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Abstract

Aim

Triage is important in identifying high-risk patients amongst many less urgent patients as emer-

gency department (ED) overcrowding has become a national crisis recently. This study aims to

validate that a Deep-learning-based Triage and Acuity Score (DTAS) identifies high-risk

patients more accurately than existing triage and acuity scores using a large national dataset.

Methods

We conducted a retrospective observational cohort study using data from the Korean

National Emergency Department Information System (NEDIS), which collected data on vis-

its in real time from 151 EDs. The NEDIS data was split into derivation data (January 2014-

June 2016) and validation data (July-December 2016). We also used data from the Sejong

General Hospital (SGH) for external validation (January-December 2017). We predicted in-

hospital mortality, critical care, and hospitalization using initial information of ED patients

(age, sex, chief complaint, time from symptom onset to ED visit, arrival mode, trauma, initial

vital signs and mental status as predictor variables).

Results

A total of 11,656,559 patients were included in this study. The primary outcome was in-hos-

pital mortality. The Area Under the Receiver Operating Characteristic curve (AUROC) and

Area Under the Precision and Recall Curve (AUPRC) of DTAS were 0.935 and 0.264. It sig-

nificantly outperformed Korean triage and acuity score (AUROC:0.785, AUPRC:0.192),

modified early warning score (AUROC:0.810, AUPRC:0.116), logistic regression

(AUROC:0.903, AUPRC:0.209), and random forest (AUROC:0.910, AUPRC:0.179).

Conclusion

Deep-learning-based Triage and Acuity Score predicted in-hospital mortality, critical care,

and hospitalization more accurately than existing triages and acuity, and it was validated

using a large, multicenter dataset.
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Introduction

Overcrowding in an emergency department (ED) has been identified as a healthcare crisis in

many nations.[1,2] Triage is important in identifying vulnerable and high-risk patients among

a large number of less urgent patients as ED overcrowding and delay in care are associated

with increased mortality in many conditions.[3] The rapid assessment of the patient’s risk and

urgency is necessary to identify high-risk patients and determine treatment priority on arrival

at the ED.

The Canadian Triage and Acuity Scale (CTAS) was developed in 1999 after studying the

successful National Triage Scale (NTS) from Australia.[4] The Korean Triage and Acuity Sys-

tem (KTAS) was developed in 2012 based on CTAS and has been used nationwide as triage

since 2016 in Korea.[5] Although these Triage and Acuity Scores (TASs) help identify patients

with high-risk of death, they have two limitations. First, they rely on the provider’s subjective

judgement of critical care needs and pain intensity.[6,7] As a decision can be different for each

provider, outcomes predicted by these TASs have high variation and low reliability.[8] Second,

they can be a bottleneck in the ED patient’s flow because subjective information cannot be

instantly judged and is often ambiguous. In addition, the time to judge can take more depend-

ing on the experience of the provider as subjective information is based on clinical expertise.

[9] This delay is a risk to patient safety.

The Modified Early Warning Score (MEWS) is a widely used tool and overcomes two limi-

tations using physiological parameters (systolic blood pressure, pulse rate, respiratory rate,

temperature, and level of consciousness (Alert, Voice, Pain, Unresponsive).[10–14] However,

it has a limitation in capturing the relationship between parameters. MEWS is the sum of the

scores for each parameter, and the score for each parameter is calculated independently. For

example, systolic blood pressure is not considered when calculating the score for the tempera-

ture even though the temperature is interpreted differently according to systolic blood

pressure.

Machine learning (ML) based overcomes the limitation of MEWS and shows higher perfor-

mance than MEWS.[15] ML is an algorithm that allows a computer to learn by itself from

given data without explicitly programming (i.e., improved performance on a specific task).

Until the last few years, several domains, including TAS, used ML such as logistic regression

(LR) and random forest (RF).[16–18] LR finds the relationship parameters and outcome and

expresses it as a linear combination of parameters. RF creates several decision trees with

ensemble technique and combines the results from them. The decision tree is to build a tree-

like graph (i.e., model) that predicts the outcome by learning discrete cut-points (i.e., rule).

Recently, deep learning (DL) has achieved state of the art performance in several domains

through deep hierarchical feature construction.[19–21] One of the most important advantages

of DL compared to ML is feature learning. From a large number of data, the deep learning

automatically learns the features or representations needed for given tasks such as classifica-

tion and detection using several non-linear modules. In this study, we developed a Deep-learn-

ing-based TAS (DTAS) and validated that DTAS significantly outperforms existing TAS using

a large, multicenter dataset.

Methods

We conducted a retrospective observational cohort study using data from the Korean National

Emergency Department Information System (NEDIS) which collected data on all visits in real

time from 151 EDs in Korea. The NEDIS data was split into derivation data (January

2014-June 2016) and validation data (July-December 2016). Furthermore, we used data from

the Sejong General Hospital (SGH) for external validation (January-December 2017). The
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hospital is a specialist cardiovascular teaching hospital, with approximately 14,000 patients vis-

iting the ED each year. As shown in Table 1, internal and external validation data had different

characteristics. We verified that DTAS was not biased towards specific characteristics through

Table 1. Baseline characteristics of the study subjects.

NEDISa patients SGHa patients

Derivation data Internal validation External validation p-valueb

Characteristics (n = 8,981,184) (n = 1,986,334) (n = 13,989)

Study period 1/1/2014-6/30/2016 7/1/2016-12/31/2016 1/1/2017-12/31/2017

Female, No. (%) 4,511,654 (50.2%) 1,000,513 (50.4%) 7,170 (51.3%) 0.005

Age, mean ± SD 49.9 ± 18.9 50.5 ± 19.1 51.6 ± 23.5 <0.001

Initial vital signs, mean ± SD

Systolic BP (mmHg) 131.2 ± 23.3 131.8 ± 23.6 125.8 ± 19.4 <0.001

Diastolic BP (mmHg) 79.3 ± 13.9 79.3 ± 14.3 77.0 ± 11.3 <0.001

Heart rate (/min) 83.8 ± 16.2 84.5 ± 16.8 84.7 ± 21.2 <0.001

Respiratory rate (/min) 19.6 ± 2.7 19.5 ± 2.7 19.8 ± 3.8 <0.001

Body temperature (˚C) 36.7 ± 0.7 36.8 ± 0.7 36.7 ± 0.7 0.755

Mental status, No. (%) <0.001

Alert 8,674,058 (96.6%) 1,919,259 (96.6%) 13,770 (98.4%)

Reacting to Voice 161,624 (1.8%) 35,781 (1.8%) 88 (0.6%)

Reacting to Pain 113,192 (1.3%) 24,346 (1.2%) 85 (0.6%)

Unresponsive 32,310 (0.3%) 6,948 (0.3%) 40 (0.3%)

Arrival mode, No. (%) <0.001

Air Transport 7,245 (0.1%) 1,675 (0.1%) 7 (0.1%)

Ground Ambulance 2,212,231 (24.6%) 501,367 (25.2%) 3,392 (24.2%)

Other vehicles 6,450,117 (71.8%) 1,457,125 (73.4%) 10,399 (74.3%)

Walk in 311,591 (3.5%) 26,167 (1.3%) 185 (1.3%)

Symptom onset to ED arrival time, No. (%) <0.001

- 24 hours 5,394,527 (60.1%) 1,216,608 (61.2%) 8,328 (59.5%)

24–72 hours 2,666,179 (29.7%) 583,083 (29.4%) 5,320 (38.0%)

72 hours—7 Days 536,525 (6.0%) 111,573 (5.6%) 280 (2.0%)

7 Days—30 Days 258,641 (2.9%) 51,045 (2.6%) 43 (0.3%)

30 Days - 125,312 (1.4%) 24,025 (1.2%) 12 (0.1%)

Trauma, No. (%) 2,536,815 (28.2%) 556,455 (28.0%) 2034 (14.5%) <0.001

Korean Triage and Acuity System (KTAS), No. (%) <0.001d

Level 1, Resuscitation -c 16,589 (0.8%) 26 (0.2%)

Level 2, Emergent -c 140,325 (7.1%) 92 (0.7%)

Level 3, Urgent -c 721,686 (36.3%) 433 (3.1%)

Level 4, Less urgent -c 870,206 (43.8%) 4,327 (30.1%)

Level 5, Non-urgent -c 237,528 (12.0%) 9,105 (65.1%)

Outcomes, No. (%) <0.001

In-hospital mortality 125,219 (1.4%) 27,998 (1.4%) 150 (1.1%)

Critical care 511,342 (5.7%) 113,775 (5.7%) 987 (7.1%)

Hospitalization 2,433,994 (27.1%) 530,373 (26.7%) 4,337 (31.0%)

aNEDIS denotes National Emergency Department Information System, SD indicates Standard Deviation, and SGH means Sejong General Hospital.
bThe alternative hypothesis for this p-value is that there is a difference between NEDIS patients and SGH patients.
cKorean Triage and Acuity System has been implemented nationwide since 2016. For this reason, this column is blank.
dThe alternative hypothesis for this p-value is that there is a difference between NEDIS internal validation patients and SGH patients.

https://doi.org/10.1371/journal.pone.0205836.t001
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the validation of both data. The Sejong General Hospital Institutional Review Board approved

this study and granted waivers of informed consent based on general impracticability and min-

imal harm. Patient information was anonymized and de-identified before the analysis.

The NEDIS data included age, sex, arrival time, chief complaint, arrival mode, initial vital

signs, trauma, ED treatment result, place of hospitalization, admission result, KTAS, discharge

diagnosis, etc. The study subjects were adult patients (�18 years), and patients who were dead

on arrival or had missing value were excluded.

The primary outcome was in-hospital mortality. The secondary outcome was critical care,

and the tertiary outcome was hospitalization in this study. The critical care outcomes com-

prised of direct admission to the intensive care unit (ICU), transfer to other hospitals for ICU

admission, and in-hospital mortality. The hospitalization outcomes consisted of direct admis-

sion to hospital, transfer to other hospitals for admission, and in-hospital mortality. Admitted

patients who eventually die were included in the critical care outcome and the hospitalization

outcome. However, each outcome was not double counted because we predicted indepen-

dently for each outcome whether it would occur or not: "hospitalization or non-hospitaliza-

tion," "critical care or non-critical care," and "mortality or non-mortality." We use age, sex,

chief complaint, time from symptom onset to ED visit, arrival mode, trauma, initial vital signs

and mental status as predictor variables (Table 1).

We developed DTAS using multilayer perceptron, a method of deep learning, with 5 hidden

layers. Because there was no gain in accuracy when adding more than 5 layers, we made up 5

layers to minimize the parameters to be learned. The first to fourth layers consisted of 32, 32,

16, and 8 nodes, and applied a rectified linear activation. The last layer consisted of 1 node

which represented the risk of each outcome and applied a sigmoid function. We learned

DTAS as the Adam optimizer and used a binary-cross entropy as a loss function.[22] To vali-

date our model, we used the hyperparameters of the model with the best performance on 10%

of the data from the derivation data during the training process.

We compared the performance of DTAS with KTAS, MEWS, LR, and RF. KTAS has been

used nationwide as triage since 2016 in Korea. MEWS is widely used as a tool to identify

patients at risk of deterioration, and several studies have shown good results with MEWS in

predicting poor outcomes of ED patient.[13,23,24] In the previous studies, LR and RF were the

most commonly used machine learning algorithms and showed better performance than

MEWS.[25–27]

We conducted a performance test exclusively for each outcome. We used the area under

the receiver operating characteristic curve (AUROC) and area under the precision and recall

curve (AUPRC) as the comparative measures. AUROC is one of the most used metrics in

evaluating binary classifiers and shows sensitivity against 1-specificity. Compared with

AUROC, AUPRC is useful with an imbalanced data like our study and show precision (i.e.,

1-false positive) against recall (i.e., sensitivity).[28] With imbalanced data, in which the num-

ber of negatives outweighs the number of positives, AUROC has a limitation for evaluating

the performance because the false positive rate (false positive/total real negatives) does not

decrease dramatically when the total negatives are large.

Results

A total of 11,656,559 ED visits to 151 hospitals were included in the NEDIS. We excluded

689,041 visits due to 114,368 dead on arrivals and 574,673 missing values. Study subjects com-

prised of 10,967,518 ED visits and the outcomes were 153,217 in-hospital death (1.4%),

625,117 critical care admissions (5.7%), and 2,964,367 hospitalization (27.0%) (Table 1). DTAS

was developed using derivation data of 8,981,184 patients, and the validation study was
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performed using data of 1,986,334 patients on the NEDIS. External validation was performed

using 13,989 visits to SGH ED, where the outcomes were 150 in-hospital death (1.1%), 987

critical care admissions (7.1%), and 4,337 hospitalizations (31.0%).

As shown in Fig 1 and Table 2, DTAS (AUROC: 0.935, AUPRC: 0.264) significantly outper-

formed KTAS (AUROC: 0.785, AUPRC: 0.192), MEWS (AUROC: 0.810, AUPRC: 0.116), LR

(AUROC: 0.903, AUPRC: 0.209), and RF (AUROC: 0.910, AUPRC: 0.179) with respect to in-

hospital mortality. DTAS also outperformed KTAS, MEWS, LR, and RF with respect to critical

Fig 1. Accuracy for predicting in-hospital mortality. Fig 1 shows Receiver operating characteristic (ROC) curve and precision-recall (PR) curve for predicting

in-hospital mortality. ROC curve of internal validation (A) and PR curve of internal validation (B) show that the Deep-learning-based Triage and Acuity Score

(DTAS) predicted in-hospital mortality more accurately than Korean Triage and Acuity System (KTAS), Modified Early Warning Score (MEWS), Random Forest

(RF), and Logistic Regression (LR) using the National Emergency Department Information System (NEDIS) data (Table 1). The ROC curve of external validation

(C) and PR curve of external validation (D) demonstrated that DTAS predicted in-hospital mortality more accurately than other methods using the Sejong

General Hospital (SGH) dataset. With respect to external validation, DTAS (AUROC: 0.92, AUPRC: 0.23) significantly outperformed KTAS (AUROC:0.80,

AUPRC: 0.13), MEWS (AUROC: 0.74, AUPRC: 0.06), RF (AUROC: 0.89, AUPRC: 0.14), and LR (AUROC: 0.89, AUPRC:0.16).

https://doi.org/10.1371/journal.pone.0205836.g001
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care and hospitalization (Table 2). With respect to external validation, DTAS consistently

showed better performance than other TASs.

As shown in Fig 1, the sensitivity of KTAS level 3 was 0.49 for predicting in-hospital mortal-

ity. At this point, the precisions of DTAS, KTAS, MEWS, RF, and LR were 0.24, 0.08, 0.09,

0.16, and 0.18, respectively.

Discussion

We found that DTAS showed the best performance for predicting in-hospital mortality, criti-

cal care, and hospitalization based on a large, multicenter dataset. DTAS can reduce a false

positive by 67% compared to KTAS. This reduction in false positives increases the practical

applicability of DTAS.

Several previous studies attempted to predict outcomes of ED patients. Taylor et al.

reported a new random forest method for predicting in-hospital mortality of emergency

department patients with sepsis.[29] Ong et al. reported a conventional machine learning

model for predicting cardiac arrest in critically ill patients presenting to the ED.[30] But two

studies used small population and did not perform multicenter validation. The performance of

algorithms based on given data rather than medical knowledge, such as machine and deep

learning, is not guaranteed in other environments. The algorithms can memorize only the

characteristics of derivation data. Because they learn the relationship between the predictor

variables and outcome from only given data. Wolpert explains the No Free Lunch theorem; if

optimized in one situation, a model cannot produce good results in other situations.[31]

We used the national big data NEDIS to develop and validate DTAS, and the subjects of

this study were those who visited ED across the whole country. Therefore, DTAS learned the

Table 2. Accuracy for predicting in-hospital mortality, critical care, and hospitalization.

AUROC (95% CI) p-valuea AUPRC (95% CI) p-valuea

Predicting In-hospital mortality

DTAS 0.935 (0.935–0.936) - 0.264 (0.263–0.265) -

KTAS 0.785 (0.785–0.786) <0.001 0.192 (0.192–0.193) <0.001

MEWS 0.810 (0.809–0.810) <0.001 0.116 (0.116–0.117) <0.001

RF 0.910 (0.910–0.910) <0.001 0.179 (0.178–0.180) <0.001

LR 0.903 (0.902–0.903) <0.001 0.209 (0.208–0.210) <0.001

Predicting Critical care

DTAS 0.894 (0.894–0.895) - 0.460 (0.460–0.460) -

KTAS 0.797 (0.797–0.797) <0.001 0.376 (0.375–0.376) <0.001

MEWS 0.726 (0.725–0.726) <0.001 0.236 (0.235–0.236) <0.001

RF 0.822 (0.821–0.822) <0.001 0.338 (0.337–0.338) <0.001

LR 0.818 (0.818–0.818) <0.001 0.349 (0.349–0.350) <0.001

Predicting hospitalization

DTAS 0.804 (0.803–0.804) - 0.654 (0.654–0.655) -

KTAS 0.681 (0.681–0.681) <0.001 0.525 (0.524–0.525) <0.001

MEWS 0.614 (0.614–0.614) <0.001 0.444 (0.444–0.444) <0.001

RF 0.738 (0.738–0.738) <0.001 0.557 (0.557–0.558) <0.001

LR 0.713 (0.713–0.713) <0.001 0.531 (0.531–0.531) <0.001

CI denotes confidence intervals, DTAS Deep-learning-based Triage and Acuity Score, KTAS Korean Triage and Acuity System, and MEWS Modified Early Warning

Score, RF Random Forest, and LR Logistic Regression.
aThe alternative hypothesis for this p-value is that there is a difference the between area under the curve of DEWS and other methods.

https://doi.org/10.1371/journal.pone.0205836.t002
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characteristics of all patients nationwide rather than any particular area. However, DTAS can

be biased to the average of NEDIS (i.e., overfitting). So, we verified DTAS using SGH (external

validation) which had different characteristics from NEDIS. Through multicenter validation,

we showed that the performance of DTAS was not biased towards specific characteristics and

guaranteed in other environments.

Most patients do not experience rare events such as in-hospital mortality and critical care

(i.e., imbalanced data). In this environment, AUPRC is a more important metric than

AUROC. With imbalanced data, in which the number of negatives outweighs the number of

positives, AUROC has a limitation for evaluating the performance because the false positive

rate (false positive/total real negatives) does not decrease dramatically when the total negatives

are large. AUPRC, on the other hand, is suitable for imbalanced data, as they consider the frac-

tion of true positives among positive predictions.[32] Although DTAS can reduce false posi-

tives by 67% compared to KTAS, the AUROC of DTAS is only 19% higher than the AUROC

of KTAS for predicted in-hospital mortality. On the other hand, AUPRC of DTAS is 38%

higher than AUPRC of KTAS.

Unfortunately, traditional triage tools are complex scoring methods that require detailed

history taking and physical exams (e.g., pain score, evidence of dehydration, pitting edema,

and blood sugar test result), and judgment based on clinical experience (e.g., expected emer-

gency department resource).[4,7] These tools require considerable time for triage and are of

limited use in resource-constrained settings of circumstances in which junior triage provider,

who have limited training and experience, practice.[9,33] Numerous studies concluded that

dedicating a senior doctor in triage reduced the waiting time for patients to see a doctor,

decreased the LOS, and lowered the proportion of leftover patients without being seen.[33,34]

However, this solution requires enormous cost.[35]

On the other hand, DTAS requires only age, sex, chief complaint, symptom to visit time,

arrival mode, trauma or not, initial vital sign, and mental status as input parameters. This allows

DTAS to have three strengths. First, outcomes predicted by DTAS have low variation and high

reliability because input parameters are basic information with low inter-physician variation. Sec-

ond, input parameters do not require expert judgment and can be collected very quickly, it would

be of great value in a resource-constrained ED setting. Third, parameters of DTAS can be checked

in a pre-hospital setting and DTAS score can be calculated in pre-hospital transport and out-of-

hospital situations. Therefore, DTAS has the potential to make the process of pre-hospital emer-

gency medical service (EMS) and ED efficient. Our next area of focus for research is the prospec-

tive study of EMS and ED triage to verify the performance and efficiency of DEWS.

Conclusion

Deep-learning-based Triage and Acuity Score predicted in-hospital mortality, critical care,

and hospitalization more accurately than existing triages and acuity, and it was validated using

a large, multicenter dataset.
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