Rethinking the E/E System
Architectures for Future Cars
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Embedded Systems are everywhere
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Embedded Systems control every
Actuators
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Typical Actuator Drive
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Typical controllers

« Vehicle Motion
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« Vehicle Body Control
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Safety Critical Systems

- Safety Critical Systems are Systems whose failures have potential
catastrophic consequences
= Loss of the vehicle
= Destruction of other vehicles & equipments
= Death or injury of vehicles occupants
= Death or injury of people staying around the vehicle

- Estimating the reliability of a Safety Critical System:
= Determining the Feared Events
= Determining the Severity of the Feared Events
= Estimating the occurence of the Feared Events



The attributes of a DEPENDABLE
SYSTEM

Availability (“readiness for correct service”),

Reliability (“continuity of correct service”),

Integrity (“maintaining the consistency of data”),

Maintainability (“ability for a process to undergo

modifications and repairs”),

- Safety (“absence of catastrophic consequences on the
users and the environment’

- Security (“prevention of unauthorized disclosure of
information”)

- Certificability (“capacity of to obtain safety certification

from standard authority®).



The Risk Assessment MatriX
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Estimating the criticity of an
Equipment

- Light System
- Emergency Braking System

- Air conditioning System



Safety Versus Reliability versus
Availability

- Reliability:
= Capacity to maintain the operation without interruption.
= Reliable service may be costly to ensure safety
- Availability:
= Capacity to deliver the service at the given time
= Available System may be neither reliable nor safe

- Safety: Absence of catastrophic errors
s Detects a dangerous condition and bring the system in safety modus
= Safe system may offer very little ,availability*
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Why Safety matters ?

The criticity associated to the
controlers

» Vehicle Motion

. Vehlcle Body Control
Window regulator
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- Rain sensing automatic  ° Automated Driving

whisper
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« Traction/Power train ° Occupant protection

systems
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. Driving assistance systems

- Electronic all-around
visibility




Function Reliability Versus Component
Reliability

- Function reliability

s The requirements regarding the function itself, with no indication about how the function is
implemented.

- Compoment reliability
The estimated reliability of the components that host one or many functions.

- Function mapping
> A function is mapped to a set of components that host this function
s A component may host many functions



15026262 - Safety Standard Focusing on
Automotive Electrical/Electronics
Application
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The Safety Dilemna

« No electronics component e
offers the required level Reconfigurator
of reliability i

Maximum level of l
reliability: 10~°h™!

- No way to ensure the level of
reliability without
monitoring and/or
duplication.

« This dramatically increases
the cost of the vehicle

Cl:C >

Y

Selector -




Safety Analysis of the pressure control
of a common rail injection system

- Identification of the feared
events

- Determining the criticity of
this function

« Propose a mechanism to
ensure a safe operation

- Propose an implementation
to support the mechanism




Current Car architecture

- What is the main knowledge of a car maker ?
= Designing the global car architecture
= Designing the body
= Designing the chassis
= Specifiying the multiple functions to be integrated

» Integrating and orchestrating a set of functions that are either internally
or externally developped

- Car Maker are thinking in terms of functions
= Power train function

Breaking function

Entertainement function

m]
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A function or group of functions <& A set of components to implement it



Strengths and Limits of this approach

o Limits
= Uses its own hardware

» Limited global coordination with
other functions

= May not use the full potential of the
car equiments (overactuated
vehicle)

- Strengths
= Function segregations
= Easily substituable
= Model and Data independent



CONTROLING AN OVERACTUATED CHASSIS
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Towards a Global Orchestration
approach
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What makes overactuated cars
interesting

« Performance-wise
- Safety-wise
« Confort-wise



Moving From An Function segegrated
architecture to a Centralized
architecture

Conventional Architecture Software Centric Approach




Networking: A short introduction

= A small message structure

Header (2 bits) Payload (32 bits) Checksum (4 bits)
MNode MNode: MNode MNode
Data
. . - R 00 = Request
SWinterface SWinterface SWinterface SW interface 01 = Reply
10 = Acknowledge request
HW interface HW interface HW interface HW interface 11 = Acknowledge reply

=  Bandwidth : the maximum rate at which the
interconnection network propagates information.

Interconnection network

= Time of flight : The time the first bit of the
message reached at the receiver.

= Transmission time : The time for the message to
pass through the complete network.



Typical Timing Issues And Network
Topologies

Network Topology Types Transmission

me
Sender overhead (bytes/BW)

Transport latency
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CAN: A Short Introduction

- CAN functionality is
divided into two layers

Physical 1
= Data-Link " ysical layer

> Physical CAN Node = bit encoding and de coding, bit
timing, synchronization processes.
Microcontroller
= Differential signal encoding
CAN .
Data Link Layer
purlle L4150 118981 DOMINANT
CAN Medium Access Unit CANH
Transceiver (Electrical Levels)
ISO 11898-2, 3 RECESSIVE
1 CANL v 0H
www.interfacebus.com
Bus
?Rn:nn } J RLerm%
Stub Length CAN Node Stub Length CAN Node (( Stub Length CAN Node
Not Terminated — Not Tenninated 1 Not Terminated
At Node At Node Al Node
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CAN: Messages and arbitration

Standard CAN Message Arbitration
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F R [E F|s \ arbitration

 Data Frame: Send data Node C \
Transmits ¥

- Remote Frame: Request data Node B

« Error Frame: misformed frame to Transmits
signal an erroneous state CAN Bus

+ Overload Frame: misformed frame
to signal a busy state.
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NETWORK: Safety Issues

Real-Time related
constraints and issues
« Cyclic Message
Each message OCCurs €very X 1ms.

- Event-Based Message
An event generates the message

What may go wrong ?
« Wires get damaged
- Message get lost
- Message get corrupted

» Node can never access to the
network

» Node never releases access to « Problem

the network. How to garantee that all the
« Node is polluting network messages can be successfully
delivered ?



The Mixed-Criticality Challenge

- Central ECU, Shared hardware

 Mixed criticality System: (sensors, actuators, networks):
System Platform that may become a Single Point Of
executes several applications of Failure to many when not all
different criticality, such as safety- applications

critical and non-safety critical or of

different ASILs. - Computational Node:

segregation must be warranted.



Hypervisors as a Solution to handle
Mixed-Criticality

Project specific * Configuration capability General Purpose
Component Middleware

Domain specifc I
- components
- Domain specific

Partition OS

- Generic code
I:I Project
specific code

Standardised
Project SW/SW
specific Hardware interface

Partitioning Kernel




Examples of typical ECU processing
types per functional domains

Control loop Real time ASIL Processing Software
time type type

AVE, soft Mostly QM, HC with

Infotainment real time Up to B GPU Passible
Body and Soft Mostly QM, . .
comfort s real time Upto B pP Passible Passible
Powertrain WS Hami UptoD WP Passible Mo
real time Multi-core
Hard HP ) .
Chassis ms Iys real time UptoD Multi-core Passible User permission
Hard pC with . .
ADAS domain s real time UptoD GPU No User permission
Upto D .
ADAS sensors ms Hardf_snft (B and C o No** No
real time GPU

commaon)



Mapping Node$S according to Criticality
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Automotlve Architecture Topologies

Domain-Based (D): System components are
grouped according to their functionality. A domain is
supervised by a controller and all the sensors and
actuators are connected to this controller.

- Zone-Based (Z): System components get grouped
according to their location. groups system components
according to their physical position in the vehicle. All
the components are connected to the nearest controller
with a direct connection or a local zone network. Zone

are connected to the central unit or to other zones via a
backbone.

- Vehicle-Centralized (VC): All the computational
nodes are mapped to the central unit. Domain and local
controllers are gateway.

- Controller-Based (CB): Computational nodes may
be mapped to domain or controllers that are local to
zones, a central computation unit may handle the data
that belongs to many zones or domains.



Electrical/Electronics Architecture For
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Difference between Domain Vehicle
Architectures and zonal Vehicle

Architectures

CONNECTIVITY

L B
i
wt =T B /
INFOTAINMENT m / ™
& IN-VEHICLE /
; ADAS & HIGHLY
EXPRRIBNCE i/ [/AUTOMATED DRIVI N\
[ A, . S // f of 72
an san {
- A
‘-l
o~ a ’
& gte
= is =
& ‘B’go

POWERTRAIN &
VEHICLE DYNAMICS

DOMAIN VEHICLE ARCHITECTURES ZONAL VEHICLE
ARCHITECTURES



Overlaying redundant sensors enables
ADAS and self-driving systems to
achieve higher levels_ofsfunctional
safety integrity

B Long-Range Radar

M LIDAR

[l Camera

B Short-/Medium-Range Radar
B Ultrasound




Network-Centric Vehicle
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Security Challenges for the Connected
Car

Valuable Data High Vulnerability Easy (Remote) Access

* Increasing number of nodes * Fully Connected Car
* More advanced features « External & internal interfaces
* More and more software * Wired & wireless interfaces

» Collection of data/info
» Storage of data
+ Diagnostic functions

‘ _ Prevent
ﬁ Protect Privacy ﬂ Increase Safety Unauthorized Access

Consumer Device Integration - .
In-Vehicle Network



USE CASE : Integrating an AUTOMATED
EMERGENCY STEERING into a VEHICLE

Emergency Steering AES assists Driver
detected & AES starts
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