
SÛRETÉ DE

FONCTIONNEMENT

« OU COMMENT S’ASSURER

QU’UN SYSTÈME EST SÛR ? »

B. Monsuez

ENSTA PT

BUILDING SAFE

ARCHITECTURE BASED

ON MICROPROCESSOR

MANAGING FAULTS

 Fault avoidance : Keep the fault out of the design

 Goal of the ARP 4754, DO-178 & DO-254

 Regarding microprocessor based architecture

 No control on the design

 Fault may always be present in the microprocessor and may occur

 Fault removal : Remove the fault before the system enters
the service

 Goal of the ARP 4754, DO-178 & DO-254

 Regarding microprocessor based architecture

 Test extensively the complete architecture functionally and electrically.

 Proceed with fault injection

 Use the monitoring feature provided by the microprocessor to test the
architecture.

MANAGING FAULTS (Cntd)

 Fault Detection

 Detect the fault during service

 Take the adequate counter-measures to prevent the fault from manifesting itself
as an error of failure

 In case of a microprocessor based system

 Monitor all the components, for instance the internal registry of the microprocessor to
determine if the system is operating correctly

 Monitor the output of the system to determine if the computed value are corrected

 Values can be compared to pre-calculated table

 Values can be compared to output of other systems

 Fault Tolerance

 Capacity of the system to continue to operate correctly despite the occurrence
of a fault.

 ECC for internal RAM or Buffer

 ECC for internal & external bus

DETECTING FAULTS

 Functionality Checking

 Detect the wrong operation of hardware components using routines to
check their functionality

 Routines to check memory

 Routines to check processor operations

 Routines to check network communication

 Done periodically

 Performs checksums and compare to pre-calculated results

 Consistency Checking

 Compare the output of software with expected results

 Range of value

 Deviance from pre-calculated values.

 Execute routines to verify the data integrity & consistency

 Periodical verification of a file system

DETECTING FAULTS: CONSISTENCY

CHECKING

 Signal Comparison

 Compare different signals in redundant systems that are assumed
to be equal.

 Instruction and Bus Monitoring

 Check the operation code and operand for each instruction

 The processor must allow monitoring of the instruction and operand

 Check the bus for

 illegal access (address corruption)

 Illegal data

 Information Redundancy

 Parity checks

 ECC

DETECTING FAULTS: SIGNAL

COMPARISON

 Loopback Testing

 Verify that a signal has reach his destination unchanged

 An independent path connect the destination to the source so

that the signals can be compared at the source

 Used to test communication lines but also communication

network

 Watchdog and Health Monitoring

 A timer is loaded with a value and get decremented

 The processor must periodically reload the value

 If the timer reaches zero, a non-response fault has been detected

FAULT TOLERANT ARCHITECTURE

 Fault Tolerance

 Capacity of the system to operate properly on the

hypothesis of the failure of one (or more) of its

component

 Fault Tolerance is required for all the systems with high

availability requirement not only safety critical systems

 Ex: Internet is a fault-tolerant system

DETECTING FAULTS AT SOFTWARE

LEVEL

 Requires that software monitors

 The current state of the hardware
 Do health monitoring by reading the different registers that

describe hardware states

 Do health monitoring by handling interruption generated by
hardware when a specific operation appends

 The current state of the executing processes
 Tests if the processes are alive

 Tests if the processes complete in the expected tome

 Tests if the output values of the functions are valid

 Requires that software covers all the faulty state

MANAGING FAULTS AT SOFTWARE

LEVEL

 When fault is detected

 Determine the fault gravity

 Determine if the equipment is compromised or not

 Proceed with the appropriate steps

 Disconnect or reconfigure a faulty unit

 Stops and relaunches a faulty process

 Goes into a degraded mode to pursue the operation

 Cuts non critical operations if required.

TRIPLE MODULAR REDUNDANCY

 At most one replicated

component fails

 The voting mechanism

does not fail !

 There are no

systematic failure

 Isolation of the failed

component is not an

issue

MULTIPLE FAILURES

N-Modular redundancy where

 N is an odd number

 Majority voting is required to
determine the output

 Up to (N-1)/2 redundant
component may fail

 The voting mechanism is
assumed not to fail.

 No protection along
systematic failure

MULTIPLE FAILURES OF THE VOTING

COMPONENT

 About reliability of the voting component

 Voting component is a relatively simple component

 Four nand gates per bits to be compared

 The level of confidence may not be adequate

 Was not considered safe enough for the launch vehicle

digital controller of the Saturn V rocket

 Solution : triplicate the voting component

TRIPLE VOTING ARCHITECTURE

 Voting component is triplicated

 Robust to one failure of a
voting component

 However, we have to handle
three outputs

 Can only be used in cascading
Triplicated Redundant
architecture

 Connection from on stage to
another stage of the
architecture

TMR MULTIPLE STAGES TRIPLE VOTING

ARCHITECTURE

SYSTEMATIC FAILURES

 Systematic failures

 Errors in the specification or the design of the replicated components

 All the components will fail the same way in the same context.

 Voting component will not detect any error.

 Use Component Diversity

 Use of 3 different microprocessors

 Use Temporal & Spatial Diversity

 Use delayed inputs

 Use different execution contexts

 Diversity may not always be the solution

 May introduce new sources of errors

FAULT TOLERANCE & FAULT

DETECTION

 Faulty Component

 May interfere with the system

 Requires to be isolated from the system

 Example : an Ethernet port of a micro-controller is polluting the network.

 Requires

 To identify the faulty component

 To switch off or to restart the faulty component

 To switch to a stand-by component if available.

 Stand-by components

 Hot stand-by : runs in parallel to the standard component.

 Cold stand-by : turned off and must be switched on.

 Warm stand-by : turned on but must be synchronized.

ACTIVE REDUDANCY

EMERGENCY SHUTDDOWN SYSTEM

REDUNDANT FBW ARCHITECTURE

REDUNDANT FBW ARCHITECTURE

SOFTWARE FAULT TOLERANT

ARCHITECTURE

 Software Architecture may also be include fault tolerant
process

 Dual-Time

 The process is executed twice

 If an external non systematic perturbation occurs,
probability that it will occur twice is very low

 Take the most probable value as a result of the function

 Software Run-time Checking

 Monitor compares results to pre-calculated values

 Value not in the variance of the outputs
 May substitute its own output

 May invoke a piece of code to return in a safe state

