
ROB314 – 2024 – Emmanuel Battesti

ROB314 – Session 3 - Ex1

Exercise
The goal of this exercise is to close the control loop for the Husky robot. You will extract the
position of a pillar from the laser scan and then control the robot such that it drives into the
pillar.

1. Let’s start from your rob314_husky_controller package of the session 2. Or the
correction provided on the rob314 website: https://perso.ensta-paris.fr/~battesti/rob314

In you file ~/.bashrc, at the end, you should have the line :
 export HUSKY_LMS1XX_ENABLED=1
If you use Noetic, you should

• use the /front/scan topic instead of the /scan topic in the controller.launch file
• Use gazebo-11 instead of gazebo-9 in the controller.launch file
• empty_world.launch instead of husky_empty_world.launch in the controller.launch

file

2. Download the world files and put them in a new folder worlds in your package
rob314_husky_controller :
https://perso.ensta-paris.fr/~battesti/ rob314_ download/rob314_session3_worlds.zip

3. Adapt the launch file from the last exercise such that:
◦ The keyboard twist node is removed. (One can also comment lines in launch file by

framing the text with <!-- -->)
◦ singlePillar.world should be loaded as the world, instead of the

robocup14_spl_field.world. Be careful, the path is not the same : you can use the
command find in the launch file.
This file come from the Zip file rob314_session3_worlds.zip. It is a world with only
a cylinder shape, a “pillar”.

4. By modifying the laserCallBack function, extract the distance and angle of the pillar from
the laser scan with respect to the robot. (check data in
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/LaserScan.html)

5. In the idea of using the topic /cmd_vel to send a geometry_msgs::Twist message to
Husky, you need to add geometry_msgs as a dependency of your package.
Do it by modifying your CMakeLists.txt and package.xml (same structure as with
sensor_msgs) (Session 2).

6. Create a publisher (called m_commandVelocityPublisher, for example) in the
MyController class, on the topic /cmd_vel to be able to send a geometry_msgs::Twist
message to Husky. For the moment, the node publishes nothing.

1/2

https://perso.ensta-paris.fr/~battesti/rob314
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/LaserScan.html
https://perso.ensta-paris.fr/~battesti/download/rob314_session3_worlds.zip
https://perso.ensta-paris.fr/~battesti/download/rob314_session3_worlds.zip
https://perso.ensta-paris.fr/~battesti/download/rob314_session3_worlds.zip

ROB314 – 2024 – Emmanuel Battesti

7. In the callback method of the laser scan topic, write some code that drives husky towards the
pillar, by using the angle of the pillar from the laser scan with respect to the robot (see
question 4). This can be a simple P (proportional) controller.

8. Add a new ROS parameter for your controller gain in your node and use it in the callback
method (Session 2).

9. Adapt your launch file to add the controller gain parameter.
Launch your launch file with roslaunch.
Try different value of your gain to find a good value. What happens if the value is too high
or too low.

10. Launch your launch file with roslaunch.
• Add a “RobotModel” plugin to RViz to visualize the Husky robot, if necessary. (Session

2)
• Make sure to set odom as the Fixed Frame (under Global Options) and adapt the size of

the laser scan points, if necessary.
• Show the laser scan in RViz with the plugins “LaserScan” (click add at the bottom left

of the window if necessary).
• Add a “TF display” plugin to Rviz,
• Visualize all the TF on the robot. You maybe have to use the button “Focus Camera”.
• Save the rviz configuration in your package in a *.rviz file.

11. In gazebo, you can translate the pillar. If you put the pillar behind the robot it cannot see the
pillar. Find a (simple) algorithm and code it to solve this case.

12. We want to visualize the estimated position of the pillar in RViz. For that, we will use a
special message : visualization_msgs::Marker.
Have a look at this page : http s ://wiki.ros.org/rviz/DisplayTypes/Marker
Publish a visualization marker for Rviz, a sphere for example, that shows the estimated
position of the pillar. You can use, for example, a topic called /pillar_marker.
We want to publish each time we detect the pillar, so inside the callback function
laserCallBack.

 You can publish the marker at a position in the frame of the laser. So you will use a relative
position according to the position of the laser. To make it work, you have to specify the correct
header.frame_id for the message. It should be the same that the received LaserScan. RViz will
automatically transform the marker into the odom frame.

13. Launch your launch file with roslaunch. Add a “Marker” plugin to Rviz to visualize your
marker message. Make sure to set /pillar_marker as “Marker Topic” in Rviz.

14. You have more time ?

In gazebo, you can use the driveThrough.world.
Code a node for the robot to pass between the two pillars.

2/2

https://wiki.ros.org/rviz/DisplayTypes/Marker
https://wiki.ros.org/rviz/DisplayTypes/Marker
https://wiki.ros.org/rviz/DisplayTypes/Marker

	Exercise

