
Architecture for robotics
ROB314

Emmanuel Battesti - 19/01/2024

19/01/2024 ROB314 - Emmanuel Battesti 2 / 57

Course objectives
● Learn Robotic Middleware: ROS

● Discover the mechatronic aspects of robotics

● Developing a "complex" robotics project

– A personalized project on real robot

– Integration of functions: perception/navigation/control

– Development of new functions

● Gain experience in computer science

– Languages Python, C++

– OS Linux, Git

– Development

● Use things learned in other robotics courses

– Navigation, Vision, etc.

19/01/2024 ROB314 - Emmanuel Battesti 3 / 57

Course Program

● A ROS presentation course (3 sessions)

→ https://perso.ensta-paris.fr/~battesti/rob314.htm

● A mechatronic in robotic course (3 sessions)

● A project:

– Create teams of 1 to 3 people

– Definition of a project and choice of a robot

– Robot handling and project development (6 sessions)

– Last session: presentation of projects

– A report will be due one week later

19/01/2024 ROB314 - Emmanuel Battesti 4 / 57

Contact information

● Lecturers

– Emmanuel Battesti, robotics engineer at U2IS ENSTA
(emmanuel.battesti@ensta-paris.fr)

– Thibault Toralba, robotics engineer at U2IS ENSTA
(thibault.toralba@ensta-paris.fr)

● Leader

– David Filliat, professor at U2IS ENSTA

(david.filliat@ensta-paris.fr)

19/01/2024 ROB314 - Emmanuel Battesti 5 / 57

Robots available:
Turtlebot

● Turtlebot 2.0

– Differential mobile base, 6kg, 0.6 m/s

– Netbook ROS (navigation, mapping…)

– RGBD sensors (Kinect or Xtion),

– Encoders,

– Gyrometers, bumpers

– laser telemeter, that can be added

19/01/2024 ROB314 - Emmanuel Battesti 6 / 57

● 1 front camera

● 1 camera under the drone for stabilization

● Several preprogrammed modes

● 13 min time of flight

Robots available:
Drone DJI Tello

19/01/2024 ROB314 - Emmanuel Battesti 7 / 57

Others robots

● Robots built in U2IS

● 1 or 2 Husky

● Older robots:

– 1 Nao v4

– 1 Pepper robot

– Old AR-Drones 1.0

19/01/2024 ROB314 - Emmanuel Battesti

Introduction to ROS
ROB314

Emmanuel Battesti

19/01/2024 ROB314 - Emmanuel Battesti 9 / 57

Course Summary

● Why does ROS exist?

● How does ROS work?

● How to use ROS with your own

code ?

19/01/2024 ROB314 - Emmanuel Battesti 10 / 57

What tools are needed in
robotics?

● Distributed computation:

– robots should be able to work with remote software or hardware,

– robots should be able to work with humans via software interface.

– Small stand-alone parts of software should be able to cooperate.

– ➔ need communication mechanisms

● Software reuse: growing collections of algorithms

– Need standard packages

– Need standard communication and standard interface

– Community: a place where we can discuss and share some codes

● Rapid testing:

– Use simulators instead of real robots ➔ easier

– But also record and play back of real data sensor

19/01/2024 ROB314 - Emmanuel Battesti 11 / 57

Problems in robotics
before ROS

19/01/2024 ROB314 - Emmanuel Battesti 12 / 57

What is ROS?

● ROS means Robot Operating System

● ROS is open-source software

● Software tools that help you build ‘easily’ robot
applications.

● And that work across a wide variety of robotic
platforms.

19/01/2024 ROB314 - Emmanuel Battesti 13 / 57

What does ROS bring?
● Great tools:

– Communication tools ➔ standard messages and
communication library (topics, services, parameters)

– Distributed computation ➔ a central server called
master

– An OS-like structure to organize (packages, nodes)
and command tools to compile and navigate easily
(catkin, roscd, rosls,..).

– Testing ➔ simulators (gazebo), visualizations (rviz),
data logging, replaying (rosbag)

● Lot of help and useable algorithms

– Ecosystem ➔ a large community (wiki) and a lot of
standalone libraries are wrapped for ROS (ex: OpenCV)

– Capabilities ➔ a lot of packages are available: control,
planning, perception, mapping, manipulation, etc.

19/01/2024 ROB314 - Emmanuel Battesti 14 / 57

ROS Overview

19/01/2024 ROB314 - Emmanuel Battesti 15 / 57

History of ROS
● Started at Stanford University, ~2005

– personal project of Keenan Wyrobek and Eric Berger,
two phd students

– They observe that roboticists waste time in areas that
do not interest them and that they do not master.

– First prototype with the robot PR1

● Carried by Willow Garage, 2008 – 2013

– Willow Garage was a robotic research center

– 2010: first distribution

– Ros became popular

– 2011: release of turtlebot robot

● Now by Open Robotics Foundation, since 2013

● Creation of ROS 2.0 in 2015, and first release in 2017

– the distribution is completely rethought

– Oriented towards industry: real-time, security, etc.

● Robots

– Hundreds of robots: https://robots.ros.org/

– For research, this has become a standard.

19/01/2024 ROB314 - Emmanuel Battesti 16 / 57

ROS philosophy

● Peer to Peer

– ROS systems consist of numerous small computer programs which
connect to each other and continuously exchange messages

● Tools-based

– There are many small, generic programs that perform tasks such
as visualization, logging, plotting data streams, etc.

● Multi-Lingual

– ROS software modules can be written in any language for which a
client library has been written. Currently client libraries exist for
C++, Python, LISP, Java, JavaScript, MATLAB, Ruby, and more.

● Thin

– The ROS conventions encourage contributors to create stand-alone
libraries and then wrap those libraries so they send and receive
messages to/from other ROS modules.

● Free and open source

19/01/2024 ROB314 - Emmanuel Battesti 17 / 57

ROS is not…

● ROS is not a programming language: could use
C++, Python, Java, Lisp

● ROS is not only a library (see above)

● ROS is not an integrated development
environment: could be used with most popular
IDEs.

19/01/2024 ROB314 - Emmanuel Battesti 18 / 57

ROS Requirement

● Mainly on Ubuntu

● 1 ROS version ⇔ 1 Ubuntu version

– ‘Long Term Support’ version ROS Melodic Morenia + Ubuntu
18.04

– ‘Long Term Support’ version ROS Noetic Ninjemys + Ubuntu
20.04

● The different versions of ROS are not always
compatible between them.

● Quite big but easy to install

● Avoid virtual machines to work with real robots

● Multi-lingual

– ROS modules can be written in any language for which a
client library exists (C++, Python, MATLAB, Java, etc.).

19/01/2024 ROB314 - Emmanuel Battesti 19 / 57

ROS Distribution Releases

19/01/2024 ROB314 - Emmanuel Battesti 20 / 57

ROS Melodic Installation

sudo 'echo "deb http://packages.ros.org/ros/ubuntu
$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key
C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

sudo apt-get --yes update
Sudo apt-get --yes install ros-melodic-desktop-full python-rosinstall
python-rosinstall-generator python-wstool build-essential python-rosdep
rosdep init
echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc

19/01/2024 ROB314 - Emmanuel Battesti 21 / 57

Course Summary

● Why does ROS exist?

● How does ROS work?

● How to use ROS with your own

code ?

19/01/2024 ROB314 - Emmanuel Battesti 22 / 57

ROS Packages 1/2

● All ROS software is organized into package

● A package is one tool or a set of tools on a particular theme

● A package usually contains one or more nodes (i.e. ROS
executables).

● A package can very well contain only a library.

● Sometimes, known libraries are packaged for ROS (like
Open-CV or PCL).

● Package:

– source code and/or executables (nodes),

– scripts,

– config files,

– dataset,

– messages or/and services…

19/01/2024 ROB314 - Emmanuel Battesti 23 / 57

ROS Packages 2/2

● Where can we find the packages?

– Most ROS packages are hosted in GitHub.

– Can be part of a metapackage: a collection of related
packages (for example ros_base ou ros_control)

– We can create our own package.

– The main packages can be installed as Ubuntu
packages (sudo apt install ros-melodic-xxx)

● Listing and locating packages: rospack list

● Locating a single package: rospack find package-name

● Linux-like command: roscd, rosls…

19/01/2024 ROB314 - Emmanuel Battesti 24 / 57

ROS Nodes 1/2

● Node = single-purposed executable in ROS application s:
e.g. sensor driver(s), actuator driver(s), mapper, planner, UI, image
viewer, logger, etc.

● Individually compiled, executed, and managed:

– One process by node. So, if one of them craches, the
others nodes will not.

– Reduce code complexity

– Easier to test

● Nodes are combined into a graph and communicate with
each other using ROS topics, services, actions, etc.

● Organized in packages

● Nodes are language agnostic: for example, python node can
communicate with c++ node.

19/01/2024 ROB314 - Emmanuel Battesti 25 / 57

ROS Nodes 2/2

● Nodes of the same type can be started multiple times but
with different names.

● Run a node with:

See active nodes with:

Retrieve information about a node with:

> rosrun package_name node_type Node 1 Node 2

> rosnode list

> rosnode info node_type

Warning!
node_type ≠ node_name

19/01/2024 ROB314 - Emmanuel Battesti 26 / 57

ROS Master

● Every node registers at startup
with the master

● Manages the communication
between nodes (processes)

● Host a parameter server

Start a master with
> roscore

ROS Master

Node 1 Node 2

registration registration

19/01/2024 ROB314 - Emmanuel Battesti 27 / 57

ROS Topics

● Topic is a name for a « stream of
messages »

● Nodes communicate over topics

– Nodes can publish or subscribe to a topic
– Typically, 1 publisher and n subscribers
– But can possibly have many publishers and many

subscribers

● A node doesn’t care if no node has
subscribed to his topic.

● The topics are created inside the nodes.

> rostopic list

ROS Master

Node 1
Publisher

Node 2
Subscriber

registration registration

> rostopic echo /topic_name

> rostopic info /topic_name

List active topics withSubscribe and print the contents of a topic with

Show information about a topic with

connection

topic

publish subscribe

subscribe

19/01/2024 ROB314 - Emmanuel Battesti 28 / 57

ROS Topics Example

ROS Master

Node 1
Publisher

Node 2
Subscriber

registration registration

connection

topic

publish subscribe

subscribe

19/01/2024 ROB314 - Emmanuel Battesti 29 / 57

First example

● sudo apt install ros-melodic-usb-cam

● Three terminals :

– In each terminal : source /opt/ros/melodic/setup.bash

– Term 1 : roscore

– Term 2 : rosrun usb_cam usb_cam_node _pixel_format_:=yuyv

– Term 3 : rosrun image_view image_view image:=/usb_cam/image_raw

Package name

Node type
parameter

19/01/2024 ROB314 - Emmanuel Battesti 30 / 57

ROS Messages 1/2

● Message = data structure defining the type of
a topic

● Data structures containing data of various
kinds : float, string, images, booleans, etc.

● Existing list of standard messages : position,
cmd_vel (command velocity), etc.

● Messages are sorted by theme: geometry,
sensors, navigation, etc.:

– std_msgs/xxx: standard messages

– geometry_msgs/xxx: messages about geometry

– Etc.

● Messages can be organized as a nested
structure of messages

ROS Master

Node 1
Publisher

Node 2
Subscriber

topic

publish subscribe

subscribe

int number
double width
string description
Etc.

*.msg

Message
definition

19/01/2024 ROB314 - Emmanuel Battesti 31 / 57

ROS Messages 2/2

● Defined in *.msg files

● You can create new ones.

● But to use all the tools, it is better to use
the standard messages.

ROS Master

Node 1
Publisher

Node 2
Subscriber

> rostopic type /topic_name

> rostopic pub /topic_name msg_type data

See the type of a topic

Publish a message to a topic

topic

publish subscribe

subscribe

int number
double width
string description
Etc.

*.msg

Message
definition

19/01/2024 ROB314 - Emmanuel Battesti 32 / 57

ROS Messages example

● Pose Stamped Example

geometry_msgs/Point.msg

float64 x
float64 y
float64 z

Header header
Pose pose

geometry_msgs/PoseStamped.msg

Point position
Quaternion orientation

float64 x
float64 y
float64 z
float64 w

geometry_msgs/Quaternion.msg

geometry_msgs/Pose.msg

uint32 seq
time stamp
string frame_id

Point position
Quaternion orientation

std_msgs/Header.msg

> rosmsg show geometry_msgs/PoseStamped

> rosmsg show geometry_msgs/Pose

19/01/2024 ROB314 - Emmanuel Battesti 33 / 57

ROS Messages example
● Image Example

Header header # Header timestamp should be acquisition time of image
 # Header frame_id should be optical frame of camera
 # origin of frame should be optical center of camera
 # +x should point to the right in the image
 # +y should point down in the image
 # +z should point into to plane of the image
 # If the frame_id here and the frame_id of the CameraInfo
 # message associated with the image conflict the behavior is undefined

uint32 height # image height, that is, number of rows
uint32 width # image width, that is, number of columns

The legal values for encoding are in file src/image_encodings.cpp
If you want to standardize a new string format, join
ros-users@lists.sourceforge.net and send an email proposing a new encoding.

string encoding # Encoding of pixels -- channel meaning, ordering, size
 # taken from the list of strings in include/sensor_msgs/image_encodings.h

uint8 is_bigendian # is this data bigendian?
uint32 step # Full row length in bytes
uint8[] data # actual matrix data, size is (step * rows)

Text file: sensor_msgs/Image.msg

19/01/2024 ROB314 - Emmanuel Battesti 34 / 57

ROS Master in details

19/01/2024 ROB314 - Emmanuel Battesti 35 / 57

ROS Services

● Request/response communication
between nodes is realized with services

– The service server advertises the service

– The service client accesses this service

● A client node using a service will wait until
the response: blocking behavior

● Similar in structure to messages, services are
defined in *.srv files

● List available services with

● Show the type of a service

● Call a service with the request contents

Node 1
Service Client

Node 2
Service Server

Service
name

request

Request
—
Response

*.srv

Service
definition

> rosservice list

> rosservice type /service_name

> rosservice call /service_name args

requestresponse response

Example:
map_server/static_map –
retrieves the current grid map
used by the robot for navigation

19/01/2024 ROB314 - Emmanuel Battesti 36 / 57

ROS Services:
Examples

indicate successful
run of triggered service
bool success

informational, e.g.
for error messages
string message

Get a plan from the current
position to the goal Pose

The start pose for the plan
geometry_msgs/PoseStamped start

The final pose of the goal position
geometry_msgs/PoseStamped goal

If the goal is obstructed, how
many meters the planner can
relax the constraint in x
and y before failing.
float32 tolerance

nav_msgs/Path plan

std_srvs/Trigger.srv

nav_msgs/GetPlan.srv

19/01/2024 ROB314 - Emmanuel Battesti 37 / 57

ROS Actions (actionlib)

● Similar to service calls, but provide
possibility to

– Cancel the task (preempt)

– Receive feedback on the progress

● Best way to implement interfaces to
long, goal-oriented behaviors

● Non-blocking behavior

● Similar in structure to services,
actions are defined in *.action files

● Internally, actions are implemented
with a set of topics

Node 1
Action Client

Node 2
Action Server

Action

Goal

Cancel

Status

Result

Feedback

Goal

Result

Feedback

*.action

Action
definition

19/01/2024 ROB314 - Emmanuel Battesti 38 / 57

Topics, Services, and
Actions Comparison

● Topics

– Description: continuous data streams

– Application: one-way continuous data flow

– Examples: sensor data, robot state

● Services

– Description: blocking call for processing a request

– Application: short triggers or calculations

– Examples: trigger change, request state, compute quantity

● Actions

– Description: non-blocking, preemptable goal-oriented tasks

– Application: task executions and robot actions

– Examples: navigation, grasping, motion execution

19/01/2024 ROB314 - Emmanuel Battesti 39 / 57

ROS Architecture

● Each node is a different process

● Inter process communication

– Direct communications between node

– through TCP/IP or UDP

– Easy on multiple computers (set ROS_MASTER_URI)

– Shared memory (nodelet) on single computer: avoid to copy
and use of lot of memory.

● Rospy, Roscpp, …

– The libraries to interact with ROS network in various
languages

19/01/2024 ROB314 - Emmanuel Battesti 40 / 57

Exercice 1 –
chatter/listener

● Live demonstration

● topics covered:

– Launch roscore

– Launch node talker and listener of package roscpp_tutorials

– Use tools to analyze

– Publish a message

19/01/2024 ROB314 - Emmanuel Battesti 41 / 57

Exercice 2 – Turtlesim

● Live demonstration

● topics covered:

– Launch roscore

– Launch node turtlesim_node and turtle_teleop_key of
package turtlesim

– Use tools to analyze

– Publish a message to control the turtle

19/01/2024 ROB314 - Emmanuel Battesti 42 / 57

Course Summary

● Why does ROS exist?

● How does ROS work?

● How to use ROS with your own

code ?

19/01/2024 ROB314 - Emmanuel Battesti 43 / 57

Workspace: catkin 1/2

● The ROS packages used in your future project will come
from :

– Pre-installed packages, locate in /opt/ros/melodic/

– Newly installed packages, locate in /opt/ros/melodic/

– downloaded package, usually from github

– Your own self-coded package

● The last two must be compiled before being used !

● Catkin is the name of the ROS build system to generate
executables, libraries, and interfaces

● A catkin workspace is the place in which one or more
catkin packages can be built.

19/01/2024 ROB314 - Emmanuel Battesti 44 / 57

Workspace: catkin 2/2

● The first time, to create a catkin workspace:

● The first build in your catkin workspace:

● ⇒ Create the environment to develop new packages

● ⇒ 3 folders build, devel and src

> mkdir -p ~/catkin_ws/src
> cd ~/catkin_ws/src
> catkin_init_workspace

> cd ~/catkin_ws/
> catkin_make

19/01/2024 ROB314 - Emmanuel Battesti 45 / 57

Workspace: folders

● In your catkin workspace, you have 3 folders build, devel and
src

– src: Work here

● The source space contains the source code. This is where you can
clone, create, and edit source code for the packages you want to build,
i.e. the ones you have created or the ones you have downloaded

– build: usually, it should not be touched.

● The build space is where CMake is invoked to build the packages in the
source space. Cache information and other intermediate files are kept
here.

– devel: usually, it should not be touched.

● The development (devel) space is where built targets are placed (prior

to being installed).

● If necessary, clean the entire build and devel space simply by
deleting build and devel folder

19/01/2024 ROB314 - Emmanuel Battesti 46 / 57

 Workspace: package 1/2

● The pre-installed packages are in
/opt/ros/melodic/

● Your own package or downloaded package
should be placed in the ~/catkin_ws/src folder

● Technically, a package directory is a directory
which contains a file package.xml describing the
package.

● If you rename package.xml, the package becomes
invisible for ROS.

19/01/2024 ROB314 - Emmanuel Battesti 47 / 57

 Workspace: package 2/2

● A package directory
follows a common
structure:

– Package.xml

– CmakeLists.txt

– src / include

– Etc.

19/01/2024 ROB314 - Emmanuel Battesti 48 / 57

 Workspace: setup.bash

● Default workspace is loaded with:

● Overlay your catkin workspace with:

● Check your workspace with

● Each time we want to open a terminal to run a ROS
command, we have to execute this setup.bash file

● Good idea: put the two first commands at the end of
the .bashrc file.

> source /opt/ros/melodic/setup.bash

> source ~/catkin_ws/devel/setup.bash

> echo $ROS_PACKAGE_PATH

19/01/2024 ROB314 - Emmanuel Battesti 49 / 57

Workspace: add a new
package from source

● Open a terminal and go in your workspace

● Clone the Git repository of the package, for example:

> cd ~/catkin_ws/src/

> git clone https://github.com/ros-drivers/usb_cam.git

19/01/2024 ROB314 - Emmanuel Battesti 50 / 57

Workspace: compile the
new package

● Go to your catkin workspace

● (Here we specifically need to install before libv4l for usb_cam)

● Build the package with

● Re-source your workspace setup

● Launch the node with roslaunch, for example:

● Ctrl+C to stop the program

> cd ~/catkin_ws

> catkin_make

> source devel/setup.bash

> roslaunch usb_cam test_img_view.launch

> sudo apt install libv4l-dev

19/01/2024 ROB314 - Emmanuel Battesti 51 / 57

ROS Launch

● launch is a tool for launching multiple nodes (as well
as setting parameters)

● Are written in XML as *.launch files

● If not yet running, launch automatically starts a
roscore

● A launch file can be executed in two ways:

– Browse to the folder and start a launch file with

– Start a launch file from a package with

> roslaunch file_name.launch

> roslaunch package_name file_name.launch

19/01/2024 ROB314 - Emmanuel Battesti 52 / 57

ROS Launch:
file structure

● launch: Root element of the launch file

● node: Each <node> tag specifies a node to be launched

● name: Name of the node (free to choose). Two nodes with the same type should
have different names.

● pkg: Package containing the node

● type: Type of the node, there must be a corresponding executable with the
same name

● output: Specifies where to output log messages (screen: console, log: log file)

<launch>

 <node name="my_usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen"/>

 <node name="my_image_view" pkg="image_view" type="image_view" output="screen"/>

</launch>

19/01/2024 ROB314 - Emmanuel Battesti 53 / 57

ROS Launch: arguments

● Create reusable launch files with
<arg> tag, which works like a
parameter (default optional)

● Use arguments in launch file with

<arg name="arg_name" default="default_value"/>

$(arg arg_name)

> roslaunch launch_file.launch arg_name:=value

<launch>
 <arg name="show_camera" default="false" />

 <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
 <rosparam command="load" file="$(find usb_cam)/config/usb_cam.yml"/>
 </node>
 <node if="$(arg show_camera)" name="image_view" pkg="image_view" type="image_view"
 respawn="false" output="screen">
 <remap from="image" to="/usb_cam/image_raw"/>
 <param name="autosize" value="true" />
 </node>
</launch>

● When launching, arguments can
be set with

● More info:
http://wiki.ros.org/roslaunch/XML/arg

u
s
b
_
c
a
m
.
l
a
u
n
c
h

19/01/2024 ROB314 - Emmanuel Battesti 54 / 57

ROS Launch:
Including Other Launch Files

● Include other launch files with
<include> tag to organize large
projects

● Find the system path to other
packages with

<include file="package_name"/>

$(find package_name)

<arg name="arg_name" value="value"/>

● Pass arguments to the included
file set with

● More info:
http://wiki.ros.org/roslaunch/XML/incl
ude

<launch>
 <arg name="show_image" default="true" />

 <include file="$(find usb_cam)/launch/usb_cam.launch">
 <arg name="show_camera" value="$(arg show_image)" />
 </include>

</launch>

t
e
s
t
_
i
m
g
_
v
i
e
w
.
l
a
u
n
c
h

19/01/2024 ROB314 - Emmanuel Battesti 55 / 57

Gazebo Simulator

● Simulate 3d rigid-body
dynamics

● Simulate a variety of
sensors including noise

● 3d visualization and user
interaction

● Includes a database of
many robots and

● environments (Gazebo
worlds)

● Provides a ROS interface

● Extensible with plugins

> rosrun gazebo_ros gazebo

19/01/2024 ROB314 - Emmanuel Battesti 56 / 57

Exercice 3 – play with
husky

● Topics covered:

– Gazebo

– ROS architecture

– ROS master, nodes, and topics

– Console commands

– Catkin workspace and build system

– Launch-files

19/01/2024 ROB314 - Emmanuel Battesti 57 / 57

Further References

● ROS Wiki:

– http://wiki.ros.org/

● Installation:

– http://wiki.ros.org/ROS/Installation

● Tutorials:

– http://wiki.ros.org/ROS/Tutorials

● Available packages:

– http://www.ros.org/browse/

● ROS Cheat Sheet:

– https://www.clearpathrobotics.com/ros-robot-operating-system-cheat-sheet/

– https://kapeli.com/cheat_sheets/ROS.docset/Contents/Resources/Documents/index

● ROS Best Practices:

– https://github.com/leggedrobotics/ros_best_practices/wiki

● ROS Package Template:

– https://github.com/leggedrobotics/ros_best_practices/tree/master/ros_package_template

