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THE STABILITY OF A HOMOPOLAR DYNAMO

B Y SIR EDWARD BULLARD

Received 7 April 1955

ABSTRACT. The stability of the self-exciting disk dynamo is considered. If there is no
electrical load in parallel with the field coil and no friction at the axle, the dynamo can perform
oscillations of constant amplitude about its state of steady motion. Viscous forces on the axle
cause the dynamo to settle to a steady motion. A parallel load may have an effect similar to that
of viscous forces or may cause the oscillations to grow without limit. With both a parallel load
and viscous forces the amplitude of the oscillations is bounded.

Possible analogies between these results and the motion of a body of electrically conducting
fluid in a magnetic field are discussed. The main applications are astronomical and geophysical.

1. Introduction. A homopolar dynamo is one in which a conductor moves steadily
in a constant magnetic field and produces a direct current without the use of a com-
mutator. The simplest example is a disk that rotates about its axis in a constant field
parallel to the axis. Current can be drawn from two brushes, one of which rubs on the
periphery of the disk and the other on the axle about which the disk rotates. If the
current from the brushes is passed through a coil around the disk, as in Fig. 1, and
itself produces the magnetic field, the dynamo is said to be 'self-exciting'. If a self-
exciting dynamo rotates sufficiently rapidly, the state with no current is unstable and
the smallest initial magnetic field or current grows.

Fig. 1. Disk dynamo.

Homopolar dynamos are of little technical importance, since their e.m.f. is small
and they only produce useful amounts of power when the current through the brushes
is inconveniently large. There has, however, been a revival of interest in such systems
recently, since they are analogous to the dynamos that have been supposed to be the
cause of the magnetic fields of the earth, the sun and the stars. The theory of these
'homogeneous' dynamos is complicated, and even their properties in the steady state
are imperfectly understood. Nothing has been published on their stability or their
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The stability of a homopolar dynamo 745

motion when disturbed, and an investigation of these questions would be of con-
siderable difficulty. It seems likely that the behaviour of the disk dynamo may throw
light on that of the more complicated systems; it has therefore been studied in some
detail. In some circumstances it can have an unstable state of steady motion about
which an infinitesimal disturbance will cause it to perform finite oscillations giving
short bursts of current separated by much longer periods during which the current is
small. The oscillations may settle to a steady amplitude or grow without limit in spite
of ohmic dissipation.

In § 2 the axle is supposed to be devoid of friction and the dynamo to have no external
electrical load. In §3 friction is added and in §4 a load. In §5 the application of the
results to homogeneous dynamos and to geophysical and astronomical problems is
considered.

The phenomena described in this paper cannot be conveniently investigated in the
laboratory, since the angular velocities required are excessive for systems of practicable
dimensions. They could be reduced by using iron in the magnetic circuit, as is done in
engineering dynamos, but this introduces hysteresis and other factors which would
complicate the behaviour. I t would also be difficult to make friction negligible and to
provide a driving couple independent of speed of rotation.

2. Frictionless dynamo. Suppose the magnetic field, H, normal to the disk to be
symmetrical about the axis of rotation. The induced e.m.f. is then radial and the
potential difference between the brushes, V, is

Jb
Hrdr,

where w is the angular velocity of the disk, b is the radius of the axle and a that of
the disk.*

If L is the self-inductance and R the resistance of the circuit, the current is given by

Ll+RI = V, (1)

where the dot implies differentiation with respect to the time. The electromagnetic

couple opposing the rotation of the disk is I Hrdr, and its equation of motion isis

Hrdr, (2)
b

where C is the moment of inertia of the disk and G is the couple driving it. If the
magnetic field is supplied from a steady external source, and not from the coil, the
integral is a constant, say F. Elimination of w then gives

LCl + RCl+FU = FG.

The system therefore performs damped oscillations and settles to a steady state with
a constant current GjF and an angular velocity RGjF2. The time for a disturbance to

* Throughout this paper induction by that part of the field normal to the disk due to the
current passing through the disk is ignored. This is not justified for the system shown in Fig. 1,
but would be if current were drawn from a large number of brushes spaced round the periphery
of the disk or if the disk consisted of closely spaced radial spokes insulated from each other.
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746 SIR EDWABD BULLARD

fall to 1/e of its initial value is 2LJR and, if the damping is small, the period of the
oscillations is 2TT{LC)*\F .

If the dynamo is self-exciting, H and F are no longer constants, but are proportional
to / . If the mutual inductance between the coil and the periphery of the disk is 2nM,

F = [aHrdr = MI = J(«2 - &2) Hm,
Jb

(3)

where S^ is the mean field perpendicular to the disk and M is taken as positive when
a positive w produces an e.m.f. tending to cause a current that increases H. (1) then
becomes Ti _x , , T ,..

Ll+RI = Mcol, (4)
where L and R are now the inductance and resistance of the circuit consisting of the
disk, brushes and coil. If the angular velocity is fixed, the current is given by

where 70 is the current when t is zero. If o» is less than RjM, the current decays to zero
and the dynamo is not self-exciting; if w is greater than R\M, the current increases
without limit, no matter how small the initial current and field may be.

The dynamo driven at constant speed is of little interest for the study of stability,
since only the current can change. If a constant driving couple is considered instead
of a constant speed, a greater variety of behaviour is possible. The equation of motion
i 8 t h e n C O (5)
If the disk is started with a specified angular velocity w0 and a specified current Io at
zero time, the subsequent motion and current are given by the solution of (4) and (5)
with these initial conditions.

There is a steady state with angular velocity wc and current Ic given by

OJC = R/M, IC = J(GIM). (6)

The angular velocity (oc can support any value of the current, and therefore any field,
if the couple satisfying (6) is applied. The field and current may be in either direction,
but there is only one direction of rotation and of the couple that will give a steady state.

If the initial values of <u and / are not those given by (6), the system will not be in
a steady state and both o» and / will change with time. Elimination of (o between (4)
and (5) gives L dl R ,„.

+ (7)

4
If GM is positive, put T = I -j t, (9)

y = \n(MPIG); (10)

(8) then gives 0 = l _ e i / , (11)
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whence, if

eV), (13)

where A = x\ - 2{y0 -e
v°), (14)

x0 and y0 being the initial values of x and y, which from (7), (9) and (10) are given by

By suitable choice of Io and w0, y0 and x0 can be made to take any positive or negative
values no matter what are the dimension of the system or the driving couple. A can
have any value that is not less than 2.

For a given .4,(13) gives a closed curve in the x, y plane. These curves are symmetrical
about the y axis; they are not symmetrical about the x axis, but the maximum of a; is
always at y — 0. If A = 2, the curve shrinks to a point at the origin; if A is slightly
greater than 2, y is small and the curves are the circles

x2 + y2 = A-2.

For A much greater than two, the extreme values of y are approximately In \A and
— \A; the curves therefore extend further along the negative y axis than they do along
the positive axis. These points are illustrated in Fig. 2, which shows the curves for
A = 3,5 and 10.

- 3 1 -

Fig. 2

As the curves are closed, the motion is periodic, but since they are not circles it is
not simple harmonic (except for limitingly small amplitudes). The periodic time, T, is
from (9) and (12) ^ (2CL\* f» dy

where — yx and y2 are the two values of y for which x = 0. Using (13), we find

T = (2CL\i [v. dy
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748 S I B EDWARD BULLABD

It is easily shown that the limits are the only singularities of the integrand and that the
integral converges there. There is therefore a finite period for any A. If A only slightly
exceeds its minimum value of 2, the integral can be evaluated and the period is found
to be n^{2CLjGM). The integral has also been evaluated numerically for .4 = 3,
5 and 10. The results are given in Table 1; they show that the period lengthens as
A increases.

Table 1

A

2
3
5

10

Large

Period*

6-55
7-08
8-39

\ -I* I

Time*
below
critical
speed

7T

3-96
4-79
6-43

Time*
above
critical
speed

•n

2-59
2-29
1-96

2 log 2A

JA

<J[M/Q) I

Max.

1-000
1-535
1-961
2-634

Min.

1-000
0-549
0-300
0-0824

J(2CM/CfL){a)-u)c)
Max. and

Min.

0-000
± 1-000
± 1-732
±2-828

* Times in units of T; to get seconds multiply by J(CL/2GM).

When y is zero, the current has its equilibrium value J(G/M). The variation of
y between y2 and — y1 will cause the current to fluctuate between

M
and -v? e

It therefore remains always of the same sign, and neither the current nor the magnetic
field can reverse. This also follows from (4), which shows that if / is zero so also is /;
repeated differentiation and substitution for a) from (5) then shows that all the
differential coefficients of / are zero if / is. Thus if the current is not zero it cannot
become so in any finite time.

The variation of the current with time can be found by numerical integration.
Consider a motion for which yQ is zero and / therefore has its equilibrium value at
t = 0. Since all initial conditions lead to this value of the current at some time, this is
no loss of generality. The value of y at any later time can then be found by integration
of (13), which gives -r

Jo

dy
(15)

The corresponding values of t, I and a> are given by (9), (10) and (7). The calculations
have been done for A = 3 and 10; the results are shown in Fig. 3. They exhibit a con-
siderable departure from simple harmonic motion, the maxima of / being much more
above Ic than the minima are below it (Table 1).

The angular velocity is given by (7), which may be written

0) -(—V
\2CMf
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The stahility of a homopolar dynamo 749

By (13) the two values of a; for any y are equal and of opposite sign; w therefore varies
symmetrically above and below wc. It will reverse if the disk has an angular velocity
greater than 2wc when y is zero. The form of the oscillations for A = 3 and 10 are
shown in Fig. 4.

A=10

Fig. 3. Variation of current with time.

A=10

Fig. 4. Variation of angular velocity with time.
48 Camb. Philos. 51, 4
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750 S I B EDWAED BTJLLARD

If A is large, (15) can be evaluated approximately. The results are shown hi the last
line of Table 1 and diagrammatically in Fig. 5. As A increases the period and the part
of the cycle for which the current is below its equilibrium value lengthen, whilst the
part for which it is above shortens. For very large A the current is confined to bursts
lasting for a small proportion of the time. The amphtudes of the peaks in (MjG)^I are
approximately J(\A), while in the intervals it falls off to exp( — \A). While the
current is small the angular velocity accelerates almost uniformly till the disk is
rotating above its critical speed. The current then grows rapidly and the resulting
electromagnetic forces slow the disk till it is again rotating below the critical speed;
the current then decreases and the cycle restarts (Fig. 5).

Fig. 5. Variation of current and angular velocity with time for large A.

The solution of the equations for given initial conditions is well-defined and unique,
but the behaviour of the corresponding physical system may have a random element.
For large A most of the time is spent with a very small current hi the coil, which grows
or decreases very slowly over most of the cycle. If some disturbance increases or
decreases (M\G)%I by a few times exp( — \A) during the tune when it is small, the
time at which the next maximum will occur will be greatly affected or its sign reversed.
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The stability of a homopolar dynamo 751

The bursts of current will therefore occur at roughly the calculated intervals, but small
disturbances may cause a large scatter in the times.

If GM is negative, the current in the coil produces a field opposed to the initial field
and the system cannot act as a self-exciting dynamo. It is still governed by (4) and (5),
but (9) and (10) must be replaced by

These give - ^ = - (1 + e") (16)
CUT

and x2 = A1-2(e* + y), (17)

where A 1 = x% + 2(eJ/» + y0).

(17) does not give closed curves in the (x, y)-plane, since for a given Ax there is only one
value of y corresponding to each value of x. At whatever point on one of these curves
the system starts, y will eventually become large and negative and / will tend to zero.
For large negative y, (16) gives

where a and ft are constants. Thus for large times the current is given by

and, since GM is negative, tends to zero like an exponential in — t2. When the current
has decayed there are no electromagnetic forces and the motion accelerates uniformly.

3. Dynamo with viscous forces. It is surprising to find that when GM > 0, undamped
oscillations can be maintained by a steady couple in the presence of ohmic dissipation,
and it is of interest to examine the eflFect of adding a viscous couple to the equation of
motion. If the couple is Jew (k positive), (4) is unaffected, but the equation of motion (5)
becomes «. , „ „ ,„ /1QX

Co) + k(o = G — MP. (18)

As before, there is a steady state in which

o) = o)c = RjM;

the current in this state is now not ^J{GjM) but
7=f-JP)- < 1 9 )

The current is less than that in the steady state without viscous forces, since a part,
ko)c, of the applied couple is used in overcoming these forces and the electromagnetic
forces must be correspondingly reduced.

Elimination of <y between (18) and (4) gives

f / JI/T 7. T> \

(20)

48-2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100030814
Downloaded from https://www.cambridge.org/core. ENSTA ParisTech, on 30 May 2018 at 13:31:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100030814
https://www.cambridge.org/core


752 S I R EDWARD BTJLLARD

in place of (8). Suppose GM to be positive and kR/MG to be positive and less than one.
Put , ,

, _ /2GMy / kRy
T ~ \ GL ) { MGJ

MI2

a n y = nG-kRIM'

With this substitution, (18) becomes

f7^7=l-ew ' , (21)

where y =
\2G(MG~kR)j "

Putting x'A,

we obtain from (18) x'2 + 2y\ * X'HT' = A'-2{<*>'-y'), (22)
Jo

where A' = x'2 + 2(e»J - y'o).

If a;' does not tend to zero for large r', the left-hand side of (22) increases without limit
as T'->OO; but the right-hand side is less than (A' — 2) and (22) cannot be satisfied.
Thus x' must tend to zero for large T' in such a way that the integral in (22) is bounded.
If x' tends to zero, y' tends to a constant, yx, and dy'/dr' to zero. Hence from (21),
d2y'ldr'2 tends to (1 — exp^ ) . Thus if dy'/dr' is to remain small, ym must be zero and
the current settles to its value in the steady state. The diagram relating x' and y' and
corresponding to Fig. 2 would be a spiral converging on the origin.

If?/' is small, (21) becomes

If y is less than 2, this gives damped oscillations. The time for the amplitude to fall
to 1/e is 2C/k, which is twice the time required for the speed of rotation to fall
to 1/e in the absence of a current or an applied couple. If y is greater than 2, the system
will settle to the steady state without oscillation. These results only apply to the final
part of the settling process when the current and angular velocity are not very different
from their equilibrium values; the earlier motion will be qualitatively similar, but the
details could only be determined by numerical integration of (21).

If kRjMG is greater than one, the applied couple is insufficient to drive the disk at
the critical speed R/M, and any current and field initially present will decay to zero
and the angular velocity will settle to G/k.

The system provides an example of the exchange of stabilities. It has two equilibrium
states, one with no current and angular velocity Gjk and the other with current given
by (19) and angular velocity R\M. With small viscous forces the first is unstable and
the second stable. If k is increased through the value MGjR, the state with current
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The stability of a homopolar dynamo 753

ceases to be an equilibrium configuration and stability is transferred to the previously
unstable state.

4. Effect of an external load. An electrical load of resistance Rx and inductance Lx

connected in series with the coil has no effect except to alter R and L to (R + Rx) and
(L + Lx). A similar load connected in parallel may either produce a damping similar to
that due to a viscous retarding force or may render the steady state unstable.

If the resistance and inductance of the disk and brushes are neglected, so that R and
L refer to the coil, equations (4) and (5) are replaced by

Ll+RI = Mo)I, Lxix+RxIx = Mwl, (23)

(24)

where / is, as before, the current through the coil, and Ix that through.the load con-
nected in parallel with it.

Two special cases give simple results. First suppose LjR = LxjRx. (23) then gives

Ix = IRjRx + Io exp ( - RtjL),

where Io is a constant. After the transient term has subsided, Ix is equal to IR\RX, and
(23) and (24) behave like (4) and (5) with / replaced by I(\+RfRxf. A parallel load
with the same ratio of inductance to resistance as the coil therefore has only a minor
effect on the system, which can still perform undamped oscillations of the same period
as before.

If Lx is zero, Ix and a) may be eliminated from (23) and (24) to give

d2 ,_ rx &JfL MI2/ R\\ M2IdI

The method employed with (20) may be used to show tha t the solution of this settles
to a steady value. A purely resistive load therefore damps out the oscillations.

I t is difficult to investigate the solutions of (23) and (24) in the general case, where
Lx and Rx have any values, unless the angular velocity and the currents are near their
steady values, which are given by

R GRX OR2

" ~ 7i/f' i\/ri o i » \ ' x l ~M' M(R + RX)' x M(R + RX)RX'

If the departures of w, / and Ix from these values are small enough for their squares and
produces to be neglected, the equations are rendered linear. The solutions are then
proportional to exp (At), where A is a root of a cubic that may be written

(^tSIK
,„ Rx.. MGR | , / L\RX\. 2MGRX A

This always has a negative real root lying between —R/L and —RxfLx. The solution
corresponding to this root gives a transient which becomes small after an interval of
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754 S IR EDWARD BTJLLARD

a few times the larger of L/R and LxjRv Call this root — a and the remaining roots
fi + vi, where i is 7( - !)• Then (25) must be of the form

(A + cr) (A-fi-vi)(A-/i + vi) = 0,

which gives A3 + (<r - 2/i) A2 + ({i2 + v2- 2<T/I) A + cr(/i* + v2) = 0. (26)

The stability of the motion in the neighbourhood of the steady state depends on the
sign of /i. If /i is positive (which gives an unstable motion),

ar—: _

Comparing (26) with (25), this condition gives

R

which implies -5 < -^. (27)

Thus, if LjR is less than LJR^ a small disturbance about the state of steady motion
will increase as an exponentially growing oscillation, but if LjR is greater than LJRt

it will settle to a steady state.
I at first supposed that the non-linear terms in (23) and (24) would hmit the growth

of the oscillations and that, ifL/R was less than L1/R1, the system would finally settle
to a state in which it performed periodic, but not simple harmonic, oscillations about
the steady motion. Failure to prove even that I and a> were bounded suggested that the
system might behave in some unexpected way. A few solutions were therefore obtained
on the NPL differential analyser. If

l = {G\Mfl', Ix = (GIM)irv u> = {GL\CM$a>', t =

(23) and (24) are reduced to

dl' R i i

The form of the solution therefore depends on three non-dimensional parameters,
which may be chosen to be

RLX R1(LC\i L
LR\' )

 a n d

(27) shows that the first of these indicates the degree of instability for small dis-
turbances. For instability it must be greater than one; to ensure a marked instability
it was taken as two for the solutions on the differential analyser. The second parameter
is /̂2 n times the ratio of the period of the oscillations in the absence of a load to the
upper hmit of the decay time of the transient. As it is desirable that this should be
fairly large, it was taken as two; L\LX was taken to be unity. The equations are then

+ U = wTj f + 2/i = . / , £ = 1 - / ( J + Ii). (28)
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The stability of a homopolar dynamo 755

The cubic (25) then becomes A3 + 2A2 + f A + 4 = 0,

whose roots are — 2-1090 and (0-0545 + l-3761i). The period for small disturbances is
4-57 in the t' units (in the absence of a shunt it would be ̂ /2 n = 4-44). Small oscillations
grow by a factor e in 4-02 periods and the transient decays to 1/e in 0-104 of a period.

Solutions were obtained for a few sets of initial conditions and are all of the type
shown in Fig. 6. They resemble those of Fig. 3, but have continually increasing
amplitude and period. This suggests that the solutions of (23) and (24) may be con-

25

Fig. 6. Variation of current and angular velocity with time for a dynamo with a parallel load,
showing increasing amplitude and period. The curves are solutions of (28) with the initial
conditions / = 1/^3, Ix = 2/^3, (o = 5.

sidered to be given by (13) if A increases indefinitely with the passage of time.
A rigorous analytical proof of this has not been found, but the conjecture from the
numerical work may be rendered plausible as follows. Elimination of OJ between
(23) and (24) gives d2 GM, M

Thus, if y and r are defined, as before, by (9) and (10),

and

where A2 is a constant. Since

(29)

dy = 2dI/I,

the integral is simply X^dl or the area enclosed by a plot of Ix against / . If this

becomes increasingly negative as time goes on, (29) will be equivalent to (13) with an
increasing A. The plots of Ix against / produced by the differential analyser are all
similar to the example shown in Fig. 7; since the curves are described in a counter-
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756 SIR EDWABD BTTLLABD

clockwise direction, the integral is negative. I have not been able to prove that this
must always be true, though the following argument makes it likely.

As in §2, (23) shows that if / is once positive it will always remain so. Multiplying
(23) by exp {RxtjLx) and integrating, we find

i (

J
(30)

o
where B is a constant of integration. Integrating the term in / by parts, we find

~m'Ll f'e R l"L l I d t] + Bie-*''/£',
where Bx is a new constant. The term in Bx is a transient which is negligible for times
large compared to LxjRv After it has decayed, Ix is of the same sign as I and is greater
than LI\LX provided (27) is satisfied and the system is unstable for small disturbances.
The solution shown in Fig. 7 illustrates this. Integrating the / term in (30) by parts
and neglecting the transient term, we obtain

The second term is a weighted average of past values of / with most of the weight on
values occurring during the period since a time (t — LJR^). If / has retained the same
sign for a time large compared with L1/R1, the integral will have the sign of /, and Ix will
be less than RIjRx while it is increasing and greater while it is decreasing. The plot of
I1 against / will therefore be described counter-clockwise, as in Fig. 7. The argument
does not amount to a proof that the system will always behave as shown in Fig. 6 if
(27) is satisfied, but it seems likely that this is so.

It is remarkable that a simple system driven by a constant couple and governed by
equations as apparently straightforward as (28) should exhibit this rather subtle 'cat
and mouse' behaviour. For large times the disk accelerates almost uniformly till it is
suddenly stopped and reversed by a burst of current; it then repeats the same behaviour
over a longer interval, reaching a higher angular velocity than any it has previously
had, only to be stopped again by a larger burst of current than any preceding one.

Such a behaviour seems 'unnatural' and would be prevented in a real system by
features that have been neglected in the above discussion. One of these is friction in
the bearings in which the axle runs. This may be introduced by adding a term ho to
(24), which then becomes L<b + kw = G-MI(I + Ix). (32)

Small oscillations about the steady state are easily investigated. As would be
expected, a system that satisfies (32) and (27) and has a sufficiently small value of
k remains unstable for small disturbances. A larger k causes any disturbance to decay
to a steady state. The behaviour of a system that is unstable for small disturbances
has been studied with the differential analyser. The constants chosen were the same as
those in (28) with the addition of a term w/20 to the left-hand side of the third equation.
The system settled to steady oscillations of finite amplitude resembling those of Fig. 6,
except that the amplitude and period did not increase with time.

A further factor limiting the growth of oscillations in a physical system is the
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The stability of a homopolar dynamo 757

inevitable decrease in the driving couple at high speeds. If the couple is zero at all
speeds above some speed cox which is greater than coc, the system may still be unstable
for small disturbances, but in each oscillation the rise of w will stop short of o)v The
system has not been investigated numerically, but is believed to settle to a periodic
motion.

3 »;=«'/«,

Fig. 7. Relation between I' and I[ for a dynamo with a parallel load,
the same solution as in Fig. 6.

A disk driven at constant power W, that is with Wjw in place of G in (24), settles to
steady rotation with angular velocity RjM.

The results of §§2, 3 and 4 are summarized in Table 2.

5. Discussion. The main interest of the results obtained in §§ 2, 3 and 4 is that they
may give some hint of the behaviour of a conducting fluid when disturbed from a state
of steady motion in a magnetic field.

The period, T, of the small oscillations of a non-self-exciting disk dynamo is
2n(LCftlF. HHm is the mean magnetic field perpendicular to the disk and the radius
of the axle is negligible compared to that of the disk,

F = and T = (33)

For a self-exciting dynamo, the period of small oscillations is n(2LCIGM)i. Expressing
G in terms of the mean equilibrium field, Hm, by (3) and (6), we see that this differs
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758 SIR EDWARD BTJLLARD

from (33) only by a factor 1/̂ /2. Thus the periods of the externally excited and self-
excited dynamos are not greatly different; for moderate amplitudes of oscillation the
difference will be reduced, since the period of the externally excited dynamo is inde-
pendent of the amplitude of the oscillations whilst that of the self-excited dynamo
increases with amplitude. From Fig. 5 and Table 1 it can be seen that the amplitude
would have to be very great for the period of the self-excited dynamo to exceed that of

Table 2

MG>0

MG<0

Viscous
forces

No

y < 2

y > 2

k>GM/R

No

No

No

k<GM/R

No

Parallel
load

No

No

No

Yes or No

LjR = LJRt

L/R>LJR1

L/R<L1/R1

L/R<LJR1

Yes or No

Oscillations of constant amplitude, no reversal
of / , (o may reverse

Damped oscillations settling to steady motion
and current

Aperiodic settling to a steady motion and
current

Speed too low for regeneration, current decays to
zero and disk accelerates to angular velocity
G/lc

Oscillations of constant amplitude, no reversal
of / , 0) may reverse

Damped oscillations settling to steady motion
and current

Oscillations growing indefinitely in amplitude
and period

Oscillations settling to a finite amplitude for
small k, or settling to a steady motion for
larger k

The current and field decay to zero and the
disk accelerates uniformly

the externally excited one. It might have been thought that the period could not have
been less than L/S, the time taken for a current to decay to 1/e in the non-rotating
disk and coil; since (33) does not contain R, it is clear that this is not so. From Fig. 5 it
is seen that at large amphtudes of oscillation the decrease of the current during one
half of the cycle is not due to ohmic dissipation, but to the disk rotating in a direction
producing an opposing e.m.f.

This consideration suggests a conceivable way of escape from the principal difficulty
in the theory of the magnetic field of sunspots. I t is likely that the'field from a pair of
sunspots is part of a ring of field encircling the sun's axis. If the flux in such a ring is
supposed to change only in times of the order of LjR it cannot change appreciably in
the whole history of the solar system, but in fact the field reverses in each successive
sunspot cycle of about 11 years. I have attempted to explain this by assuming two
oppositely directed rings of field in each hemisphere (9). An alternative would be to
suppose that the interactions of the motion and the field suppressed one ring and
produced the other towards the end of each sunspot cycle. Both these views are
entirely speculative and would be most difficult to investigate in detail; the existence
of two rings seems the more probable hypothesis.
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The stability of a homopolar dynamo 759

The expression (33) for the period may be related to the work of Schwarzschild (8),
Cowling(5) and Plumpton and Ferraro(7) on the oscillations of a fluid conducting
sphere in an externally applied field. The moment of inertia of the disk, C, is \Tipscft,
where s is its thickness. The inductance of the coil is equal to its radius multiplied by
a function of the ratio of the radius of the coil to the radius of the wire used to wind it.
Thus (33) gives Kap\

where K is a function of the ratios of the thickness of the disk and the dimensions of
the coil to the radius of the disk. For a coil of round wire of radius r bent into a single
turn of radius a1; K = n2^ja)i [4 m ^a^r) - 7]i

An expression of the form (34) might be expected to apply to the oscillations of a sphere
of conducting fluid in a field, K being a numerical constant depending on the form of
the field and motion considered. This expectation is strengthened by observing that
the time taken for a magneto-hydrodynamic wave, travelling along the lines of force
of a field H, to cross a sphere of radius a is iniapi/H. The longest period found by
Schwarzschild(8) for a sphere oscillating in a uniform field is 20-3apilH. Later work
gives similar results (Plumpton and Ferraro(7)).

For the sun, the radius a is 7 x 1010cm., the mean density is l-4g./cm.3, and the
central density about 90g./cm.3. The period of oscillation may therefore be expected
to be some moderate multiple of 104/i7 years. The field within the sun is probably
similar to that in sunspots, which is about 2000 gauss. The period of the oscillations
due to the coupling of the magnetic field and motions in the sun would therefore be
expected to be a few years. It seems quite possible that the sunspot period of about
eleven years is controlled by such processes, in fact Alfven's theory of sunspots is of
this kind, though the details of the mechanism proposed are open to various objections
(Cowling (6)). The much shorter periods of a few days observed by Babcock in mag-
netically variable stars cannot be due to this mechanism and are presumably due to
modes of motion giving strong gravitational restoring forces, as suggested by
Cowling (5).

For the earth's core, a = 3-4 x 108cm., p = 11 g./cm.3, and the period will therefore
be a moderate multiple of 30/H years. If H is a few hundred gauss, this is considerably
less than the typical periods of the secular change, which are of the order of a hundred
years. The time scale of the secular variation is therefore longer than would be expected
from (34) with a moderate value of K. It is difficult to think of any other process that
will give a period or a relaxation time of the order of a hundred years and it seems
possible that (34) is of the right form, but that K may have a very large value in
systems in which Corioli's forces are important (compare, for example, the lengthening
of the period of a pendulum when its bob contains a gyroscope). The absence of Corioli's
forces from the system considered in this paper may seriously interfere with any
application of the results to the earth, sun or stars.

It is not known whether the undamped oscillations of the disk dynamo have an
analogy in the motions of a fluid sphere in a magnetic field. In astronomical applications
the effects of viscosity are likely to be so small as to have little influence in 109 years.
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760 SIR EDWARD BULLARD

It is probable that current paths not contributing to the dynamo action will act like
the parallel load of § 3. If this is so, they may have either a stabilizing or a destabilizing
effect, and the result will depend on the details of the motion. An unpublished investiga-
tion by Rikitake suggests that a dynamo whose steady state has been considered by
Bullard and Gellman (2) is unstable for small disturbances. In the light of the discussion
at the end of § 4, this probably means, not that the system will depart indefinitely from
its steady state, but that it will perform finite oscillations in which the motion, the
current and the field will all fluctuate by amounts depending on how the driving forces
vary with the velocity of the motion. Thompson (9) and Chandrasekhar (3) have shown
that in the presence of a magnetic field thermal instability of a fluid heated from below
may start by growing oscillations. Chandrasekhar (4) has shown that the same thing
is true in a rotating fluid even in the absence of a magnetic field.

I t has been suggested that sudden reversals of the earth's field have frequently
occurred in the past. The disk dynamo does not behave in this way; it can produce
a field in either direction, but it does not give reversals once a field has been established
in a given direction. A field which reverses could be produced by a coil coupled
inductively to the coil of the dynamo, but it is not possible to produce in this way
a field that remains roughly constant for a long time and then suddenly reverses and
again remains constant in its new direction. I t does not follow, of course, that more
complicated systems cannot behave as suggested.

The arguments of this section assume an analogy between the solution of a set of
two or three ordinary differential equations, such as (4) and (5) or (23) and (24), and
the partial differential equations that control a continuous system (Maxwell's equations
and the equations of hydrodynamics). Such analogies are a little precarious, but may
serve to suggest qualitatively how the solutions of the equations of magneto-hydro-
dynamics behave. The most important result is the possibility of self-maintained
oscillations even in the presence of ohmic dissipation and small viscous forces.

I am indebted to Dr E. T. Goodwin and Mr J. G. L. Michel for advice on the treatment
of non-linear equations, and to Mr H. J. Norton and Mrs J. Parr for obtaining solutions
on the differential analyser for the dynamo with parallel load. Since this paper was
written further solutions have been obtained on the NPL digital computer, ACE, by
Mr J. H. Wilkinson.

REFERENCES
(1) BTJLLAKD, E. C. Vistas in Astronomy (ed. A. Beer) (London, 1955).
(2) BTTLLABD, E. C. and GELLMAN, H. Phil. Trans. A, 247 (1954), 213-78.
(3) CHATOEASEKHAE, S. Phil. Mag. (7), 43 (1952), 501-32.
(4) CHANDBASBKEAB, S. Proc. roy. Soc. A, 217 (1953), 306-27.
(5) COWLING, T. G. Mon. Not. It. astr. Soc. 112 (1952), 527-39.
(6) COWLING, T. G. The sun (ed. Kuiper, G. P.) (Chicago, 1954).
(7) PLTJMPTON, C. and FEKRARO, V. C. A. Mon. Not. R. astr. Soc. 113 (1953), 647-52.
(8) SCHWAJRZSCHTLD, M. Ann. Astrophys. 12 (1949), 148-60.
(9) THOMPSON, W. B. Phil. Mag. (7), 42 (1951), 1417-32.

NATIONAL PHYSICAL LABORATORY

TEDDINGTON

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100030814
Downloaded from https://www.cambridge.org/core. ENSTA ParisTech, on 30 May 2018 at 13:31:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100030814
https://www.cambridge.org/core

