SÛRETÉ DE FONCTIONNEMENT

« ANALYSE DU RISQUE ET FACTEURS HUMAINS »

Place de l'action « humaine »

- Exemple d'actions :
 - Ouverture de la trappe pour brancher la prise
 - Connexion de la prise

- Nécessité de prendre en compte ces actions
 - Au niveau de l'analyse de risques
 - Au niveau d'une surveillance
 - Au niveau d'une prévention

Catégorisation des risques (NUREG-1764)

- Etape 1 : Estimation de l'importance du risque
- □ Etape 2 : Qualification en terme de sûreté du risque
- Etape 3 : Détermination de la pertinence d'intégrer cette action dans la revue des « facteurs humains »

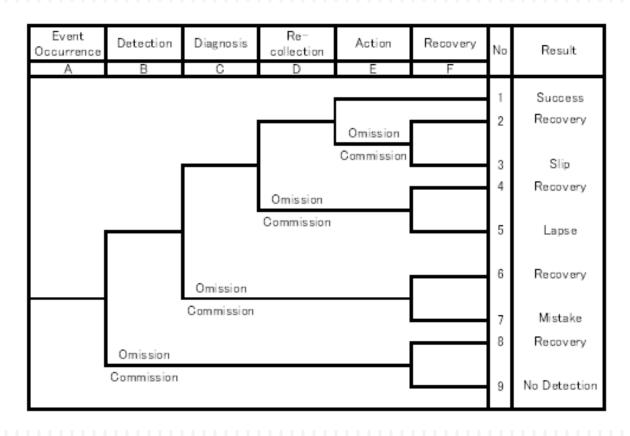
Classification des erreurs humaines

Preinitiator Error

Se produit en absence de pression particulière (absence d'erreur, de situations critiques,...)

- Erreur suite à Tests et de Maintenance Oubli de remettre un équipement en mode « opérationnel » après un test.
- Erreur générant un évènement redouté
 Non respect d'un feu rouge.

Classification des erreurs humaines


Postinitiator Error

Se produit typiquement suite à la survenance d'un évènement (dysfonctionement, etc).

Erreur de Procédure

- 2. Erreur de Diagnostic
- 3. Erreur de l'opération de récupération (Recovery)

Arbre d'actions d'un opérateur

Extrait de « Safety Goal Risk Assessment by H. Kumamoto

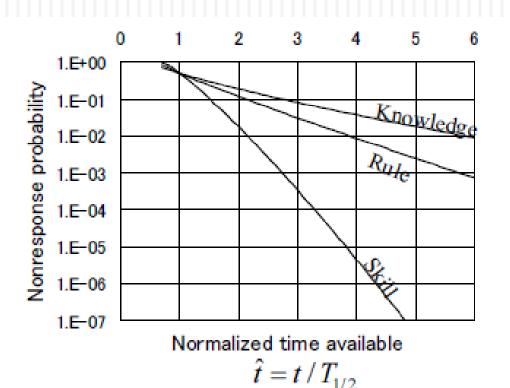
Facteurs pouvant influer la performance

NUREG-1764 distingue entre

- Les modifications d'équipe
- Les modifications du niveau de formation
- Les modifications dans les modes de communication
- Les modifications dans l'environnement

Quantification de la réponse

- \square Temps médian de détection $\overline{T}_{rac{1}{2}}$
- Dépend
 - lacksquare Du niveau de compétence K_1
 - \blacksquare Du niveau de stress K_2
 - lacksquare De l'interface homme-machine K_3


$$T_{\frac{1}{2}} = (1 + K_1)(1 + K_2)(1 + K_3) \bar{T}_{\frac{1}{2}}$$

Estimation des coefficients

Compétence	K1
1 Expert	-0.22
2 Senior	0
3 Junior	0.44
Stress	K2
1 Situation grave	0.44
2 Charge importante	0.28
3 Condition optimale	0
4 Sous-charge	0.28

Interface	K3
1 Excellente	-0.22
2 Bonne	0
3 Appropriée	0.44
4 Peu appropriée	0.78
5 Inappropriée	0.28

Impact du procédé de réflexion mentale

$$\Pr\{\hat{t}\} = \exp\left(-\left\{\frac{\hat{t} - B}{A}\right\}^{C}\right)$$

Processus	Α	В	С
Réflexe	0.407	0.7	1.2
Règle	0.601	0.6	0.9
Connaissance	0.791	0.5	0.8

Analyse de l'ensemble des tâches réalisées par l'opérateur

 Décomposition de l'action d'un opérateur en une séquence de tâches atomiques

- Les tâches atomiques
 - Détection
 - Sélection
 - Interprétation
 - Exécution

L'analyse des tâches

- Détermination du niveau de formation ou d'information
- Détermination des opérateurs qualifiés
- Détermination des actions à réaliser
- Détermination de l'adéquation entre les opérateurs et les tâches
- Prise en compte de l'ensemble des erreurs potentielles pertinentes.

Etablissement des arbres de défaillances

L'arbre des défaillances d'un processus humain consiste en l'ensemble des « incorrections » par rapport à un processus défini ainsi que leur probabilité d'occurrence estimé.

Arbres de défaillances

- Règle de nommage
 - Lettre majuscule : dénote une probabilité de défaillance (ou alors la lettre F)
 - Lettre minuscule : dénote une probabilité de réussite (ou alors la lettre S)
 - Lettre grecque dénote un évènement lié au système conséquence d'une erreur humaine
- Autre règles
 - Les branches gauches sont les branches de succès, droite d'échec
 - Les évènements non pertinents ou trop rares sont éliminés.

Procédure générale de quantification du risque liée à l'action humaine

□ Phase 1:

- Identifier les erreurs humaines dans les arbres de défaillances
- □ Identifier les actions liées à l'évènement
- Identifier les contraintes d'intervention

□ Phase 2:

- Réaliser l'analyse de tâche et des défaillances des actions humaines notamment par rapport à
 - Les groupes d'actions
 - Les erreurs peu probables
 - Les taux de réussite & d'échec

Procédure générale de quantification du risque liée à l'action humaine

- Phase 3 : Intégrer les probabilités selon les règles d'opération standard
 - Attention : adapter les probabilités si des règles d'opération sont contraignantes
 - Port de vêtements de protection
 - Condition extrême
 - Environnement dégradé

Procédure générale de quantification du risque liée à l'action humaine

Intégrer les inter-dépendances entre les actions en supposant que B suive A.

- \square Dépendance complète B=1
- Dépendance forte $B = \frac{(1+B_0)}{2}$
- Dépendance modérée $B = \frac{(1+6B_0)}{7}$
- Dépendance très faible $B = \frac{(1+19B_0)}{20}$
- \square Dépendance nulle $B=B_0$

Conclusion

- Possibilité de prendre en compte les erreurs humaines de manière probabiliste
- Par contre,
 - Forte variabilité
 - Forte dépendance aux environnements
- Ne faut-il pas mieux considérer que s'il y possibilité d'erreur, elle serait de « 1 » ?