)

H being the heat sources if any.

∇ ·B = 0, ∇ · u = 0. (6.1.4a, 6.1.4b)

The temperature is fixed at ∆T at z = −0.5, 0 and z = 0.5. The boundaries are
assumed to be either no-slip or stress-free.

6.1.1. Dimensionless plane layer equations
The unit of time is taken as d2/η, length d, the unit of field (Ωµηρ)1/2, the unit
of temperature ∆T , and (6.1.1)-(6.1.3) become

Em

[
∂u

∂t
+ (u · ∇)u

]
+ 2ẑ× u = −∇p+ (∇×B) ×B + qRaT ẑ + E∇2u

(6.1.5)
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∂B

∂t
= ∇× (u ×B) + ∇2B (6.1.6)

∂T

∂t
+ u · ∇T = q∇2T (6.1.7)

E =
ν

Ωd2
, Em =

η

Ωd2
, Pm =

ν

η
, q =

κ

η
=
Pm

Pr
, Ra =

gα∆Td

Ωκ
(6.1.8)

6.1.2. Toroidal-Poloidal expansion
As outlined in section 1.7 we decompose the velocity and the magnetic field into
toroidal and poloidal parts

u = ∇× eẑ + ∇×∇× f ẑ + Ux(z, t)x̂ + Uy(z, t)ŷ, (6.1.9)

B = ∇× gẑ + ∇×∇× hẑ + bx(z, t)x̂ + by(z, t)ŷ, (6.1.10)

whereUx(z, t), Uy(z, t), bx(z, t), by(z, t) are the mean parts. We have five scalar
fields to solve for, e, f , g, h and T , as well as the mean parts. The divergences of
u and B are automatically zero. The required equations are formed by taking the
z-components of the curl and the curl curl of the momentum equation, and the z
-component of the induction equation and its curl, and the temperature equation
(6.1.8).

6.1.3. Toroidal Poloidal equations
We obtain

−Em
∂

∂t
∇2

He+ ∇2
H

∂f

∂z
+E∇2∇2

He = F1, (6.1.11)

Em
∂

∂t
∇2

H∇2f + ∇2
H

∂e

∂z
−E∇4∇2

Hf = F2 − qRa∇2
Hθ, (6.1.12)

∇2
H

∂h

∂t
−∇2∇2

Hh = −G1, ∇2
H

∂g

∂t
−∇2∇2

Hg = −G2, (6.1.13)

F1 = ẑ · ∇ × (j ×B), F2 = ẑ · ∇ ×∇× (j× B), (6.1.14)

G1 = ẑ · ∇ × (u×B), G2 = ẑ · ∇ ×∇× (u ×B). (6.1.15)

Em
∂

∂t
Ux − Uy = E

∂2Ux

∂z2
+ x̂· < j×B >, (6.1.16)

∂bx
∂t

=
∂2bx
∂z2

+ x̂· < ∇× (u×B) >, , (6.1.17)

and similarly for Uy and by. ∇2
H is the horizontal part of ∇2.
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6.1.4. Fourier decomposition
The scalar functions are expanded as

e =

Nx∑

l=−Nx+1

Ny∑

m=−Ny+1

Nz+2∑

n=1

elmn exp i(lαx+mβy)Tn−1(2z) (6.1.18)

and similarly for the other five variables, except that the f expansion runs up to
Nz + 4. The Tn are the Chebyshev polynomials. Chebyshev polynomials are
preferred for no-slip boundaries. We could use sinnπ(z + 0.5) for stress-free
boundaries. Note that the elmn coefficients are complex functions of time, with
el,m,n = e∗−l,−m,n since e is real. α = β = 2π gives the special case of a cubical
periodic box.

6.1.5. Boundary conditions
Mechanical boundary conditions

No-slip conditions are

e = f =
∂f

∂z
= Ux = Uy = 0 on z = ±1

2
. (6.1.19)

e = 0 and ∂f/∂z = 0 ensure that ux = uy = 0, and f = 0 implies ∇2
Hf =

uz = 0.

Magnetic boundary conditions

jz = 0 implies ∇2
Hg = 0 outside fluid. So letting a2 = α2l2 + β2m2, then

−a2g = 0 so g = 0 in the insulator.
The l = m = 0 modes are replaced by the mean fields bx and by. Since

jx = jy = 0 outside layer, dbx/dz = dby/dz = 0, so bx and by are constant in
space fields outside the layer. If they are non-zero, this corresponds to a uniform
externally imposed field. If we want self-excited dynamo action, we do not want
to impose an external field, so we take bx = by = 0 at the boundaries.

Since j = 0 in insulators, ẑ ·∇× j = 0. We have already shown g = 0 outside
the layer, so ẑ · curl4hẑ = 0. From the vector identity curl curl = grad div - ∇2,
we deduce ẑ · curl2Aẑ = −∇2

hA, so −a2∇2h = 0, so ∇2h = 0 outside the
layer.

The solution of ∇2h = 0 outside the layer for each Fourier mode is

h = exp i(lαx+mβy) exp−az, z > 0.5, (6.1.20)

h = exp i(lαx+mβy) exp +az, z < −0.5. (6.1.21)
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To make Bz continuous at the boundaries, ∇2
Hh is continuous, so each compo-

nent of h is continuous. Since Bx and By are continuous, so is jz, so jz = 0 at
z = ±0.5 just inside the fluid, so ∇2

Hg = 0 so g = 0 at z = ±0.5.
Since g = 0 at boundaries, continuity ofBx = ∂2h/∂x∂z andBy = ∂2h/∂y∂z

implies continuity of ∂h/∂z as well as continuity of h. Outside we have the exact
solution, so we deduce that

bx = 0, by = 0, glm = 0,
∂hlm

∂z
= ∓ahlm, on z = ±1

2
(6.1.22)

are the required magnetic boundary conditions.
We see that the toroidal and poloidal expansions with Fourier decomposition

gives very convenient boundary conditions, and this is a major advantage of the
spectral method. The same ideas works in spherical geometry, and very simple
boundary conditions result. In other geometries things are not so simple. If
we take for example a finite cube rather than a periodic layer, there is no simple
solution for the external field. We must either solve numerically∇2h = 0 outside
the box, or write the boundary conditions in terms of surface integrals using
Green’s functions.

6.1.6. Collocation points
The remaining equations for the coefficients elmn and those for the other vari-
ables are derived by requiring that the equations (6.1.11) - (6.1.17) are solved
exactly at collocation points. These collocation points in z are chosen as the Nz

zeroes of TNz(2z). This bunches the points near the boundaries, where extra
resolution is needed, and it allows the use of the Fast Fourier Transform. Since

Tn(x) = cosnθ, x = cos θ (6.1.23)

the collocation points are uniformly spaced in θ. So evaluation of the expansions
at the collocation points, and the inverse transform, are only O(Nz log2Nz) op-
erations.

We also need collocation points in x and y. These are uniformly spaced.
Sometimes ‘de-aliasing’ used, that is we take 3/2 as many mesh-points in x and
y as needed, to improve accuracy; see [2] for details.

6.1.7. Pseudo-spectral method
The essence of pseudo-spectral method is that all differentiating is done in spec-
tral space, and all multiplication is done in physical space. Linear terms and
nonlinear terms are treated differently. The linear parts use an implicit Crank-
Nicolson scheme, to avoid the very small trimester’s needed for explicit schemes
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for the diffusion equation. So

f t+1

lmnTn−1(2zi) − f t
lmnTn−1(2zi)

δt
=

f t+1

lmn(T ′′
n−1(2zi) − a2Tn−1(2zi)) + f t

lmn(T ′′
n−1(2zi) − a2Tn−1(2zi))

2
+ · · · .
(6.1.24)

For each l, m, this is 1 ≤ i ≤ Nz equations for the 1 ≤ n ≤ Nz unknowns for
each of the five scalar fields.

We can invert the relevant matrices at the start of the calculation to get

f t+1
lmn = Mlmnn′f t

lmn′ +Nlmn (6.1.25)

where N denotes the nonlinear terms. Since the nonlinear terms couple different
l and m together, we evaluate quantities such as ẑ · ∇ × (u × B) by evaluat-
ing components of u and B on the mesh, multiply together and FFT the result,
including the Chebyshev transforms. Any curls are then done in Fourier space.

The nonlinear terms are evaluated at time t, and previous values t − 1 are
stored. A scheme such as Adams-Bashforth can be used, but there are advantages
in using a predictor-corrector scheme. In these, the nonlinear terms are found at
time t, then a predictor value of f t+1 is found. The nonlinear terms are evaluated
again using these predicted values, and the result is averaged with the original
nonlinear terms.

The advantage of the predictor-corrector method is that it allows time-step
adjustment. If the difference between the predictor and corrector is unacceptably
large, we reduce the timestep, but if it is tiny we can increase the timestep. Many
different schemes have been used successfully. For example, the Coriolis and
buoyancy terms are linear, but they couple different scalars together. Often it is
more convenient to include them with the nonlinear terms, to reduce the size of
matrices we have to invert at the start of the calculation. The slowest part of the
calculation is usually evaluating the Fourier transforms. It is therefore crucial to
do this efficiently with high quality FFT routines.

All dynamo calculations are demanding on computational resources. Multi-
processor clusters are therefore commonly used. It is then necessary to parallelize
the code. This can be done by keeping all the y, z transforms on one processor,
and storing each x-point on an individual processor. This does however require
some all-to-all communication, so clusters with fast interconnects are essential
for spectral methods. Gigabit ethernet doesn’t work so well. Using fast intercon-
nects, pseudo-spectral codes can scale almost perfectly up to 1024 processors,
that is the time taken on N processors is proportional to 1/N .
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6.2. Methods for kinematic dynamos

Similar methods can be used for solving kinematic dynamo problems. Typically,
the problem is periodic in all 3 directions, so Fourier expansion in all three direc-
tions is used. If the velocity only involves periodic functions with a small number
of Fourier components, e.g. for dynamos of G.O Roberts type, then the coupling
between magnetic field components is simple: a flow exp iαx only couples a
field exp imαx to m+ 1 and m− 1 and its conjugates.

The resulting matrices are therefore relatively sparse. For steady flows, eigen-
values can be found using inverse iteration or a related method such as Arnoldi
iteration. Inverse iteration involves iteratively solving

(A− σ0I)xn+1 = xn.

This ends up with xn tending to the eigenvector with eigenvalue closest to σ0.
For time-dependent velocities, a time-stepping method can be used to find

the fastest growing mode. There are huge computational savings if B has only
exp ikz dependence, which is why two-dimensional time-dependent velocity
fields are very popular. The numerical problem is then just 2D, and high res-
olution can be achieved.

6.3. Hyperdiffusion

For a given set of parameters, how do we decide how many modes to expand in,
i.e. how to choose the truncation levels Nx, Ny and Nz? We can look at the
energy spectrum. Modes with l, m and n close to Nx, Ny and Nz should have
amplitudes at least ∼ 10−3 of the amplitudes of the low order modes. Ampli-
tudes drop off exponentially fast when the solution is properly converged, so this
another useful test to check there is adequate resolution.

Fully resolved solutions are essential. If the truncation levels are set too low,
all sorts of spurious behaviour can occur. Many of the early numerical dynamos
were subsequently shown not to be dynamos at all when the truncation levels
were increased. However, large Nx, Ny and Nz slows the code down: are there
ways of reducing the number of modes without damaging the solution?

A frequently used device is hyperdiffusion, which replaces diffusion terms
such as ∇2f with a formula such as (∇2 − λ2∇4)f . Here λ is small, so the
higher order derivatives only switch in for high order modes. Hyperdiffusion can
be used on velocity, temperature or magnetic field. Because m4α4 gets larger
much faster than m2α2 as m → ∞, the higher order terms get damped out
quickly, making the energy spectrum look much nicer. In practice, hyperdiffusive
schemes ∇2 → ∇2 − λ2∇4

H are used, because this doesn’t raise the order of
the system in the z-direction. If you do raise the order in z, extra boundary



Dynamo Theory 75

conditions required and it is not obvious what they should be. The same issue
arises in spherical geometry, so that in spherical codes if hyperdiffusion is used
it is applied only in the θ and φ directions. Using ∇4

H then introduces artificial
anisotropy, diffusion in x and y being larger than in z. Potentially this can change
the nature of the solution. In spherical geometry, hperdiffusion seems to enhance
the toroidal field compared with the poloidal field, so hyperdiffusive dynamos are
rather different to non-hyperdiffusive dynamos. Also, dynamo action can depend
on small-scale behaviour, which may be wiped out by the hyperdiffusion.

6.4. LES models

Since it is very expensive to have high resolution, Large Eddy Simulation meth-
ods are being developed. The idea is that we model the very small scale behaviour
by extra terms in the equations rather than by including all the modes that rep-
resent them explicitly as in DNS, Direct Numerical Simulation. Currently there
are many models under consideration, e.g. the LANS-α model which has been
applied to dynamo theory. It is too early to say how successful they will be.

6.4.1. Similarity model
One of the more promising LES models is the similarity model e.g. [7] and refer-
ences therein. Here the equations are filtered at a length-scale ∆, with a Gaussian
filter the most popular choice,

u(x, t) =

∫
G∆(x − r)u(r, t)dr G∆(x) =

√
6

π

1

∆
exp(−6x2

∆2
). (6.4.1)

Then terms such as

τB = uB− uB − (Bu−Bu) (6.4.2)

appear in the induction equation, and similar terms appear in the momentum
equation and the heat equation. How do we represent these terms?

The idea of the similarity method is to introduce two filtering operations, u at
scale ∆ and ũ at λ∆, λ > 1. We write

τB
sim = Cind(ũB− ũ B̃− (B̃ u− B̃ ũ)) ≈ uB−uB− (Bu−Bu) (6.4.3)

with similar expressions for the small-scale heat flux, Lorentz and Reynolds
stresses. Since we do the simulation on the u variables, we can numerically

evaluate terms like ũB. We then assume similarity, i.e. the small-scale terms
are a constant multiple of the computed term. This assumes that the small-scale
behaviour at the highest order modes in the simulation, between scales u and ũ,
behaves similarly to the behaviour of the scales we can’t compute below the scale
u.
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6.4.2. Dynamical Similarity model

The similarity model can give sensible results, even with an ‘ad hoc’ choice of
similarity constant Cind. The idea has been developed [7] by taking a third fil-
tering scale, which allows the small-scale stresses to be found at two different
length-scales. We can then get an estimate for Cind at each timestep by the simi-
larity argument. This is an attractive philosophy, but it can get a bit expensive, as
a great many filtering operations have to be done at each timestep. Also, it won’t
work if there is ‘new physics’ operating at a length scale below our smallest filter
level.

6.5. Finite Volume methods

The spectral method is used by most researchers working on numerical dynamos,
but finite volume method codes have also been developed. The domain is divided
into discrete volumes. Often fully implicit schemes are used to advance the vari-
ables in each volume. Sometimes just one variable value is used in each cell,
more often a low order polynomial representation is used in each cell as in spline
methods.

Differentiation is less accurate in finite volume methods, so it is avoided as
much as possible. This means that the primitive equations are used rather than
the toroidal-poloidal decomposition. The variables are then u, B, T and p, eight
scalar fields. It is necessary to correct the magnetic field at each step to ensure
∇ · B = 0, similarly for u. The pressure is computed by taking the divergence
of the momentum equation and solving the resulting Poisson equation. The great
advantage of finite volume methods is there are only nearest neighbour inter-
actions, so they can be parallelized in a natural way. This means they can be
used on distributed memory clusters without fast interconnects. Also we can use
fully implicit methods, solving the equations for ut+1 etc. by iterating at each
timestep.

The disadvantage is that solving the pressure Poisson equation and the other
equations typically takes many iterations at each timestep. Another problem with
finite volume methods is the magnetic boundary conditions. Matching on to a de-
caying solution outside the conducting region is easy in the spectral formulation,
but is much less easy with local methods. Often finite volume papers use per-
fectly conducting boundaries, which are local. Iskakov and Dormy 2005 [31]
give a Green’s function method for applying boundary conditions for finite vol-
ume/difference methods. Nevertheless, finite volume methods are beginning to
compete with spectral methods, particularly at extreme parameter values.
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6.6. Spherical Geometry: spectral methods

Dynamos in spherical shells are also often treated by a toroidal and poloidal
expansion in terms of the radial vector as in (1.7.4), and no additional mean field
component is required. We expand the poloidal and toroidal scalars into spherical
harmonics,

Ylm = P
|m|
l cos θ exp(imφ). (6.6.1)

The field outside matches onto a decaying field r−l−1Ylm, again giving simple
boundary conditions. The radial dependence can be treated either by a Chebyshev
expansion in polynomials in r, or by finite differences (often 4th order). These
schemes are usually parallelised by putting each radial grid-point on a node (or
several points per node).

The main problem is the lack of an efficient FFT for the associated Legendre
functions. FFT’s do exist, but they only compete with the ‘slow’ method for
N > 256 or even 512. So the spherical spectral codes are significantly slower
than plane layer codes. There is a particular problem for large radius ratio cases:
i.e. when rinner/router > 0.75. Then we need large resolution in latitude, so a
large number of spherical harmonics required, and the lack of an effective FFT
in the θ direction is really limiting.

6.6.1. Spherical Geometry: finite volume/element methods

Fig. 35. Finite element grid used by K. Zhang for spherical convection problems.

Additional problems are found in finite volume and finite difference methods
because of pole/axis singularities. If the grid is defined on equal latitude and lon-
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gitude intervals, then points crowd together near the poles, where high resolution
is not required. This is not only wasteful, it can lead to numerical problems, be-
cause very small timesteps are required if the condition that fluid is not advected
further than one grid spacing in one timestep is to be respected. Codes generally
go unstable if this condition is not met. However, spectral methods are less ef-
ficient also, so potentially these methods could compete in spherical geometry.
There are some interesting ways of distributing the grid points or finite elements
to avoid the pole singularity problem, for example the grid shown in figure 35.

7. Convection driven plane layer dynamos

7.1. Childress-Soward dynamo

An infinite horizontal plane layer of conducting fluid bounded between z = ±0.5
is considered, so this is the Bénard layer configuration. Gravity and the rotation
axis are in the ẑ direction, and the layer is heated from below.

In the linear approximation, using equations (6.1.11), (6.1.12) and (6.1.7),
rotating convection rolls in a plane layer satisfy

∂f

∂z
+E∇2e = 0, (7.1.1)

−∂e
∂z

+E∇4f = qRaθ, (7.1.2)

uz + q∇2θ = 0, uz = −∇2
Hf (7.1.3)

since stationary modes with frequency ω = 0 are preferred in this geometry at
Prandtl number 1 or greater. We look for a solution

uz = cosπz exp ik · x, k = (kx, ky, 0), k2 = k2
x + k2

y. (7.1.4)

This corresponds to a single convection roll, but in general we can add together
any number of such rolls in our linear approximation. For a single roll,

f = 1/k2 cosπz exp ik · x, e = −π/Ek2(π2 + k2) sinπz exp ik · x,
(7.1.5, 6)

θ = [1/q(π2 + k2)] cosπz exp ik · x. (7.1.7)

Ra =
E2(π2 + k2)3 + π2

Ek2
, (7.1.8)

and minimising Ra over k and taking the limit E → 0 gives

k ∼ (π/E
√

2)1/3. (7.1.9)
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Since E is small, k is large, so these are tall thin rolls. The helicity of the roll is

H = u · ∇ × u =
π

2Ek2
sin 2πz. (7.1.10)

Note that it is nonzero. Rotation is needed because the helicity vanishes at large
E, the non-rotating limit. Also note that the helicity has opposite sign about the
midplane.

Childress and Soward [8] investigated whether this flow with non-zero helicity
can generate a magnetic field, assuming any field generated is too weak to affect
the flow. We use first order smoothing to find B′ from a horizontal mean field B,
so we solve

−∇2B′ = B · ∇u, E = u×B′. (7.1.11)

If our roll is aligned with y-axis, so ky = 0 we get

Ex = −πBx sin 2πz

2Ek4
, Ey =

πBx sin 2πz

k2
(7.1.12)

to leading order. We insert this into

∂B

∂t
= ∇× E + ∇2B (7.1.13)

to see whether the mean field grows or decays. This single roll doesn’t give a
dynamo, as we might expect from the planar antidynamo theorem, theorem 2 of
section 1.8. However, we can evaluate E for two rolls inclined to each other,
and for E we just get the sum of the contributions from each roll. We then find
growing solutions of (7.1.13), so we have shown that in some regimes, small-
scale convection can lead to a growing large scale field.

7.1.1. Weak field - Strong field branches
Adding a uniform horizontal magnetic field to a rotating convecting layer can re-
duce the critical Rayleigh number, because the constraint imposed by the Proudman-
Taylor constraint is relaxed by the Lorentz force. So the dynamo is expected to
be subcritical, that is in the presence of a magnetic field, convection and therefore
a dynamo can exist when nonmagnetic convection is stable.

The weak field branch found by Childress and Soward exists close to critical,
and its amplitude is controlled by viscosity: in the strong field branch the mag-
netic field amplitude is controlled controlled by the Lorentz-Coriolis balance.

7.2. Numerical simulations

7.2.1. Meneguzzi & Pouquet results
Meneguzzi & Pouquet [36] investigated nonrotating and mildly rotating convec-
tion driven dynamos. The Rossby number was about 1, and they had stress-free,
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perfectly conducting boundaries. Ra ∼ 100Racrit. q = Pm/Pr ∼ 10. They
found dynamo action only for q = κ/η > 5, corresponding to Rm > Re. They
only considered aspect ratio order 1, i.e. the period of the solution was similar to
the layer depth. This means there are only a few rolls in the periodic box. The
magnetic field was smaller scale than the velocity field, but there was some mean
field. The magnetic energy was typically 0.05 times the kinetic energy.

7.2.2. St Pierre’s dynamo
St Pierre [53] had stress-free, perfectly conducting boundaries. He considered
the rapidly rotating case, with E ∼ 10−5. The Rayleigh number was a few times
critical. He chose Pr=1, Pm=2, and an aspect ratio about 1. He found dynamo
action, but not much mean field. He expanded the field and the flow as

∼
Nx∑

l=−Nx+1

Ny∑

m=−Ny+1

Nz+2∑

n=1

elmn exp i(lαx+mβy) sinnπz (7.2.1)

and the coefficients with l = m = 0 were small. The magnetic energy was much
larger than the kinetic energy, and the Elsasser number was of order one, so it
was a strong field dynamo. He looked for evidence of subcriticality, but didn’t
really find it.

7.2.3. Jones & Roberts results

z

y

Fig. 36. Snapshot of flow in a rotating plane layer dynamo. Left ux in y-z plane. Right uz in y-z
plane. Snapshot across the roll structure; from [30]

Jones & Roberts [30] also looked at the rapidly rotating problem with E in the
range 10−3 ≥ E ≥ 2 × 10−4. No-slip, insulating boundaries were used. This
work used the large Pr limit, so the inertial terms are ignored, as the motivation
was the geodynamo. They considered q = 1 and q = 5, with an aspect ratio 1,
i.e. a cubical, periodic box. Ra was set about 10 times critical.
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If we integrate the x-component of the induction equation over a y-z square,

∂

∂t

∫

S

(x̂ · B)dydz = −
∫

C

(∇×B) · dl (7.2.2)

because by Stokes’ theorem the induction term is zero. With perfectly conducting
boundaries, the RHS is zero, too, so the total mean x-flux is zero. Similarly
with y. It is possible to have mean field, with perfectly conducting boundary
conditions but the z average must be zero.

z

y

Fig. 37. Snapshot of the magnetic field in a rotating plane layer dynamo. Left Bx in y-z plane. Right
Bz in y-z plane. Snapshot across the roll structure; from [30]

They found dynamo action, with Elsasser number order 1, and a much larger
mean field than St Pierre found. The field was quite symmetric about the equator
(quadrupole field). The convection is chaotic and time-dependent, but there is a
broad spatial structure. A snapshot of the flow is given in figure 36. The flow
resembled a 2D roll whose horizontal axis rotates around the z axis, repeated
periodically. In figure 36, the right panel shows the fluid is rising in the middle
of the box and falling at the edges. The Coriolis force then drives a flow parallel
to the roll structure as shown in the left panel. The Kuppers-Lortz instability
predicts that the roll axis will rotate about the z-axis at Rayleigh number just
above critical, and this rotation persists to quite high Ra. The mean magnetic
field was mainly lined up with rotation axis, so that rotated too. In figure 37, the
x and z components of the magnetic field are shown, for the same snapshot as in
figure 36.

The processes generating the field can be described using a cartoon based on
the snapshots of the flow and field, shown in figure 38. We start in (a) with
convection rolls with their axis aligned with the x-axis, and suppose there is an
initial field in the y-direction. The rolls stretch this y-field in the z-direction,
creating new Bz field. This Bz field is oriented oppositely in the clockwise and
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Fig. 38. Cartoon of the field generation process in the Jones-Roberts dynamo. (a) Initial y-field
stretched by roll to give z-field in (b). Then rotate roll so this x-field becomes new y field; from [30]

anticlockwise neighbouring rolls as in (b) in figure 38. Now the x-velocity shown
in (a) stretches out this Bz, tilting it in the x-direction. The shear ∂ux/∂z is
oppositely directed in the clockwise and anticlockwise rolls, so since the Bz also
alternates in adjacent rolls, theBx created has the same sign everywhere as in (c).
Actually, if the initial field in the y-direction is just stretched and sheared without
diffusion, there must be regions where the Bx field has the opposite sign, and
there are dark regions in (c), but these are located near the insulating boundary
and so diffuse away. So the net effect is to generate mean x-field from mean
y-field. If the roll stayed fixed, the y-field would eventually disappear, consistent
with theorem (2) that planar flows cannot be dynamos. However, the Kuppers-
Lortz instability turns the roll round, so the x-field becomes equivalent to the
y-field, and in the next phase of the cycle mean y-field is created from the x-
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field. As expected the mean field continually rotates about the z-axis, following
the roll-axis.

7.2.4. Rotvig & Jones results
Rotvig & Jones, [49] used the same model same as above, except they had the
rotation vector tilted at 45◦ to the gravity in the z-direction, so it is now Ω =
Ω(0,− sin θ, cos θ). This corresponds to a localised region in spherical geometry
in the midlatitudes. The aim was to stop the Kuppers-Lortz rotation of the rolls,
because in the geodynamo the constraints of the geometry mean that rotating rolls
as in the Jones-Roberts dynamo are unlikely to occur. The Ekman number was
set very low at E ∼ 10−5. The Rayleigh number was kept at a few times critical,
so Ra/Racrit was fixed, and they varied E to look at how quantities such as the
flow speed and the field scaled with E.

The Elsasser number found was well above unity, so there is a strong field
dynamo. A mean field exists, but is now significantly less than the spatially
fluctuating field, so this is a significant difference from the case when rotation
and gravity are parallel. In figure 39 a snapshot of ux andBz is shown in the y−z

z

y

Fig. 39. Left ux in y-z plane. Right Bz in y-z plane; from [49]

plane. Note the Proudman-Taylor effect: the velocity has much less variation in
the direction of the rotation, which is at 45◦ to the axes, than across the rotation
vector. The same is true for the other components of velocity. The magnetic
field is on a smaller scale than the velocity field, probably because q = κ/η = 4
in these runs. Good evidence was found that Taylor’s constraint is becoming
satisfied at low E. In this geometry, we define h = ẑ · ∇ × (j × B), and then
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Taylor’s constraint is < h >ra= 0, for all x and y, where <>ra means average
along the rotation axis. So

Tay =
〈|〈h〉r.a.|2〉xy

〈〈|h|2〉r.a.〉xy

measures how close we are to satisfying the constraint. The results showed that
Tay < 0.01 at the smallest values of E attainable. This is clear evidence that
low E dynamos do satisfy Taylor’s constraint, even though the velocity field and
the magnetic field are strongly time-dependent, and spatially quite complex.

They also examined the force balance between Coriolis, Lorentz, pressure,
buoyancy and viscous forces. The viscous force was found to be negligible except
in very thin Ekman layers at the boundaries. The other forces were roughly in
balance, though the Lorentz force is rather patchy, being stronger than the other
forces in localised patches, but weaker in the bulk of the fluid. This supports the
idea that field is generated in localised stretching events, and the field is limited
by the Lorentz force stopping the stretching.

(a)

(b)

(c) (d)

(e) ( f)

Fig. 40. Left: Convection with no magnetic field, (a) vertical velocity, uz, (b) temperature profile
at z = 0. Right: velocity field at upper boundary at different times, according to magnetic field
strength. E = 5 × 10−7, Pr = q = 1. (c) non-magnetic, (d) time of strong field, (e) time of
moderate field, (f) time of weak field; from [54].
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7.2.5. Stellmach & Hansen model
Stellmach and Hansen [54] investigated a model very similar to the St Pierre
model, but at lower values of E. They used stress-free, perfectly conducting
boundaries as did St Pierre. Their numerical scheme was a fully implicit finite
volume method rather than the spectral method used by all the other researchers
discussed in this section. The rotation axis was taken parallel to gravity. Very
low Ekman number was achieved, E = 5 × 10−6. They looked at aspect ratio
unity, i.e. a cubical periodic box. Note that at this very small E, a lot of tall thin
cells fit in to a cubical box, see figure 40 (a), so unlike the Jones-Roberts model,
there are many cells within one period. They fixed the Rayleigh number at only
a few times critical, obtaining a magnetic Reynolds number Rm ∼ 100. Some
runs were performed with high Pr, but most runs had Pr = q = 1. A notable

Fig. 41. Left: magnetic power spectrum over Fourier modes l and m. E = 5×10−6. Note the strong
peak at l = m = 0, the mean field.Right: Plot of horizontally averaged mean field as a function of
z. Note the zero average in accord with perfect conductor boundaries. Also note spiralling structure
as in G.O. Roberts spatially periodic flow dynamo; from [54]

.

feature of their results is that the magnetic field appears to be influencing the con-
vection strongly. In figure 40, we see that with no magnetic field there are many
small scale rolls. However, when the field is created, the roll size is significantly
increased. As the field strength waxes and wanes during the dynamo run, the size
of the columns varies in step with the field. Thus in figure 40 (d), when the field
is strong, the velocity is large scale, but in figure 40 (f), at a time when the field
is weak, the columns are significantly thinner. This effect is predicted by mag-
netoconvection, but there is less evidence of it in spherical geometry, except in
the polar regions. In the Stellmach-Hansen model, the coherent small scale rolls
generate a substantial mean field, as shown in figure 41. The direction of the



86 C. A. Jones

mean field also rotates as z increases, similar to the behaviour predicted by G.O.
Roberts and the Childress-Soward analysis. They also found some evidence (not
conclusive) of subcritical behaviour. These simulations are probably the closest
approach to the original Childress-Soward scenario that have yet been achieved
numerically.

7.2.6. Cattaneo & Hughes 2006 model

Fig. 42. E = 13 × 10−3 . Temperature fluctuations near upper boundary. (a) - (d) series with
increasing Ra. (a) is Ra = 6.2 × 104, near critical. (d) has Ra = 5 × 105 . Note transition from
ordered to disordered pattern; from [6]

Cattaneo and Hughes [6] also used perfectly conducting, stress-free boundaries
as in the Stellmach-Hansen model. However, they focussed on large aspect ratio,
using only slowly rotating or non-rotating cases. Because of the large aspect
ratio, there are many cells in the box at all times, but no tall thin cells. This
allowed them to explore the issue of whether a mean field can develop when all
the individual convection cells have no phase coherence.

An optimised spectral method used, and the runs mostly had Pr = 1 and
Pm = 5. The motivation was more for astrophysical convection rather than
Earth’s core convection, as in the Sun the Rossby number is of order unity. The
focus was on whether there is a mean field and whether it can be described by an
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alpha effect. Somewhat remarkably, they found that the ratio of mean field mag-

Fig. 43. From left to right: temperature near boundary of nonrotating case: temperature in rotating
case: magnetic field nonrotating case: magnetic field rotating case. Note the decrease in cell size
with rotation. Also note the lack of any mean field in any case! from [6]

netic energy to total magnetic energy is typically less than 0.001. This means that
the fluctuating field completely dominates the mean field. This happens despite
there being a significant amount of helicity in the convection, which does have
a large scale component. This result is the opposite of the first order smooth-
ing case, where fluctuating field is assumed small compared to mean field. The
problem is that the small scale magnetic Reynolds number is not that small in
these convection driven dynamos, so that the helicity twists any initial field not
through a small angle but through a random large angle, preventing any coherent
alpha-effect developing. They found the same result, no significant mean field,
even in the mildly rotating case. It is interesting to speculate whether this would
remain true in the rapidly rotating case.

Summary

• Everyone found dynamo action over a wide range of parameters. This is
surprising as ‘most’ steady flows are not kinematic dynamos. Time-dependent
chaotic flows generally seem to be dynamos at high enoughRm, consistent with
fast dynamo stretching ideas.

• Most researchers didn’t find dynamos at low q = Pm/Pr. This is a numerical
problem, because to get a dynamo at all you must have a reasonably large Rm
and at low Pm that means Re is very large. This means there are very small
scales in flow. Very recent work suggests there is dynamo action at low Pm: it
is just very hard to compute.

• An emerging issue is whether the dynamo generates mean field or not. Most
workers only got a small mean field, but much small scale dynamo action giving
small scale fields.

• Jones & Roberts found a large mean field, but there was a large scale coherent
flow in their problem.
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• With many cells in flow, Cattaneo & Hughes found negligible mean field unlike
Stellmach & Hansen. Possibly the difference is in the largerRa used by Cattaneo
& Hughes. It is also possible that the tall thin cells in the Stellmach-Hansen
model give local Rm small, thus validating first order smoothing, and leading to
a mean field larger than the small scale field.

• First order smoothing is clearly not a valid assumption for dynamos of the
Cattaneo & Hughes type, when Rm over an individual cell is large. Then each
cell acts as its own dynamo, and different regions never get into phase. The
development of phase coherence of the magnetic field, that is how each small
scale element of generated field builds up to give a large-scale coherent field, is
clearly something that needs exploring!
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