
CSC_5RO14_TA – 2025 – Emmanuel Battesti

CSC_5RO14_TA – Session 2 - Exo1

ROS Theory
• ROS package structure
• Integration and programming
• ROS C++ client library (roscpp)
• ROS subscribers and publishers
• ROS parameter server
• RViz visualization

Exercise
In this exercise, you will create your first ROS package. The package should, in the end, be able to
subscribe to a laser scan message from the Husky robot and process the incoming data. This node
will be the basis for the next exercises.

Be sure to take a look at the ROS template for reference
https://github.com/leggedrobotics/ros_best_practices It will help you a lot with the implementation,
as it has a node similar to what you need do in this exercise!

1.
Install the husky-desktop package:
sudo apt update
sudo apt install ros-noetic-husky-desktop

In your ~/.bashrc file, at the end, add the line to add a lidar on the Husky robot:
export HUSKY_LMS1XX_ENABLED=1

This line will be taken into account if you launch a new terminal or if you run:
source ~/.bashrc

Download the zip archive containing the prepared files of the 5ro14_husky_controller
package from the following address:
https://perso.ensta-paris.fr/~battesti/5ro14_download/session_2/5ro14_husky_controller.zip

2. Install the package into your catkin workspace:
unzip the folder in the catkin_ws/src folder
cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.bash

You will need the teleop_twist_keyboard package, as in the exercise of the session 1.
If necessary, install it in the ~/catkin_ws/src folder, with the command :
git clone https://github.com/ros-teleop/teleop_twist_keyboard.git

1/3

https://github.com/leggedrobotics/ros_best_practices
https://github.com/ros-teleop/teleop_twist_keyboard.git
https://perso.ensta-paris.fr/~battesti/5ro14_download/session_2/5ro14_husky_controller.zip

CSC_5RO14_TA – 2025 – Emmanuel Battesti

The package should compile without errors.

3. Inspect the CMakelists.txt and package.xml files of the 5ro14_husky_controller
package.
Inspect the source code.
For the moment, the node doesn’t do anything.
MyNode.cpp contains the ‘main’ function which:

• creates the node named 5ro14_husky_controller_node,
• then creates an instance of MyController,
• then uses the blocking function ros::spin().

MyController.cpp will contain later the details of the node. We'll add to it in the following
questions:

• the subscription to a topic
• the callback to the topic
• the access to the parameters

4. Create a subscriber object to the /front/scan topic, which contains the laser scan
message from the Husky robot.
For the moment, set the queue size to 10.
The message type of /front/scan is LaserScan:
http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html
Take inspiration from the ros_best_pratices package, but leave the subscriber’s callback
empty.
The package should compile without errors.

5. Take a look at your controller.launch file (same as in “Session 1 - Exercise 3”).
For the moment, in the launch file, there is no call to the package ro14_husky_controller
(and its node 5ro14_husky_controller_node) in which it is located!…
You should try it:

roslaunch 5ro14_husky_controller controller.launch

It will run Gazebo and the Husky simulation in a soccer field.

Add the lines needed in controller.launch file to start the 5ro14_husky_controller_node
node.
Try again this launch file: now with “rostopic info”, you can see that the/front/scan topic
is subscribed by your node.

6. In the call to this subscriber (“nodeHandle->subscribe...”), now replace the queue size and
topic name parameters with the scanTopicName and scanTopicQueueSize variables.
Load parameters named scan_topic_name and scan_topic_queue_size into these two
variables. Use the m_nodeHandle->getParam() function to do this.
Take inspiration from the ros_best_pratices package
If all goes well, your code should compile without any problems.

7. In your controller.launch file, add the commands needed to load the two parameters
(scan_topic_name and scan_topic_queue_size) with the param tag
If all goes well, your launch file should start without crashing.

2/3

http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html

CSC_5RO14_TA – 2025 – Emmanuel Battesti

8. Complete the callback method for your subscriber. It should compute the smallest distance
measurement from the vector ranges in the laser scanner message, and output it to the
terminal with ROS_INFO_STREAM function.
Check the message type here :
http://docs.ros.org/en/ noetic/api/sensor_msgs/html/msg/LaserScan.html
Tips: To filter some “NaN” values, you can use the function std::isnormal()
If all goes well, your code should compile and your launch file should start without
crashing.

It is difficult to see properly into the terminal because of the output from other nodes. The
solution is to use an ROS tool that allows messages to be filtered: rqt_console.
Try it.

To test the distance, you can place, in Gazebo, a geometric volume in front of the Husky
robot.

9. Display the laser scan in RViz with the “LaserScan” plugin (click on “add” at the bottom
left of the window).

10. Make sure you set odom as the Fixed Frame (under Global Options) and adjust the size of
the laser scan points. You can save your current RViz configuration as the default
configuration by pressing ctrl+s.

11. In your launch file, use the RViz package to load the RViz configuration file you saved
earlier. This will automatically launch RViz when you run your launch file.

3/3

http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html

	ROS Theory
	Exercise

