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In Part I ,  the simple homopolar disc dynamo of Bullard (1955) is discussed, and it is shown 
that the conventional description is over-simplified and misleading in an important respect, 
in that it suggests the possibility of exponential growth of the magnetic field even in the limit 
of perfect disc conductivity, whereas, from fundamental considerations, it is known that the 
flux of magnetic field across the disc must in this limit remain constant. This contradiction is 
resolved through consideration of the effect of the azimuthal current distribution which is, in 
general, inevitably induced in the disc when the conditions for dynamo action are satisfied. 
By considering a refined model, it is shown that the field growth rate then tends to zero as 
the disc conductivity tends to infinity. The stability characteristics of this model are 
determined. 

In Part 11, an analogous contradiction arising in fluid dynamo theory is identified, viz. that 
whereas the a2-dynamo in a spherical geometry suggests the possibility of exponential field 
growth even in the limit of perfect conductivity, fundamental considerations (Bondi and 
Gold, 1950) show that the dipole strength of the field is, in this limit, permanently bounded. 
Two possible ways of resolving this contradiction are discussed. The first, following a 
suggestion of Kraichnan (1979), involves consideration of an inhomogeneity layer on the 
surface of the sphere within which a (and the eddy diffusivity b) falls to  zero; diffusion of flux 
across this layer is analogous to diffusion of flux across the rim of the disc in the simpler disc 
dynamo context. The second involves introduction of a time lag in the conventional linear 
relationship between mean field and mean electromotive force; this represents in a crude way 
the process by which flux has to diffuse into the interior of each helical eddy within which 
the fundamental field regeneration effect occurs. By either means, compatibility with the 
Bondi and Gold result may be achieved. 

0 

PART I: The self-exciting disc dynamo. 

1. INADEQUACY OF THE CONVENTIONAL TREATMENT 

The self-exciting disc dynamo (Bullard 1955, for a recent account, see 
Bullard 1978) has frequently been invoked as a simple prototype of 
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dynamo action, analogous to the dynamo process that is believed to 
operate in the liquid conducting core of the Earth and in the convective 
envelope of the Sun. The disc dynamo system, in its simplest form, is 
illustrated in figure 1; it consists of a solid conducting disc which rotates 
with angular velocity 2nRk (either constant, or a function of time) about 
its axis, and a wire twisted around the axle and making sliding contact 
with the rim of the disc (at the point A in the figure), and with the axle at 
the point B. 

U 

FIGURE 1 The self-exciting disc dynamo (Bullard 1955). 

The conventional description of the dynamo process for this system is 
as follows. Suppose that a current I ( t )  flows in the combined circuit C 
consisting of disc plus wire, the current in the disc being radial, and being 
“scooped off” at A .  This current gives rise to an associated magnetic field 
B(x, t ) ,  and the flux of this field across the disc is 

O ( t )  = ss Bz(r ,  8,0, t ) r  dr  d8, 
disc 

0 where the plane of the disc is chosen to be z = 0. The induced electric field 
in the disc is 

6 = U  x B =27cR(k x X) x B = ~ T c Q x B , ,  

and so the potential difference between the axle and rim, averaged over 0, 
is given by . 

A 4 =  (27-c-I ss b,drdfI=R@, 
disc 

(1.3) 

using (1.1) and (1.2). This potential difference drives the current I ;  and if 
R is the total resistance associated with the circuit C, and L its self- 
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inductance, the conventional equation for I is 

Ldlldt + RI = Cl@. (1.4) 

Furthermore, 

@ = M I ,  

where M is the mutual inductance between the “circuit” C and the rim of 
the disc. Hence 

Ldlldt + RI = MRl. (1.6) 

Note that Land M are determined wholly by the geometry of the system 

Suppose now that the disc is driven at constant speed (i.e. R 
nd do not depend on R. 

=constant); then clearly 

I ( t )  =I(O)eP‘ and @(t)=@(0)ePf,  (1.7) 

~ = L - ’ ( R M  -R) ,  (1.8) 

where 

and we have dynamo action (i.e. spontaneous growth of current, magnetic 
field and associated magnetic energy) provided 

OM > R. (1.9) 

The inadequacy of this description, which has been reproduced and 
elaborated in many papers, is most clearly revealed by considering the 
limiting behaviour when R+O, a limit that is realised when the con- 
ductivity CT of the disc and wire tends to infinity. According to (1.7) and 
(1.8), we still have exponential growth of @ with p=RM/L>O. But it is a 

.fundamental result of electromagnetic theory that when CT-+ CO, the flux 
through any closed curve moving with the conductor is conserved; in the 
present context, when R=O (i.e. o=m) the flux (D through the closed 
curve consisting of the rim of the disc is therefore constant, in blatant 
contradiction with the “conclusion” that @ increases exponentially. 

in the brief description of the disc dynamo given in the introductory 
chapter of Moffatt 1978 (hereafter referred to as M78), but was not 
adequately resolved in that discussion. In Part I of the present paper, this 
omission is rectified, and the basic inconsistency in previous treatments of 
the disc dynamo is resolved. 

‘ 

L This difficulty, that is so conspicuous in the limit R-0, was recognised 
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2. SELF-CONSISTENT TREATMENT OF A "SEGMENTED" 
DISC DYNAMO 

The inconsistency discussed above is associated with the oversimplified 
representation of the current field j(x,t) in terms of a single current loop 
I ( t ) .  This is inadequate within the disc where current can flow around the 
axle as well as in the radial direction. When l ( t )  is time-dependent, the 
associated flux has to diffuse across the rim of the disc, and this diffusion 
process is associated with an induced azimuthal current distribution in the 
disc. The instantaneous relationship (lS), although correct in a static 
situation, is not correct when I is time-dependent. 

To deal with this situation in a simple way, let us suppose that the disc 
is constructed in such a way as to permit azimuthal current flow only i 
the immediate neighbourhood of the rim r=u. This can be achieved by 
the insertion of n ( %  1) insulating strips (figure 2) at Q=2mn/n (rn 
=0,1,2, ..., n-1)  along radii between r=O and r = a ( l  - E )  where c is 
small; any azimuthal current is then concentrated in the region a(1 - E ) <  r 
<U.  Let J ( t )  be the total azimuthal current that flows in this region and 
let R' be the corresponding resistance. 

8, 
, 

J 

\ insulating 

0 s t r i ps  
FIGURE 2 
neighbourhood of the rim. 

The segmented disc, which permits azimuthal current flow J ( t )  only in the 

We now have two current loops I ( t )  and J ( t ) .  Let L,L: be the 
corresponding self-inductances, and M the mutual inductancet; then the 
fluxes CD, and D2 through the loops are 

6 

PIf the wire has radius EU, and if the disc has thickness EU, then Land L! are both of order 
p0u(log8c-'-2) (Abraham and Becker 1932, p. 166 et seq.). If the loop of the wire is 
separated from the disc by a distance b( < U ) ,  then M is of order pou[log(8b/a)-2]. 
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I Ol = LZ + M J ,  
# * = M l + C J ,  

and we have the inequality 

LE > M ~ ,  (2.2 

resulting from the positive-definiteness of the quadratic form representing 
the magnetic energy of the current system. The equations determining Z( t )  
and J ( t )  are now 

(2.3 

where R, as before, is the resistance in the current loop I ( t )  (unaffected by 
the insertion of the insulating segments). 

Note that, if the insulating segments extend to the rim of the disc (i.e. 
t:=O), then R'=m and J = O ;  we then have Ql =LZ, Q2=MZ,  and (2.3a) 
reduces to (1.6). Equation (1.6) does therefore correctly represent the 
situation when the current is totally constrained to flow in the radial 
direction (by essentially the imposition of a severely anisotropic 
conductivity). 

When E>O, so that R'< m, (2.3b) and (2.lb) give 

dQ2 R' 
d t  L' 

~ = - - ( Q 2  - M I ) ,  (2.4) 

so that, as implied in the discussion above, there is indeed a lag between 
the current Z and the flux Q 2 ,  the time constant being the natural decay 
time E/R' for the current J ( t ) ;  this process of current decay is of course 
the same as the process of field diffusion across the rim of the disc, a 
process that becomes instantaneous only when R'=co. The need for the 
changing field to diffuse into the region where inductive action occurs is of 
fundamental importance for the dynamo process. 

Equations (2.1) and (2.3) admit solutions of the form 

(1, J ,  Ql, 0, ) c e p '  (2 .5)  

where p is a root of the quadratic equation 

( L L ' - M Z ) p 2 +  (RL:+R'L)p+R'(R-MR)=O. (2.6) 

By virtue of (2.2), the sum of the two roots is obviously negative. Also, if 
QM > R, the product of the roots is negative, and so one is negative and 
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one positive. The condition (1.9) is still therefore the correct condition for 
dynamo action. The positive root is then given by 

p1 =[I - (RL:+R’L)+ { (RL: + R ’ L ) ~  

+4R’(MQ-R)(LL:-M2)}1’2]/2(LL:-M2).  (2.7) 

As R‘+O, we now have pl+O (irrespective of the value of R ) ;  this is now 
consistent with the fact that the flux across the disc remains constant in 
the limit of infinite disc conductivity.? 

If we remove the insulating segments, the azimuthal current j e ( r ,  t )  is no 
longer representable in terms of a single current loop J ( t ) ,  and a proper 
treatment of the problem would require consideration of the p a r t i a e  
differential equations governing j and B within the disc. While such a 
treatment might be illuminating in some respects, it might also obscure 
the simple features that are best revealed by the above elementary 
analysis. 

, 

3. DYNAMICAL CHARACTERISTICS OF THE SEGMENTED 
DISC DYNAMO 

Suppose now that the disc is driven by a prescribed steady torque 27cG 
There is also an electromagnetic torque given by 

G, = [ x x fi x B)dV= - kjB,(x. j)dV (3.1 1 
disc 

Now B, is approximately axisymmetric on the disc, and 

ss rj, dOdz = 1. 
disc 

Hence 

G e z  -kI[B,rdrz  -klD2/2n. 

(3.2) 

(3.3) 0 
Let C be the moment of inertia of the disc and axle about the z-axis. 
Then the equation of motion of the disc is 

CdR/dt = G - 1 0 2 ,  (3.4) 

and we have now to consider this equation in conjunction with (2.1) and 

?If R = R‘ and L=C, and if N = 1 - M2/L? is small, then it is easily shown from (2.7) that 
p1 is maximal as a function of the magnetic Reynolds number R , = M R / R  at a value 
R , = O ( N - L ’ 3 ) ,  and there p1 =O(RN-1/3) .  
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Q2 and R as the basic variables, I and J being then (2.3). We regard 
given by 

There are two equilibrium states (Si say) of this third order system, viz. 

@, = + I ~ ( G / M ) ” ~ ,  @2 = f (GM)”’,  R =  R/M.  (3.6) 

Defining non-dimensional variables 

M R  
R ’  z=- (3.7 ) 

a1 Y= R Q 2  5=-t,  x=-- 
L (CM)”” L(G/M)””  

0 equations (2.1), (2.3) and (3.4) reduce to7 

X = r ( Y- x ), 
Y= mX - (1 + m)Y+ x z ,  

i=g ( l+mX2- ( l+m)XY) ,  

where 

(3.9) 
M 2  m=-- R‘L~ r=-- 

R(LE - M’)’ 

and the equilibrium states are now given by 

X = Y = f l ,  z = 1 .  (3.10) 

The stability of these states may be investigated by a standard small 
perturbation approach. Let 

0 X = f l + ( ,  Y = f l + v ,  z=1+i, (3.11) 

substitute in (3.8) and linearise in [, q,  i; we obtain 

?This third order system is similar, but not identical, to the system studied by Lorenz 
(1963). The difference however is not one that can be eliminated by any simple change 
of dependent variables. The general system of which (3.8) is an example may clearly be 
written in the compact form 

X , = a ,  + b . -X  LJ J .+c. .  Ilk X J .X k’ 
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(3.12) 
--r 

- g ( l + m )  - g ( l + m )  0 

This linear system has solutions (t, y ~ ,  [)cheP' provided p satisfies the cubic 
equation 

f ( p )  = p 3  + p 2  ( r  + 1 + m )  + pg(1 + m )  + 2rg = 0. (3.13) 

This equation has roots -0, pfiv, where a>0, and the condition for 
linear instability (p > 0) is 

i.e. 

(3.14) 
R' L2 

, or equivalently ->-- (1 + m)2  
r > -  1 -m  R LL:-2M2' 

The corresponding region of the ( r , m )  plane (with r>0,  m>0) is indicated 
in figure 3. 

r 

1 

1 rn 
FIGURE 3 
turbation analysis, as given by (3.14). 

Stable and unstable regions of the ( r , m )  plane determined by small per- 

A solution of the system (3.8) may be represented by the motion of a 
point P ( T )  with Cartesian coordinates [ X ( T ) ,  Y ( T ) , Z ( T ) ]  (as in the tradi- 
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tional treatment of the coupled disc dynamo system whose stability was 
analysed by Cook and Roberts 1970-see M78, $12.4). The phase space 
‘velocity field’ is given by 

U =  (8, Xi)= [ r ( ~ - x ) ,  mX - (1 +m)Y+XZ,  g ( l  + m X 2  - (1 + m ) X Y ] ,  

(3.15) 
which has uniform negative divergence 

du, 2u2 du, 
ax OY a 2  

V.u=-+,+--= - ( l + m + r ) .  (3.16) 

-m) -  (1 + it seems probable that all trajectories tend to 
two equilibrium points given by (3.10). When r > (1 - m)-  
trajectories in the phase space presumably tend to a limit set of 

points which may be a surface, or possibly a strange attractor [see e.g. 
Marzek and Spiegel, 19781. 

The Bullard limit is obtained by letting r+co for fixed m and g. The 
three roots of (3.13) are then 

(3.17) 

When r =  co, we apparently have neutral stability, but for any large but 
finite r,  the states S, both remain unstable for m< 1 (although the growth 
rate of the instability is small). The flow of azimuthal current in the disc 
therefore has an important influence (both quantitative and qualitative) on 
the dynamical stability characteristics of the system. 

PART II: Fluid dynamos in the high conductivity - 

.limit. 
4. MEAN FIELD ELECTRODYNAMICS AND THE a-EFFECT 

In the following sections, we shall focus attention on a very puzzling 
contradiction that arises when the now standard methods of mean-field 
electrodynamics are pushed to the high conductivity limit o-+ CO. The 
contradiction is in some respects analogous to the contradiction described 
(and resolved) in Part I above in the disc dynamo context. In order to 
provide a convincing discussion, it will be necessary first to review some of 
the salient points of dynamo theory, if only to pinpoint later possible 
sources of the contradiction. 
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First, let u(x,t) be a turbulent velocity field in a fluid of infinite extent, 
statistically steady, homogeneous and invariant under rotations of the 
frame of reference, (but not under the parity transformation x'=  -x). The 
turbulence is then isotropic in a weak sense, but pseudoscalar mean 
quantities, such as the mean helicity ( u . V ~ u ) ,  are not in general zero. 
The properties of such turbulence are discussed at length in (M78). 

Let B(x, t )  be a magnetic field evolving according to the induction 
equation 

dB/& = V x (U A B) + AV2B, (4.1) 

where A=(,u0cr-' is the magnetic diffusivity of the fluid, and suppose that 
B(x,O) is non-random and varies on a scale L much larger than any scal 
1, characteristic of the turbulence. For t >O, we may write Y 

B(x, t )  = (B(x, t ) )  +Mx, t ) ,  (4.2) 

where the angular brackets indicate averaging over any scale I ,  satisfying 

1, < I ,  < L. (4.3 1 
The mean field evolves according to the equation 

(d/at)(B) = V x € +iV2(B) (4.4) 

where € = ( U  x b). The residual equation for b establishes a linear 
relationship between b and (B) and so between 8 and (B), which is 
customarily developed in the form 

b=a(B)  - PV x (B) +. . ., (4.5) 

where a and /3 are determined in principle solely by the statistical 
properties of the turbulence and the parameter 1. Here we are particularly 
concerned with the limiting behaviour when ?"+O. 

Exact expressions for CI and P (when A = O )  were obtained by Moffatt 
(1974) by an analysis which has been confirmed and extended by , 
Kraichnan (1976a, b). Let v, ( t )  be the velocity of the fluid particle which 
passes through the point a at time t = O ,  and let 

0 

a1(t)= - S j X v a ( t )  ' V , X  va(z))dz, (4.6) . 

P1 ( t )  = +Sb<V .(t) . v ,(z))d7 + j b  a1 ( t b l  (t 

+ b j b  J b { ( v a ( t  . v a(X2 ) V a  . v a (z 1 )> 

- (V a ( t  ) . [V a v a  (7 1 )I . v a (72 )) } dz 1 d72.  (4.7 1 
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Then the relevant values of CI and P are given by 

a = lim a1 ( t ) ,  p = lim PI ( t ) ,  (4.8) 
i-cc t + l  

provided these limits exist. Evidence for the convergence of both ex- 
pressions in a time of order lo/uo (where uo is the rms velocity) is provided 
by Kraichnan’s (1976b) computer experiments involving numerical simu- 
lation of ‘maximally helical’ homogeneous turbulence. The convergence of 
the expression (4.6) as t + ~  is certainly plausible. The convergence of the 
expression (4.7) is harder to accept since it requires cancellation of the 
positive infinity appearing in the second term (when a # 0 )  by an equal 
negative infinity in the third term, which seems intrinsically unlikely. 
Kraichnan has nevertheless argued that this is what happens in general, 
and his computation of Dl ( t )  (Kraichnan 1976b, figure 2) certainly 
supports this conclusion. Support for this conclusion is also given by 
earlier Markovian model studies of Vainshtein (1970). 

Let us then for the moment suppose that the expressions (4.8) do 
converge, and that, when i =0, CI and p have orders of magnitude 

CI-uo, P U010 (4.9 1 
(independent of A). If we retain only the first two terms of the series (4.5) 
(on the grounds that the scale of (B) is very large), then (4.4) becomes 

(d/dt)(B)=aV x (B)+PV2(B), (4.10) 

(since V . (B) =O). This equation is known to have exponentially growing 
solutions in an infinite medium (M78, $9.2). It also has exponentially 
growing solutions in a spherical geometry; to be specific, if it is supposed 
that (B) satisfies (4.10) for Ixl<a and that (B) matches to a potential 
field with no external sources for Ixl>a, then exponentially growing , ,  
solutions of dipole symmetry exist for 

0 lala/p >4.49, (4.11) 

(Krause and Steenbeck, 1967; M78, 99.4). (Of course, .the “homogeneous 
turbulence” description is now tenable only if 1, <a.) In particular, the 
dipole moment p of the field, which is a linear functional of B, [see eqn. 
(5.6) below] grows exponentially, provided (4.1 1) is satisfied. 

It is at this point that we encounter the contradiction referred to at the 
outset. For it is a fundamental result of dynamo theory (Bondi and Gold 
1950; M78, $6.3) that, when A=O,  the dipole moment of a current 
distribution confined to a sphere of conducting fluid is permanently 
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bounded, no matter how complicated or artificial the velocity field in the 
fluid may be. A proof of this result, which is more complete than that of 
Bondi and Gold, is given in the following section. 

5. BOUNDEDNESS OF THE DIPOLE M O M E N T ,  WHEN A=O. 
As is well known, the dipole moment p( t )  of a current distribution j(x,t) 
= p i  ‘V x B in a conducting sphere V :  1x1 <a is given by 

p ( t ) =  ( p O / S ~ ) ~ y x  x jdV= (8n)- ‘jvx x (V x B)dV (5.1) 

If B = - VY for 1x1 >a, then 

where r =  1x1, and Sn(O, $) is a surface harmonic of degree n. 
The integral (5.1) can be manipulated by the divergence theorem to give 

8np(t)=jSx x (n x B)dS+2JVBdT/; (5.3 1 
where S is the surface r =a.  Now n A B  is continuous across S, and so the 
surface integral becomes 

-jsx x (n x V Y ) =  -aJsn(dY/3r)dS+ajVY’dS. (5.4) I, 
Clearly, the second term on the right-hand side vanishes. Moreover, only 
the dipole term of (5.2) contributes to the first integral on the right of (5.4) 
[by virtue of the orthogonality of the surface harmonics S,(Q,4) and 
S,(fl, (b), (n  > l)]. Hence 

and so (5.3) yields 

At)= (3/87C)jVB(X, (5.6) 

We note in passing that when B can be decomposed [equation (4.2)] into 
a mean and fluctuating part, the fluctuating part must integrate to zero 
over the fluid domain, and so (5.6) gives equivalently 

&)= (3/WjV(B)dT/: (5.7) 

A further use of the divergence theorem shows that (5.6) is equivalent 
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to 

p ( t )  = (3/Sn)lSx(B. n)dS. (5.8) 

This form for p( t )  permits the simplest proof of the Bondi and Gold 
result. Let S ,  be that part of S on which B.n>O, and S -  that part on 
which B .  n < 0, and let 

so that p = p +  + p - .  We then have 

0 where 
0 = js +(n.  B)dS = - Ss -(n. B)dS. (5.11) 

Now, when A=O,  0 is constant, since flux through every closed material 
circuit is conserved, and so 

the maximum being attained only when the flux is entirely concentrated at 
poles at opposite ends of a diameter of the sphere.? 

There can therefore be no doubt that, when A=O,  exponential increase 
of the dipole moment is impossible, no matter what the complexity 
(laminar or turbulent) of the velocity field in Vmay be. This is in stark 
contrast with the inferences that may be drawn from equation (4.10), if the 
estimates (4.9) are valid as 3,+0. We must therefore re-examine the steps 
described in $4, with a view to pinpointing the source of this crucial 
contradiction. 

6. THE INHOMOGENEITY LAYER a-r=O(/,)$ 

The first weak point in the discussion of $4 is the implicit assumption that 
results derived from consideration of a field of homogeneous turbulence 
can be applied without qualification to a turbulent motion inside a sphere, 

?An ingenious use of the conservation of @ as given by (5.11) has recently been proposed 
by Hide (1978); see also Hide (1979). Note that the condition u.n=O on S is implicit in the 
result @=const. 

$1 am greatly indebted to  Dr. R. H. Kraichnan, whose comments on an earlier version of 
this paper led to the discussion as now presented in 86-see Kraichnan (1979). I am indebted 
also to the referee of the earlier version whose comments stimulated an important change of 
emphasis in the presentation. 



160 H. K. MOFFATT 

which by virtue of the effect of the boundary, is necessarily inhomo- 
geneous. Clearly, if U . n  = O  on r = a, then there must be an inhomogeneity 
layer on r = a - - ,  of thickness 6 say, and it is to be expected that 6 = O ( l o ) .  
The turbulent intensity may be expected to decrease as r t a ,  (and it will 
decrease to zero if the no-slip condition u=O is satisfied on r = a ) .  
Likewise, the electromotive force 6 and the associated coefficients a, f i ,  . . . 
may be expected to be smaller within this layer than in the core region 

The important effect that this may have on the growth rate of unstable 
modes of equation (4.4) may be appreciated by considering the extreme 
situation in which a and f i  are both zero within the layer L, : U - 6 < r < a. 
Let C, be the circle r = a - p6  (0 < p < 1) in the equatorial plane z = 0 and 

a - r + l o .  

. 
0 

let S, b e  the disc spanning C,. Then, from (4.4), with Q = 0 on C,, we have 

( d / d t )  Ss,(B).dS= -ASc,(V x (B)).dx. (6.1) t 

Now as A - t O ,  it is to be expected that IV x (B)I will be of order B/6-B/l0 
(independent of 2 )  at interior points of L,, so that 

(d /dt )S , , , (B) .dS=O(~)  as A+O. (6.2) 

This suggests that the growth rate p of any unstable mode of (4.4) must 
then satisfy 

p = O ( A )  as 2 4 0 .  (6.3) 

This is to be contrasted with the conventional a2-dynamo behaviour for 
which p = O ( A o )  as h 0 .  The effect of the inhomogeneity layer is to 
change the structure of the eigenfunctions in such a way as to reduce the 
growth rate to a level compatible with flux diffusion across L,. 

It seems reasonable to conjecture that, as for the disc dynamo problem 
considered in Part I, an inhomogeneity layer of the above type will not 
affect the criterion for dynamo action (e.g. R,>4.49 for the a2-dynamo in a 
sphere), but will in general have an important effect on the growth rate of 
unstable modes, and equally on the frequency of oscillation of oscillatory 
modes. There would seem to be a good case for analytical and numerical 
investigation of this effect on the various a2- and ao-dynamous that have been 
described in the literature.? 

It must be noted however that the Bondi and Gold result described in 

?One example of an ctw-dynamo for which the growth rates are fully determined is 
described in M78, 59.9. In this example, the a-effect is concentrated in layers embedded in a 
slab of diffusivity A, and the growth rates (real or complex) of the eigenmodes all have the 
asymptotic behaviour p -L(log A)' as h 0 .  
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45 requires only that U . n = O  on r=u  [and not the stronger condition 
u=O]. Moreover, the coefficients a, [j,. . . are not in general purely locul 
properties of the turbulence, but depend on the statistics of particle paths 
(see 4.6-4.8) which determine the field b of magnetic perturbations. Hence 
it is by by no means obvious that E ,  b, . . . must decrease to zero on r=u 
(although more detailed analyses may reveal that this is in fact the case). 

7. POSSIBLE DIVERGENCE OF THE SERIES (4.5) 

The second weak point of the discussion of $4 concerns the neglect of all 
terms indicated by . . . in the series (4.5). This neglect is plausible when 2 
is bounded away from zero; however, when A=O,  the multiple integrations 
over Lagrangian particle paths which appear in the determination of 
successive coefficients in the series (4.5) (of which eqn. (4.7) provides only 
a foretaste!) may well lead to numerical divergence of the coefficients, 
despite the helpful factor (1,lL)" in the nth term.? 

If the series (4.5) in fact diverges when i = O ,  then it is necessary to 
restore the effects of weak molecular diffusivity. We have already noted in 
the simpler disc dynamo context the crucial need for the changing 
magnetic field to diffuse into the region in which the primitive induction 
process occurs (i.e. into each helical eddy in the turbulent context). This 
suggests that we may be able to accelerate the convergence of the series 
(4.5) by incorporating a time-lag in the linear relationship between (B) 
and b. The simplest such relationship is 

0 

or equivalently 

&(x, t ) =  (l/tA)lr-a (cL-B'V x + . . . )(B)(x,z)e-"-'"*idz. (7.2) 

Formal manipulations of (4.4) and (4.5) provide the relations1 

tKraichnan (1979) has shown that the expansion converges (when 2=0) for a particular 
"kinematically possible" field of turbulence consisting of statistically independent but 
identically distributed fields on successive time intervals, provided the turbulence is "not too 
intermittent". I t  is not as yet clear whether this result holds for general dynamically 
realisable (Navier-Stokes) turbulence. 

$More generally, if we write 

& =  cc'"'(-V x )"(B), 
n = 0  

F 
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The coefficient B' may be regarded as a "renormalised" eddy diffusivity. 
The time t ,  is here unspecified, but should simply have the property, 
characteristic of a diffusive time-scale, that 

t p c C  as A+O. (7.4) 

The relationship [j =p' + t,a2 is immediately suggestive in comparison 
with (4.7). Incorporation of a "diffusion" factor exp[ - ( t  - z)/ t ,]  under the 
second integral of (4.7) in fact yields the integral 

Jh sll ( t )a ,  (z)e-('-')/'ddz, 

which converges to t,x2 as t+x. The effects of molecular diffusivity are o e  
course extremely subtle, and nothing approaching an adequate theory is 
as yet available. Removal of a potential infinity in one of the terms 
contributing to p in (4.7) by the renormalisation process suggested above, 
does however seem to provide additional motivation for the procedure. 

At any rate, we shall now examine the consequences of (7.1), in 
conjunction with (4.4), and under the assumption that? 

t 

a' NU", P' - uolo, (7.5) 

as 2-+0. Again we shall neglect the effect of terms in the series in (7.1) 
represented by . . . .  For simplicity, we first examine the growth rate of 

I hen 

where 

= 

($"I' -CA - ("1 - t , [ ~ ~ o ~ ~ ~ n - ' ) + ~ ( 1 ) ~ ( n - 2 ) + . . , + ~ ( " - 1 ) g ~ ~ ) ~ ,  (n= 1,2, ... 1. 
Another possible modification of (4.5) (suggested to me by Professor J. T. Stuart) which 
makes more explicit appeal to the diffusion process is i 

28/2L-av2&= -(l/rL)k- f g(n)"(-vx y<B)). 
" = O  

In this case 

(n=0 ,1 )  i U ( ~ " + L ~ ~ G ( ( " - * )  (n=2,3, ...I. 
= 

?This assumption requires that p-a, as t,--.cn, in contrast with Kraichnan's (1976b) 
conclusion. 
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“free modes” in an infinite medium (cf. M78, $9.2). These have a “force- 
free” structure satisfying 

V x (B) =K(B), V x 8 = K b ,  (7.6) 

so that (4.4) and (7.1) become 

(7.7) 
(d/dt)(B) =KQ-/ZKZ(B), 
db/c?t= - (l/t,)(€-a’(B)+/YK(B)). 

These equations admit solutions (a, (B))cceP‘ where p satisfies the quad- 
ratic equation 

( p + X Z ) ( p +  tn I)-&; 1 (.‘-fi’K)=O. 
Provided 

0 

there is a positive real root, namely 

p1 = - ( X 2  + t , ’ ) +  { ( X 2  + th ’)* + 4 t i 1  ( K ~ x -  (/1+p’)K2))1’2, (7.10) 

and this indicates dynamo action. Now however, as A+O (so that t i 1  -0 
also), we have p ,  + O  and the resulting field structure is therefore steady 
(rather than exponentially growing) in the limit 1 = 0. 

A similar property obviously holds for dynamo-type solutions of (4.4) 
and (7.1) in a spherical geometry. In this case, the relevant solutions do 
not satisfy the force-free conditions (7.6), but they do satisfy the higher 
order Beltrami conditions 

V x V x (B)=KV x (B), V x V x B=KV x Q ,  (7.1 1 )  

(cf. the discussion of M78, 59.4) and it is not difficult to show that the 
growth rate is still given by (7.10) where lKla satisfies 

J, ,  IjZ(1KI4’0, (n= 132,. . . I ,  0 (7.12) 

J,(x) denoting the Bessel function of order m. The smallest root (with 
n= 1) is lKla~4.49,  and the inequality (7.9) is satisfied provided 

ala‘J >4.49(A +pJ’). (7.13) 

Again, however, pl+O as A+O, and in particular the dipole moment of the 
resulting field structure is constant (rather than exponentially increasing) 
in the limit A=O.  The model described by equations (4.4) and (7.1) 
therefore shows no inconsistency with the Bondi and Gold constraint. 
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In the above dicussion we have concentrated on the a*-dynamo in a 
spherical geometry with constant a. This is in fact a rather artificial 
situation, but i t  has the advantage of being amenable to simple analysis. 
In the solar context (in which the behaviour as 1-0 is of critical 
importance), the aoj-model (Steenbeck and Krause 1969) with a distri- 
bution of a that is antisymmetric about the equatorial plane is more 
relevant. It is known that the growth rate for this type of dynamo has the 
form 

1 

where cob is a typical value of the gradient of angular velocity, and that dynamo 
action occurs (Rep>O) If X =w~lalu4/[jZ exceeds a critical value X ,  of order 
unity (M78, $9.1 2). Here again there is a conflict with the Bondi and Gold result 
whenever a> (B2X,/w~Ix])1'4. There seems little doubt that this conflict can 
again be resolved by replacement of (4.5) by (7.1), in conjunction with the mean 
induction equation. 

1 

8. DISCUSSION 

This paper has been concerned with the growth rates ( p )  of magnetic 
instabilities in simple dynamo systems, and in particular with the de- 
pendence of these growth rates on magnetic diffusivity 3, in the limit A-0. 
In Part I, we showed that the traditional description of the self-excited 
disc dynamo leads to the conclusion p=O(Ibo)  as L+O, in conflict with the 
fundamental property of flux conservation across the disc in this limit. 
This conflict was resolved by allowing for an azimuthal current in the 
disc, (or equivalently, for diffusion of axial flux across the rim of the disc); 
the criterion for dynamo instability is then unchanged, but the growth rate 
satisfies p =  O ( A )  as i + O ,  consistent with the flux conservation principle. 

In Part 11, an analogous conflict relating to traditional dynamos of ct2- 
and aw-type is considered. If, as is widely believed, the generation 
coefficient CI and the eddy diffusivity p tend to non-zero finite values as 
% ~ 0 ,  then the growth rates of these dynamos are again O(3,') as 2-0, and 
this is in conflict with the exact result of Bondi and Gold (1950) that the 
dipole moment is in this limit permanently bounded (a result closely 
dependent on the flux conservation principle). Two possible means of 
escape from this conflict were discussed in 996 and 7: (i) The growth rates 
may be strongly affected by the (necessary) presence of an inhomogeneity 
layer within which ( c i  and p are greatly reduced, and across which flux 
associated with a dynamo instability must diffuse through the molecular 
diffusion process alone; it seems likely that this effect will reduce growth 

0 . 
, 
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rates to O ( 2 )  (an effect that is obviously important in the solar context). 
(ii) Regarding each helical eddy of the turbulence as analogous to a 
miniature disc dynamo, it is suggested in $7 that in the customary linear 
relationship between Q and (B), it is physically realistic to incorporate a 
time lag t ,  (where t i + s  as A+O) between the mean flux across an eddy 
and the emf generated [eqns. (7.1) and (7.2)]. This leads to the appearance 
of a “renormalised” eddy diffusivity p’ [eqn. (7.3)] and, more importantly, 
to model equations for the mean field which are entirely compatible with 
the Bondi and Gold result in the limit A+O. 

These considerations suggest that it would be useful to re-examine the 
various ~ 1 ~ -  and acu-dynamos that have been described in the literature 
and, in particular, to determine the influence of (i) an inhomogeneity layer 
and (ii) a time-lag in the relationship between B and (B), on the growth 
rates of unstable modes in such models. 

A preliminary account of this work was presented at the Woods Hole 
Summer School, 1978, and I am grateful to Professor Willem Malkus who 
invited me to participate. Discussions with John Chapman helped to 
elucidate the argument presented in $5. 

0 
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