
CSC_5RO14_TA – 2025 – Emmanuel Battesti

CSC_5RO14_TA – Session 3 - Ex1

Exercise
The goal of this exercise is to close the control loop for the Husky robot. You will extract the
position of a pillar from the laser scan and then control the robot to drive into the pillar.

1. Let’s start with your 5ro14_husky_controller package from the session 2. Or the
correction provided on the CSC_5RO14_TA website:
https://perso.ensta-paris.fr/~battesti/website/teachings/rob314/

In your ~/.bashrc file, at the end, you should have the line :
 export HUSKY_LMS1XX_ENABLED=1

2. Download the world files, which contain a description of the environment for the Gazebo
simulator, and place them in a new folder called worlds in your 5ro14_husky_controller
package: https://perso.ensta-paris.fr/~battesti/rob314_download/5ro14_session3_worlds.zip

3. Modify the launch file from the last exercise such that:
◦ The teleop_twist_keyboard node is removed, because we want the robot to control its

own movement . (You can also comment lines in the launch file by framing the text with
<!-- -->)

◦ singlePillar.world file should be loaded as the world, instead of the
robocup14_spl_field.world file. Be careful, the path is not the same : you can use the
find command in the launch file.
This file comes from the 5ro14_session3_worlds.zip zip file. It is a world with only
one cylindrical shape, a “pillar”.

If all goes well, the launch file should start without errors, but also without any action on the
robot.

The goal of the following steps is to send the robot a command to the pillar. To do this,
we calculate the distance and angle of the pillar as seen by the lidar. We'll use the
"cmd_vel" topic to send the "Twist" command message. First we need to add a
dependency to "geometry_msgs". Next, we need to configure a "publisher" that will be
used to send this message to the robot. Finally, we need to fill this message with the
direction to the pillar that we've already calculated.

4. By modifying the laserCallBack function, extract the distance and angle of the pillar from
the laser scan with respect to the robot. (check the data on
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html)
If all goes well, your code should compile without a problem.

5. In the idea of using the /cmd_vel topic to send a geometry_msgs::Twist message to
Husky, you need to add geometry_msgs as a dependency to your package.
Do this by modifying your CMakeLists.txt and package.xml (same structure as with
sensor_msgs) (Session 2).

1/3

https://perso.ensta-paris.fr/~battesti/website/teachings/rob314/
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html
https://perso.ensta-paris.fr/~battesti/rob314_download/5ro14_session3_worlds.zip

CSC_5RO14_TA – 2025 – Emmanuel Battesti

If all goes well, your code should still compile without any problems.

6. Create a publisher (named m_commandVelocityPublisher, for example) in the
MyController class, on the /cmd_vel topic to be able to send a geometry_msgs::Twist
message to Husky.
Nothing will happen until this publisher publishes the message, but we can still check that
the program compiles correctly.

7. In the callback method of the laser scan topic, write some code that moves Husky toward the
pillar, by using the angle of the pillar from the laser scan with respect to the robot (see
question 4). This can be a simple P (proportional) controller.
In the callback method, we will fill in the message and send it with the correct publisher
function.

8. Add a new ROS parameter for your controller gain in your node and use it in the callback
method (Session 2).

9. Modify your launch file to add the controller gain parameter.
Run your launch file with roslaunch.
Try different values of your gain to find a good value. What happens if the value is too high
or too low?

10. Start your launch file with roslaunch.
• If necessary, add a “RobotModel” plugin to RViz to visualize the Husky robot. (Session

2)
• Make sure that odom is set as the Fixed Frame (under Global Options) and adjust the

size of the laser scan points, if necessary.
• Display the laser scan in RViz using the “LaserScan” plugin (click on “add” in the

bottom left of the window if necessary).
• Add a “TF display” plugin to RViz,
• Visualize all the TFs on the robot. You may need to use the “Focus Camera” button.
• Save the RViz configuration in a *.rviz file in your package.

11. In Gazebo, you can translate the pillar. If you place the pillar behind the robot, the robot
cannot see the pillar. Find a (simple) algorithm and code it to solve this case.

12. We want to visualize the estimated position of the pillar in RViz. For this, we will use a
special message : visualization_msgs::Marker.
Have a look at this page : https://wiki.ros.org/rviz/DisplayTypes/Marker
Publish a visualization marker for RViz, for example a sphere, that shows the estimated
position of the pillar. For example, you can use a topic called /pillar_marker.
We want to publish every time we detect the pillar, so inside the laserCallBack callback
function, you can publish the marker at a position in the frame of the laser.
So you will use a relative position according to the position of the laser. To make it work,
you need to specify the correct header.frame_id for the message. It should be the same as
the received LaserScan. RViz will automatically transform the marker into the odom frame.

2/3

https://wiki.ros.org/rviz/DisplayTypes/Marker

CSC_5RO14_TA – 2025 – Emmanuel Battesti

13. Start your launch file with roslaunch. Add a “Marker” plugin to RViz to visualize your
marker message. Make sure to set /pillar_marker as “Marker Topic” in RViz.

14. You have more time ?

In Gazebo, you can use the driveThrough.world.
Code a node for the robot to drive between the two pillars.

3/3

	Exercise

