

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: März 27, 2022

A multicore processor for time-critical applications

Schoeberl, Martin; Pezzarossa, Luca; Sparsø, Jens

Published in:
I E E E Design & Test

Link to article, DOI:
10.1109/MDAT.2018.2791809

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Schoeberl, M., Pezzarossa, L., & Sparsø, J. (2018). A multicore processor for time-critical applications. I E E E
Design & Test, 35(2), 38-47. https://doi.org/10.1109/MDAT.2018.2791809

https://doi.org/10.1109/MDAT.2018.2791809
https://orbit.dtu.dk/en/publications/bdb51729-5c89-4a00-a170-f340811f6aae
https://doi.org/10.1109/MDAT.2018.2791809

A Multicore Processor for
Time-Critical Applications
Martin Schoeberl, Luca Pezzarossa, and Jens Sparsø

Department of Applied Mathematics and Computer Science
Technical University of Denmark, Kgs. Lyngby

Email: {masca, lpez, jspa}@dtu.dk

Abstract—Time-critical applications need a processor and
software where it is possible to prove that all critical tasks will
complete in time. Such a processor is significantly different from
a mainstream processor for a notebook, server, or smartphone. It
is designed to excel on the worst-case execution time performance
and not on the average case performance. This paper presents
such a radically different design of a multicore processor for
future time-critical systems.

Index Terms—real-time systems, time-predictable computer
architecture.

I. INTRODUCTION

Time-critical applications need time-predictable computing
platforms to deliver results in time. Imagine, as an example, an
airbag system in a car. A crash is detected by several sensors
and a computer combines the information from these sensors.
The computer decides if the information from the sensors is an
indication of a crash and the passengers need some additional
protection. The result of this decision may be to tighten the
safety belts and to fire the airbags. This must be done in time.
If the systems reacts 10 ms too late, it may have catastrophic
consequences.

Anti-lock braking systems in a car, automatic aircraft flight
control systems, and self-driving cars are further examples
where the computer-based control system must respond within
a bounded time. Such systems are called real-time systems, as
stated by Stankovic [10]:

In real-time computing the correctness of the system
depends not only on the logical result of the com-
putation but also on the time at which the result is
produced.

In this context, the focus is on worst case rather than
average case performance. It is important to understand that
the worst-case execution time (WCET) of a task executing on
a computer cannot be measured easily or quickly. It must be
computed by analyzing the system [12]. This is a complex task
typically involving simplifications that result in (safe) over-
approximations. Such over-approximations represent a loss of
performance, and for conventional processors like the one in a
laptop this can be as high as one or more orders of magnitude.

Several researchers have pioneered the view that we need
a new class of computers that are optimized for WCET and
intended for use in real-time systems, safety-critical systems,
and cyber-physical systems [3], [8]. It is important to realize

that “optimized for the worst case” means more than the
processor/computer itself delivering good performance, it is
equally important that it is possible—and hopefully even
simple—to compute the WCET of a task with minimum over-
approximation. This focus involves all layers: the processor
hardware, the memory system, the interconnect, the compiler,
the operating system, and the application. However, the start-
ing point is a time-predictable hardware platform.

Future real-time systems require more performance than can
be delivered by a single core processor. Therefore, we propose
a time-predictable multicore processor with time-predictable
communication between the cores. One example where more
processing power will be needed are future self-driving cars.
Another advantage of a platform with many processor cores
is that tasks can be assigned their own processor cores.

This paper presents a multicore architecture that is designed
and optimized for time-critical systems and supports WCET
analysis. All design decisions consider reduction of the WCET
instead of the improvement of the average case performance.
In our architecture, we use time to trigger and control access
to shared resources: memory accesses and message passing.
The presented architecture is intended as a platform for safety-
critical applications.

Figure 1 shows an overview of our time-predictable mul-
ticore processor, called T-CREST [9]. T-CREST consists of
processor cores, called Patmos, and two communication struc-
tures, both implemented as packed switched networks on chip
(NoC). One NoC, called Argo, is used exclusively for inter
processor communication (message passing) and it uses a bi-
torus topology [5]. The other NoC uses a tree structure and it
supports access to a memory controller administering a shared
DRAM memory, serving as main memory. Each processor has
a small private scratchpad memory (SPM), built out of static
memory cells, and messages are passed by writing data from
the sender’s SPM into the SPM of the receiving core.

The two NoCs and the memory (controller) are shared
resources and therefore in principle subject to interference
among otherwise unrelated activities. Such interference can
severely hurt the WCET of application software executing on
the processors. Minimizing or even eliminating interference is
obviously highly desirable in a real-time system, and towards
this end we have adopted time division multiplexing (TDM)
as the underlying principle. This fundamental decision is mo-

T-CREST Multicore

Processor
core

Processor
core

Processor
core

Processor
core

Memory
controller

Message passing NoC
(bi-torus)

Memory NoC
(tree)

Memory

Fig. 1. The T-CREST multicore architecture with several processor cores
connected to two NoCs: one for core-to-core message passing and one for
access to the shared, external memory

tivated and discussed in more detail in the following section.
Our design is in line with the PRET architecture [3], where

Edwards and Lee state: “It is time for a new era of processors
whose temporal behavior is as easily controlled as their log-
ical function.” Similarly, the Kalray MPPA-256 processor [2]
contains 256 processing cores where the cores are designed
to be an easy target for WCET analysis. The processing cores
are organized in 16 clusters, where the clusters are connected
by a NoC that is designed to guarantee bandwidth and latency
of messages.

The IDMAC platform [11] uses a similar clustered topol-
ogy. It is intended for mixed criticality systems. Its NoC is
designed to support isolation and aiming to optimize latency
and bandwidth it includes a run-time mechanism that adopts
to varying and bursty traffic.

The CoMPSoC platform [4] removes all application in-
terferences by resource reservation. CoMPSoC combines the
AEthereal style NoC with customized processor cores from
Silicon Hive and a composable memory controller. In contrast
to the T-CREST platform, no caches are supported and all code
needs to fit into on-chip memory. Our NoC architecture was
inspired by the family of AEthereal NoCs, where the packets
follow a static, time-driven schedule.

The Reduced Complexity Many-Core architecture [7] pro-
poses to avoid shared memory at all and to support timing
analysis by using a fine-grain message passing NoC. We agree
on this approach to prefer the Argo message passing NoC over
shared memory communication, but also allow shared external
memory for larger code and larger data structures.

II. TIME DIVISION MULTIPLEXING

Using time as an arbitration mechanism is a well-known
scheme and is known as TDM or as time-triggered archi-
tecture [6]. The main benefit is that arbitration decisions are

M02

TDM slot

Time

Clock period

TDM period

M02 M01

Fig. 2. An example TDM schedule with a period of 3 slots.

calculated offline, and captured in a static schedule: time is
divided into slots. Each slot represents a point in time where
exactly one client can access the resource. The mapping of
clients to time slots is prescribed by that static schedule.

In the Argo message passing NoC the resources are the
individual links that connect routers, and it is possible and
desirable to compute a global schedule that allow a packet
that need to traverse a sequence of links to traverse these in
pipelined manner. Figure 2 shows an example schedule for
processor P0 in a small system with four processors P0, P1,
P2, P3. The period of the schedule is 3 slots and each slot is
3 clock cycles. In the first slot P0 sends a packet (M02) to P2
and in the second slot it sends a packet (M01) to P1. The third
slot is not used by P0. After the TDM schedule is finished a
new one starts with another packet to P2.

The use of such static schedules has two main advantages:
(1) it is time predictable, as the timing and the time to
wait for an access slot can be bounded offline and (2) the
hardware for enforcing the static schedule is simple and scales
well. When all clients share a common notion of time, it is
possible to distribute the schedule and make local arbitration
decisions (from which the global and pre-computed schedule
will emerge).

Individual messages fit exactly into a TDM slot. Therefore,
there is no need to preempt any message. When a message is
sent within its slot it moves through the NoC without any
blocking or preemption till the destination. If flow control
between tasks is needed, it is performed in software.

One known downside of TDM based arbitration is that this
scheme is not what is called “work conserving”: if a client
has reserved a slot but does not use the resource, then the
resource is not offered to other clients that could use it. It is
our experience that some consider this as “waste of resources”.
When focus is on WCET we consider this view a fallacy, as
meeting deadlines is all that matters.

The alternative is to implement mechanisms that make
arbitration decisions on the fly during runtime. This is the
approach taken by most designers, but it incurs a considerable
hardware cost. In a NoC, run-time arbitration brings with it
a need to buffer temporarily stalled data and the hardware
implementation of most NoCs is dominated by buffers—
possibly several per router port if virtual circuits are used.
On top of this comes the arbitration circuitry itself, flow
control among buffers, and in some designs, large crossbars
that switch among individual virtual circuits in each router

port.
In contrast to this, a router for a TDM-based NoC is merely

a pipelined X-Y switch, and the area of a TDM router is
typically a small fraction of that of a typical router for a work
conserving NoC. This means that for the same hardware cost,
a TDM NoC can provide substantially higher bandwidth. This
invalidates or at least makes doubtful the objections against
TDM networks for not being work conserving.

In conclusion, the use of time division multiplexing is not
only a means to achieve time predictability and guarantee
WCET, it is also a choice that results in efficient hardware
implementations. TDM is a recurrent theme in our architecture
and we use it at several levels:
• at the Argo message passing NoC,
• in the NI for the Argo message passing NoC,
• at the memory NoC,
• and for DRAM refresh.

III. THE PATMOS PROCESSOR

Patmos, the processing core of the multicore processor, was
designed to be time-predictable. All features are optimized
primarily to reduce the WCET bound. We added only fea-
tures where WCET analysis is possible. Patmos contains a
dual-issue in-order pipeline. The compiler statically schedules
multiple instructions that can execute in parallel. The pipeline
is organized so that there are no timing dependencies between
instructions. For example, all cache misses happen in the
same pipeline stage (the memory stage). This independency
of instruction timings simplifies low-level WCET analysis and
furthermore is a guarantee that there are no timing anomalies.

Patmos contains specialized caches for instructions and
data: (1) the method cache (M$) and (2) the stack cache
(S$). The method cache stores whole methods (or functions
in C). This feature simplifies cache analysis, as cache misses
can only happen on function call or function return. All
instruction fetches within a function are guaranteed cache
hits. The compiler is responsible for splitting large functions
into smaller ones, if needed. The stack cache is responsible
for caching stack allocated data. Addresses of stack allocated
data are relatively easy to deal with in the WCET analysis.
Therefore, we provide an extra cache for stack allocated data,
the stack cache. The compiler emits instructions on function
entry and function return to ensure that the stack cache is valid.
That means that all stack access instructions within a function
are guaranteed cache hits. The data cache (D$) caches static
and heap allocated data. For program-managed code and data,
Patmos supports instruction and data SPMs. The data SPM
is also used as memory for the Argo message passing NoC.
Figure 3(a) shows Patmos with its caches and the SPM and
the connection to the Argo message passing NoC.

Another feature of Patmos is its support of the single-
path code paradigm. With single-path code, all data dependent
control flow decisions are transformed to a single execution
path and conditional update of processor state. When all data
dependent timing variations are removed, the execution time
of a task becomes constant. Therefore, a simple measurement

is a valid approach to finding the WCET. Single-path code
needs, as WCET analyzable code in general, known upper
bounds on loops. Patmos supports the single-path code gener-
ation with instructions that can, depending on a predicate, be
conditionally executed.

Patmos is supported by a port of the LLVM compiler. The
compiler also supports the special features of Patmos, e.g.,
generation of instructions for the stack cache, function splitting
for the method cache, or generation of single-path code.

The simplicity of the processor and the timing independence
of instructions directly translates into simpler WCET analysis.
E.g., no pipeline simulation, with its possible state explosion,
is needed during WCET analysis. Up to now, two WCET
analysis tools support Patmos: aiT1 and platin. aiT is the
standard industrial static WCET analysis tool. Support for
Patmos was added during the T-CREST project. The open
source tool platin is a research WCET analysis tool, which is
part of the compiler distribution for Patmos. Both tools support
analyses of the method cache and the stack cache.

IV. THE ARGO MESSAGE PASSING NOC

Message passing involves copying data from local memory
in the sender across a “channel” and into local memory in
the receiver. The Argo message passing NoC implements
this functionality using TDM and static scheduling, which
effectively creates private end-to-end channels. This approach
avoids interference between independent traffic flows and it
makes it possible to calculate bounds on the worst-case latency
of sending a message.

Similar TDM based message passing functionality is seen in
other multicore platforms; what makes our NoC different is its
efficient and low cost network interface microarchitecture that
avoids resources for arbitration, buffering, and flow control.
In addition, if using asynchronous router implementations,
our NoC supports different forms of relaxed synchrony across
the entire platform without the use of synchronization FIFOs.
Details on both topics are published in [5]. Below we explain
the key features.

The Argo message passing NoC is composed of a packet
switched structure of routers and links in a bi-torus topology.
By using TDM in combination with source routing the routers
are merely pipelined X-Y switches controlled by route infor-
mation in the packet headers. Each processor is connected to
a router using a network interface (NI), as seen in Figure 3,
and it is the NIs that implement message passing.

Each NI operates in a synchronous fashion and executes
a fraction of the global schedule by sourcing data into the
channels that originate from its core. As an analogy, we
mention that this is like the list of departures announced at
a railway station, and continuing this analogy we observe that
if all wall clocks on all railway stations are synchronized, if all
trains depart according to schedule and travel at the prescribed
speed, then no train will ever encounter another train on the
same track (and hence no signaling lights are needed). In

1https://www.absint.com/ait/

https://www.absint.com/ait/

Patmos processor

Inst

SD SPM

Data

M$

Processor core(a)

Message
 passing NoC

Memory NoC

Schedule DMA

Route

TDM count

Read Write

SPM

Read/Write

Network interface(b)

Router

Bi−torus topology

Fig. 3. Details of a Patmos processor node and the network interface of the
Argo message passing NoC

hardware, this corresponds to arbitration and buffering not
being needed.

In a platform with N cores there are typically N−1 outgoing
channels allowing the core to send data to all the other cores.
Each of these is driven by a corresponding DMA controller. If
multiple tasks share a processor, some outgoing channels from
that processor may have to be shared as well. Alternatively,
the NI must be set up to provide multiple channels between
pairs of processors, such that tasks can communicate using
non-shared channels. The architecture supports this as well.

In a simple and straightforward implementation of the NoC,
packets consist of three 32-bit words sent in sequence and a
slot in the TDM schedule is also 3 clock cycles. With 64 cores
a typical TDM schedule is 50–100 slots, corresponding to
150–300 clock cycles. This means that long messages are sent
as a sequence of small packets and that messages originating
from one core are sent in an interleaved fashion. It also
means that the time to transmit a long message is determined
by the throughput of the channel rather than by the latency
experienced by a single packet. In some applications, it will
be relevant to assign multiple slots in a TDM period to a
certain channel. The network uses shortest path routing and

packets belonging to a message are guaranteed to arrive in
order.

Our NI microarchitecture, shown in Figure 3(b), integrates
DMA controllers and TDM scheduling in a novel way and data
is transferred end-to-end from the source SPM and into the
destination SPM, controlled by the TDM schedule. Because
of that, our design enjoys the properties of TDM: it avoids
all buffering and flow control and it is 2–4 times smaller than
existing designs with similar functionality [5].

The TDM counter corresponds to the wall clock in the
railway analogy and it repeatedly indexes through the slots
in the TDM schedule. For every allocated slot in the schedule
the NI may send a packet. If a packet is to be sent the indexed
schedule table entry provides the route for the packet and a
pointer to the DMA controller that will source the payload
data and the target address of the packet. This is illustrated in
Figure 3(b) where the entry in the schedule table points to an
entry in the DMA table. As only one DMA controller can be
active at any given time, the read pointer into the source SPM,
the write pointer into destination SPM, and the word count are
stored as a record in the DMA table. As illustrated, the read
pointer is used to read from the local SPM and the outgoing
packet is assembled from the route, the write pointer, and the
payload data that is read from the SPM at exactly the time it
is transmitted. When a packet arrives at a NI the payload data
is written directly into the target SPM at the address carried
in the packet header. Note that this does not involve a DMA
controller or any other form of control.

The mechanism described above naturally lends itself to
a globally synchronous implementation. As outlined in [5]
implementations with more relaxed timing organizations are
possible at no or very little extra hardware. In the most extreme
case the NIs can operate with an unknown upwards bounded
(clock) skew of 1–2 cycles and the processors can operate with
completely independent clocks.

V. SHARED MEMORY NOC AND DRAM MEMORY
INTERFACE

For realistically sized applications and larger data structures
external memory is used. Access to this shared memory needs
to be time-predictable as well to bound access times for loads,
stores, and cache fills or spills.

For the shared, external memory we use a dedicated memory
NoC. As access to this memory is a many-to-one relationship
between processor cores and the memory, we organize this
NoC as a tree with channels towards the memory controller
and a return path for read data. Figure 4 shows the organization
of the memory NoC. Each processor core is connected to a
network interface (NI). The NIs are connected by a tree of
merge circuits downstream towards the memory interface (MI)
and back upstream for the return data. The MI is connected
to the on-chip memory controller, which itself is connected to
the external memory. The interface between the processor and
the NI is the same interface between the MI and the memory
controller.

T-CREST Multicore

Memory
controller

Memory

NI

Processor
core

Processor
core

MI

NI NI

Processor
core

Processor
core

NI

Fig. 4. The distributed TDM based memory NoC

We organize the TDM based arbitration in a distributed
manner. Each core’s local NI executes the common TDM
schedule. When the time slot for the core arrives, and a
memory transaction is pending, the NI acknowledges the
transaction to the processor core and the transaction freely
flows down the network tree. No flow control, arbitration,
or buffering (except pipeline registers to improve clock fre-
quency) is performed along the downstream path. The memory
request arrives at the MI and is forwarded to the memory
controller.

On a read transaction, the result is sent from the memory
back upstream to the processor cores. The NI knows exactly
when the read data for its read request shall be returned. The
NI uses time to filter out read data targeting other cores.

The worst-case timing of memory accesses (M$ filling and
access to shared data) is dependent on the number of cores
(number of TDM slots). Section VII shows how to compute
the worst-case memory timing, which itself is included in the
WCET analysis.

To enable TDM based scheduling of memory accesses the
worst-case memory access time needs to be known. Standard
DRAM controllers optimize for average case performance by
reordering requests and keeping pages open. However, for
accesses to the memory the worst case is when accesses go
to different rows. We optimize for the WCET and use a
closed page policy, as this results in the shortest worst case
latency [1].

DRAM memory needs regular refresh, during which the
memory cannot be accessed. In the case of general purpose
computing this refresh is just a small reduction of perfor-
mance. However, for real-time systems where the WCET is of

primary importance we also need to consider the clock cycles
where the memory is not available due to refresh.

When the external memory is a DRAM device that needs
refresh, a refresh circuit is added to the memory NoC at the
same level as a processor core. Therefore, refresh consumes
one TDM slot, but has no further influence on the memory
access timing.

Refresh can be considered in real-time systems in two ways:
(1) model the refresh as a periodic task and (2) include the
possible refresh in the memory access time. For a single core
processor, where multiple periodic tasks already need to be
considered in the schedulability analysis, the additional task
is easy to consider. Typical values for this task are a period
of 7.8 µs and a WCET of 60 ns.

However, with a multicore processor the memory is already
shared with a TDM based arbiter. Therefore, it is simpler to
add a short TDM slot for the refresh into the TDM schedule.
For the WCET analysis of memory access, i.e., cache misses,
the TDM schedule is already considered. We just increase
the worst-case waiting time for the memory access by the
additional refresh slot.

VI. PROGRAMMING THE MULTICORE

The T-CREST platform provides the hardware infrastructure
to build time-predictable applications, organized as a set of
communicating tasks executing on a multicore. However, there
is no common agreed approach how to structure real-time
applications on multicore processors. Therefore, we aim to
support several different programming paradigms to support
future research.

For task scheduling we provide following support:
• The Patmos processor supports timer interrupts and there-

fore classic preemptive real-time operating systems can
execute on T-CREST. For example, RTEMS has been
ported to T-CREST.

• Due to the TDM approach in the Argo message passing
NoC all cores have a common notion of time, even
when connected via an asynchronous version of the
NoC. Therefore, T-CREST also supports time-triggered
execution of tasks, where time can be used to enforce
precedence constraints.

• The NoC also supports cross-core interrupts, which en-
ables implementation of a multicore global scheduler.
Therefore, any multicore real-time scheduling algorithm
can be explored on T-CREST.

For communication between tasks we provide following
support:
• Mainstream communication between threads (or tasks)

is via data structures allocated in shared memory and
protected by locks. Although, this communication does
not scale very well on multicore processors, T-CREST
supports this form of communication.

• An alternative form of communication between thread-
s/tasks is message passing. It can be implemented via
shared memory, which T-CREST supports with time-
predictable access to the shared main memory. However,

Component Hardware (LC) Memory

Shared resources:
Memory controller 243 0.0 KB
Memory NoC 2316 0.0 KB

Per core:
Patmos 4353 0.5 KB
NoC NI 761 1.3 KB
NoC router 686 0.0 KB

Memory per core:
Boot ROM 0 0.5 KB
M$ 1558 8.0 KB
D$ 641 4.6 KB
S$ 959 4.0 KB
SPM 0 4.0 KB

Total (9 cores) 85706 212.2 KB

TABLE I
RESOURCE CONSUMPTIONS OF DIFFERENT COMPONENTS OF A 9 CORE

T-CREST PLATFORM

it is more efficient (higher bandwidth, shorter latency,
and less energy consumption) when the messages are
passed between cores without leaving the chip. The
Argo message passing NoC supports this with transfer
of messages between core local SPMs.

We just started to explore different possibilities to organize
applications into communicating tasks on top of T-CREST.
The T-CREST platform has been evaluated with an avionics
use case [9]. Furthermore, a DSP audio effect application
has been developed for T-CREST that uses multiple cores
to implement a signal processing pipeline. Future work is in
progress to use T-CREST in an advanced Drone platform2 and
as a Fog node for robotics and industrial automation.3

We have no final answer what is the best solution for
programming a multicore architecture. Probably the best so-
lution depends on the type of application. We consider this
as exciting future work to explore, and especially compare
different execution models for a multicore architecture on the
same platform.

VII. EVALUATION AND DISCUSSION

For the evaluation, we use a 9-core prototype implemented
using the popular and inexpensive Altera DE2-115 board with
a Cyclone IV EP4CE115 FPGA. The Argo message passing
NoC is configured with an all-to-all schedule. We synthesized
the design with Quartus Prime 16.1 Lite Edition with default
settings.

Table I shows the resource consumption of the individual
components and the total numbers for a 9-core platform. The
resource consumption is given in logic cells (LC) and on-chip
memory consumption. One LC in the Cyclone FPGA contains
a 4-bit lookup table and a flip-flop. The full design consumes
86 kLCs and 212 KB of memory. Memory consumption is
stated separately as the sizes of the memories are configurable.

2http://predict.compute.dtu.dk/
3http://www.fora-etn.eu/

Calculated per processor, we see that both NoCs are rela-
tively small; 6 % for the memory NoC and 33 % for the Argo
message passing NoC. The latter is substantially smaller than
other NoC implementations [5].

For both networks, we can derive the worst-case time it
takes to convey a single transaction across the network as

Ttrans = Twait +Trw +TNoC (1)

where Twait is the worst case waiting time for an assigned
TDM slot, Trw is the time for a read or write action at the
source, and TNoC is the time spent to traverse the NoC. Twait
depends on the TDM schedule. The worst case is when a
request just missed its own slot by a single clock cycle, which
is shown in the first parenthesis in equations 2 and 3 below.
Trw and TNoC are constant for a given platform.

For the memory NoC a read or write involves transmitting
a single packet in a single slot, whereas in the Argo message
passing NoC a write action typically involves transmitting
several packets in a sequence of slots.

For the two networks, we get the following transaction
latencies:

Tmem = ((N · s−1+ r)+ s+LNoC) · tclk (2)
Tmsg = ((N · s−1)+ (3)

((

⌈
Smsg

Schan

⌉
−1) ·N · s+ s)+LNoC) · tclk

where N is the number of TDM slots in the schedule, s the
length of a slot expressed in clock cycles, LNoC is the number
of clock cycles it takes to traverse the NoC and tclk the clock
period. For the memory NoC r is the length of the additional
refresh slot. For the Argo message passing NoC Smsg is the
size of the message (in bytes) and Schan is the number of bytes
sent across the channel in one TDM period.

For the memory NoC in our 9-core platform we have: N = 9,
s = 10, r = 4 and LNoC = 3, resulting in a worst-case time for
a 4-word burst of 106 clock cycles.

For the Argo message passing NoC in our 9-core platform
a schedule that supports communication among all processors
is N = 10 slots long. With s = 3 clock cycles the TDM period
is 30 clock cycles. During this time interval each of the 9 ·
(9− 1) = 72 channels can transmit Schan = 8 bytes, and for
long block transfers the NoC can sustain this bandwidth. If
all channels are fully utilized each individual processor must
produce and consume 64 bytes in 30 clock cycles or 2.13 bytes
per clock period. This is clearly much more than the available
computation power of a core.

The worst case end-to-end latency for sending a message
is the WCET of the software function implementing the send
primitive (setting up the DMA transfer) plus the time it takes
to transfer the message across the Argo message passing NoC
as discussed in the previous paragraph. The former can be
computed by using a WCET analysis tool such as AbsInt’s
aiT and the latter is computed using equation 3.

For the 9-core platform using the all-to-all schedule Table II
shows the latency for sending messages of different sizes.

http://predict.compute.dtu.dk/
http://www.fora-etn.eu/

Message size (bytes) 8 32 128 512

Latency (cycles) 41 131 491 1931

TABLE II
LATENCIES OF MESSAGES OF DIFFERENT SIZES

If all processors constantly sends 512-byte messages to all
other processors each processor will have to consume and
produce 8 · (512/1931) = 2.12 bytes per clock cycle, which
is very close to the 2.13 computed above for the Argo
message passing NoC alone and much more than the available
computation power of a core.

All the above results relate to a 9-core platform. When the
number of processors is increased, the bandwidth per processor
obviously degrades. For the memory NoC this degradation is
linear in the number of processors. For the Argo message
passing NoC we note that for platforms with 8× 8 = 64,
10× 10 = 100 and 15× 15 = 225 cores we have computed
all-to-all schedules with periods of 85, 157 and 471 slots
respectively. With these schedules the bandwidth is 1.98, 1.75
and 0.95 bytes per processor per cycle—even in the latter case
still more than the available computation power of a core. This
is a strong hint on the scalability and viability of a TDM based
NoC. Furthermore, application specific schedules generated
for more sparse core communication graphs can result in far
better numbers.

Finally, we mention that the performance and scalability of
the T-CREST platform is studied in [9] where it is shown that
the the T-CREST platform scales better when using multiple
cores than the LEON 4 multicore processor.

The time-critical multicore and the tools (compiler and
platin WCET analyzer) are available in open source hosted
at GitHub: https://github.com/t-crest. The build process on a
Linux computer is briefly described in the README and in
more detail in the Patmos handbook, available from: https:
//github.com/t-crest/patmos

VIII. CONCLUSION

Time-critical systems need to guarantee to deliver results
in time, therefore they are also called real-time systems. A
real-time application consists of real-time tasks that must be
written to enable worst-case execution time analysis. However,
worst-case execution time of tasks can only be ensured when
these tasks are executed on a time-predictable platform.

In this paper, we presented a processor, called T-CREST,
consisting of several processor cores, which are optimized
for time-predictable computation. These cores simplify worst-
case execution time analysis of tasks. The processing cores
are connected by two communication structures: a core-to-
core messages passing network-on-chip (NoC) and a core-to-
memory NoC. Both NoCs use time division multiplexing as an
arbitration scheme to allow time-predictable communication.

By avoiding hard to analyze processor features and using
time division multiplexing for the NoCs the presented platform
is reasonably small. We can prototype a 9-core system on a
cheap, medium sized FPGA.

Acknowledgment

We would like to thank all T-CREST team members and
students who helped to build this platform and for all the joy
of the discussions during the project meetings and dinners:
Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele
Capasso, Florian Brandner, David VH Chong, Philipp De-
gasperi, Jamie Garside, Kees Goossens, Sven Goossens, Scott
Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber,
Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Edgar
Lakis, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter
Puschner, André Rocha, Cláudio Silva, Torur Biskopsto Strom,
Rasmus Bo Sørensen, Alessandro Tocchi, and Jack Whitham.

REFERENCES

[1] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a
predictable sdram memory controller. In CODES+ISSS ’07: Proceedings
of the 5th IEEE/ACM international conference on Hardware/software
codesign and system synthesis, pages 251–256, New York, NY, USA,
2007. ACM.

[2] Benoı̂t Dupont de Dinechin, Duco van Amstel, Marc Poulhiès, and
Guillaume Lager. Time-critical computing on a single-chip massively
parallel processor. In Proc. Design, Automation and Test in Europe
(DATE), pages 97:1–97:6, 2014.

[3] Stephen A. Edwards and Edward A. Lee. The case for the precision
timed (PRET) machine. In Proc. 44th Design Automation Conference
(DAC 2007), pages 264–265, New York, NY, USA, 2007. ACM.

[4] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken.
CoMPSoC: A template for composable and predictable multi-processor
system on chips. ACM Trans. Des. Autom. Electron. Syst., 14(1):2:1–
2:24, January 2009.

[5] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sørensen, Chris-
tian T. Müller, Kees Goossens, and Jens Sparsø. Argo: A real-time
network-on-chip architecture with an efficient GALS implementation.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(2):479–492, 2016.

[6] Hermann Kopetz and Günther Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[7] Jörg Mische, Martin Frieb, Alexander Stegmeier, and Theo Ungerer.
Reduced complexity many-core: Timing predictability due to message-
passing. In Jens Knoop, Wolfgang Karl, Martin Schulz, Koji Inoue,
and Thilo Pionteck, editors, Architecture of Computing Systems - ARCS
2017: 30th International Conference, Vienna, Austria, April 3–6, 2017,
Proceedings, pages 139–151, Cham, 2017. Springer International Pub-
lishing.

[8] Martin Schoeberl. Time-predictable computer architecture. EURASIP
Journal on Embedded Systems, vol. 2009, Article ID 758480:17 pages,
2009.

[9] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley,
Raffaele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott
Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Alexander
Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch,
Wolfgang Puffitsch, Peter Puschner, André Rocha, Cláudio Silva, Jens
Sparsø, and Alessandro Tocchi. T-CREST: Time-predictable multi-core
architecture for embedded systems. Journal of Systems Architecture,
61(9):449–471, 2015.

[10] John A. Stankovic. Misconceptions about real-time computing: A
serious problem for next-generation systems. Computer, 21(10):10–19,
1988.

[11] Sebastian Tobuschat, Philip Axer, Rolf Ernst, and Jonas Diemer.
IDAMC: A NoC for Mixed Criticality Systems. In Proc. IEEE Interna-
tional Conference on Embedded and Real-time Computing Systems and
Applications (RTCSA), pages 149–156, 2013.

[12] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution
time problem – overview of methods and survey of tools. Trans. on
Embedded Computing Sys., 7(3):1–53, 2008.

https://github.com/t-crest
https://github.com/t-crest/patmos
https://github.com/t-crest/patmos

Martin Schoeberl is an Associate Professor in the Depart-
ment of Applied Mathematics and Computer Science, Techni-
cal University of Denmark. His research interests include hard
real-time systems, time-predictable computer architecture, and
real-time Java. He received a PhD and a Habilitation in com-
puter engineering from the Vienna University of Technology.
He is a Member of the IEEE and the ACM.

Luca Pezzarossa is a PhD student in the Department of
Applied Mathematics and Computer Science, Technical Uni-
versity of Denmark. His research interests include reconfig-
uration, real-time systems, embedded applications, networks-
on-chip, and system-on-chip design. He received a MSc in
electronic engineering from the Marche Polytechnic Univer-
sity, Italy. He is a member of the IEEE.

Jens Sparsø is a Professor in the Department of Applied
Mathematics and Computer Science, Technical University of
Denmark. His research interests include: digital circuits and
systems, asynchronous circuits, many-core architectures and
networks-on-chip—in short, hardware platforms for embedded
and cyber-physical systems. He is a member of the IEEE.

Contact Information:

Martin Schoeberl
Department of Applied Mathematics and Computer Science
Technical University of Denmark
Richard Petersens Plads
Building 322, room 128
2800 Lyngby
Denmark

Phone +45 45253743
Email masca@dtu.dk

