
Architecture for robotics
CSC_5RO14_TA

Emmanuel Battesti - 24/01/2025

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 2 / 59

Course objectives
● Learn Robotic Middleware: ROS
● Discover the mechatronic aspects of robotics
● Developing a "complex" robotics project

– A personalized project on a real robot
– Integration of functions: perception/navigation/control
– Development of new functions

● Gain experience in computer science
– Languages Python, C++
– OS Linux, Git
– Development

● Use things learned in other robotics courses
– Navigation, Vision, etc.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 3 / 59

Course Program
● A introductory course on ROS (3 sessions)

 → https://perso.ensta-paris.fr/~battesti/website/teaching/rob314/

● A course on mechatronics in robotics (3 sessions)
● A project:

– Creation of teams of 1 to 3 people.
– Defining a project and choosing a robot
– Robot handling and project development (6 sessions)
– Final session: presentation of projects
– A report is due one week later

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 4 / 59

Contact information
● Lecturers

– Emmanuel Battesti, engineer at U2IS ENSTA
(emmanuel.battesti@ensta.fr)

– Thibault Toralba, robotics engineer at U2IS ENSTA
(thibault.toralba@ensta.fr)

● Leader
– David Filliat, professor at U2IS ENSTA

(david.filliat@ensta.fr)

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 5 / 59

Robots available: Turtlebot
● Turtlebot 2.0

– Differential mobile base, 6kg, 0.6 m/s
– Netbook ROS (navigation, mapping…)
– RGBD sensors (Kinect or Xtion),
– Encoders,
– Gyrometers, bumpers
– laser telemeter, that can be added

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 6 / 59

● 1 front camera
● 1 camera under the drone for stabilization
● Several preprogrammed modes
● 13 min time of flight

Robots available:
Drone DJI Tello

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 7 / 59

Others robots
● Robots built in U2IS
● 1 or 2 Husky

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti

Introduction to ROS
CSC_5RO14_TA

Emmanuel Battesti

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 9 / 59

Course Summary

● Why does ROS exist?

● How does ROS work?

● How to use ROS with your own code ?

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 10 / 59

What tools are needed in
robotics?

● Distributed computing:
– Robots should be able to work with remote software or hardware,
– Robots should be able to interact with humans via software interface.
– Small independent pieces of software should be able to cooperate.
– ➔ need communication mechanisms

● Software reuse: growing collections of algorithms
– Need standard packages
– Need standard communication and standard interface
– Community: a place where we can discuss and share some codes

● Rapid testing:
– Use simulators instead of real robots easier➔

– But also recording and playback of real data sensor

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 11 / 59

Problems in robotics
before ROS

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 12 / 59

What is ROS?
● ROS means Robot Operating System
● ROS is open-source software
● Software tools that help you build ‘easily’ robot

applications.
● And that work across a wide variety of robotic

platforms.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 13 / 59

What does ROS offer?
● Great tools:

– Communication tools standard messages and ➔
communication library (topics, services, parameters)

– Distributed computing a central server called ➔ master
– An OS-like structure for organization (packages, nodes) and

command tools for easy compilation and navigation (catkin,
roscd, rosls,..).

– Testing simulators (➔ gazebo), visualizations (rviz), data logging,
replaying (rosbag)

● Lots of help and usable algorithms
– Ecosystem large community (wiki) and many standalone ➔

libraries are wrapped for ROS (e.g. OpenCV)
– Capabilities a lot of packages are available: control, planning, ➔

perception, mapping, manipulation, etc.
24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 14 / 59

ROS Overview

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 15 / 59

History of ROS
● Started at Stanford University, ~2005

– Personal project of Keenan Wyrobek and Eric Berger, two
phd students

– They observed that roboticists were wasting time on
areas that they were not interested in and that they could
not master.

– First prototype using the PR1 robot
● Carried by Willow Garage, 2008 – 2013

– Willow Garage was a robotics research center
– 2010: first distribution
– Ros became popular
– 2011: release of Turtlebot robot

● Now maintained by Open Robotics Foundation, since
2013

● Creation of ROS 2.0 in 2015, and first release in 2017
– Completely rethought distribution
– Industry oriented: real time, security, etc.

● Robots
– Hundreds of robots: https://robots.ros.org/
– For research, this has become a standard.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 16 / 59

ROS Philosophy
● Peer to Peer

– ROS systems consist of numerous small computer programs that are connected
to each other and constantly exchange messages

● Tools-based
– There are many small, generic programs that perform tasks as such as

visualization, logging, plotting data streams, etc.
● Multi-lingual

– ROS software modules can be written in any language for which a client library
has been written. Currently client libraries exist for C++, Python, LISP, Java,
JavaScript, MATLAB, Ruby, and others.

● Thin
– The ROS conventions encourage contributors to create standalone libraries and

then wrap those libraries to send and receive messages to/from other ROS
modules.

● Free and Open Source

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 17 / 59

ROS is not…
● ROS is not a programming language: you could use C+

+, Python, Java, Lisp
● ROS is not just a library (see above)
● ROS is not an integrated development environment:

could be used with most popular IDEs.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 18 / 59

ROS Requirement
● Mainly on Ubuntu
● 1 ROS release ⇔ 1 Ubuntu release

– ‘Long Term Support’ version ROS Melodic Morenia + Ubuntu 18.04
– ‘Long Term Support’ version ROS Noetic Ninjemys + Ubuntu 20.04

● The different versions of ROS are not always compatible with
each other.

● Quite large but easy to install
● Avoid virtual machines to work with real robots
● Multilingual

– ROS modules can be written in any language for which a client library
exists (C++, Python, MATLAB, Java, etc.).

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 19 / 59

ROS 1 Distribution Releases

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 20 / 59

ROS 2 Distribution Releases

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 21 / 59

ROS Melodic Installation

sudo 'echo "deb http://packages.ros.org/ros/ubuntu
$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key
C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

sudo apt-get --yes update
Sudo apt-get --yes install ros-melodic-desktop-full python-rosinstall
python-rosinstall-generator python-wstool build-essential python-rosdep
rosdep init
echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 22 / 59

ROS Noetic Installation

sudo 'echo "deb http://packages.ros.org/ros/ubuntu
$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc |
sudo apt-key add -

sudo apt-get --yes update

sudo apt-get --yes install ros-noetic-desktop-full python3-roslaunch
python3-rosinstall python3-rosinstall-generator python3-wstool build-
essential python3-rosdep

rosdep init

rosdep update

echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
source /opt/ros/noetic/setup.bash

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 23 / 59

Course Summary

● Why does ROS exist?

● How does ROS work?

● How to use ROS with your own code ?

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 24 / 59

ROS Packages 1/2
● All ROS software is organized in packages
● A package is one tool or a set of tools on a particular theme
● A package usually contains one or more nodes (i.e. ROS executables).
● A package may contain only one library.
● Sometimes, known libraries are packaged for ROS (like Open-CV or

PCL).
● Package:

– source code and/or executables (nodes),
– scripts,
– config files,
– datasets,
– messages or/and services…

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 25 / 59

ROS Packages 2/2
● Where do we find the packages?

– Most ROS packages are hosted on GitHub.
– They can be part of a metapackage: a collection of related

packages (for example ros_base or ros_control).
– We can create our own package.
– The main packages can be installed as Ubuntu packages

(sudo apt install ros-noetic-xxx)

● Listing and finding packages: rospack list
● To find a single package: rospack find package-name
● Linux-like commands: roscd, rosls…

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 26 / 59

ROS Nodes 1/2
● Node = single-purpose executable in ROS applications: e.g. sensor

driver(s), actuator driver(s), mapper, planner, UI, image viewer, logger, etc.
● Compiled, executed, and managed individually:

– One process per node. So, if one fails, the other nodes will not.
– Reduce code complexity
– Easier to test

● Nodes are combined into a graph and communicate with each
other using ROS topics, services, actions, etc.

● Organized into packages
● Nodes are language agnostic: for example, a Python node can

communicate with a C++ node.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 27 / 59

ROS Nodes 2/2
● Multiples nodes of the same type can be started more at the

same time, but with a different names.

● Run a node with:

See active nodes with:

Retrieve information about a node with:

> rosrun package_name node_type Node 1 Node 2

> rosnode list

> rosnode info node_type

Warning!
node_type ≠ node_name

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 28 / 59

ROS Master
● Each node registers with the

master at startup
● Manages the communication

between nodes (processes)
● Host a parameter server

Start a master with
> roscore

ROS Master

Node 1 Node 2

registration registration

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 29 / 59

ROS Topics
● Topic is a name for a « stream of

messages ».
● Nodes communicate through topics

– Nodes can publish or subscribe to a topic
– Typically, 1 publisher and n subscribers
– But may have many publishers and many subscribers

● A node doesn’t care if no node has
subscribed to its topic.

● Topics are created within nodes.

> rostopic list

ROS Master

Node 1
Publisher

Node 2
Subscriber

registration registration

> rostopic echo /topic_name

> rostopic info /topic_name

List active topics withSubscribe and print the contents of a topic with

Show information about a topic with

connection

topic

publish subscribe

subscribe

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 30 / 59

ROS Topics Example

ROS Master

Node 1
Publisher

Node 2
Subscriber

registration registration

connection

topic

publish subscribe

subscribe

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 31 / 59

First example
● sudo apt install ros-noetic-usb-cam
● Three terminals :

– In each terminal : source /opt/ros/noetic/setup.bash
– Term 1 : roscore
– Term 2 : rosrun usb_cam usb_cam_node _pixel_format_:=yuyv
– Term 3 : rosrun image_view image_view image:=/usb_cam/image_raw

Package name

Node type
parameter

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 32 / 59

ROS Messages 1/2
● Message = data structure defining the type of a

topic
● Data structures containing data of various kinds :

float, string, images, booleans, etc.
● Existing list of standard messages : position,

cmd_vel (command velocity), etc.
● Messages are sorted by theme: geometry,

sensors, navigation, etc.:
– std_msgs/xxx: standard messages
– geometry_msgs/xxx: messages about geometry
– Etc.

● Messages can be organized as a nested structure
of messages

ROS Master

Node 1
Publisher

Node 2
Subscriber

topic

publish subscribe

subscribe

int number
double width
string description
Etc.

*.msg
Message
definition

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 33 / 59

ROS Messages 2/2
● Defined in *.msg files
● You can create new messages.
● But to use all the tools, it is better to use the

standard messages.

ROS Master

Node 1
Publisher

Node 2
Subscriber

> rostopic type /topic_name

> rostopic pub /topic_name msg_type data

See the type of a topic

Publish a message to a topic

topic

publish subscribe

subscribe

int number
double width
string description
Etc.

*.msg
Message
definition

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 34 / 59

ROS Messages example
● Pose Stamped Example

geometry_msgs/Point.msg

float64 x
float64 y
float64 z

Header header
Pose pose

geometry_msgs/PoseStamped.msg

Point position
Quaternion orientation

float64 x
float64 y
float64 z
float64 w

geometry_msgs/Quaternion.msg

geometry_msgs/Pose.msg

uint32 seq
time stamp
string frame_id

Point position
Quaternion orientation

std_msgs/Header.msg

> rosmsg show geometry_msgs/PoseStamped

> rosmsg show geometry_msgs/Pose

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 35 / 59

ROS Messages example
● Image Example

Header header # Header timestamp should be acquisition time of image
 # Header frame_id should be optical frame of camera
 # origin of frame should be optical center of camera
 # +x should point to the right in the image
 # +y should point down in the image
 # +z should point into to plane of the image
 # If the frame_id here and the frame_id of the CameraInfo
 # message associated with the image conflict the behavior is undefined

uint32 height # image height, that is, number of rows
uint32 width # image width, that is, number of columns

The legal values for encoding are in file src/image_encodings.cpp
If you want to standardize a new string format, join
ros-users@lists.sourceforge.net and send an email proposing a new encoding.

string encoding # Encoding of pixels -- channel meaning, ordering, size
 # taken from the list of strings in include/sensor_msgs/image_encodings.h

uint8 is_bigendian # is this data bigendian?
uint32 step # Full row length in bytes
uint8[] data # actual matrix data, size is (step * rows)

Text file: sensor_msgs/Image.msg

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 36 / 59

ROS Master in details

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 37 / 59

ROS Services
● Request/response communication between

nodes is realized with services
– The service server advertises the service
– The service client accesses this service

● A client node using a service waits for the
response: blocking behavior

● Similar in structure to messages, services are
defined in *.srv files

● List available services with

● Show the type of a service

● Call a service with the content of request

Node 1
Service Client

Node 2
Service Server

Service
name

request

Request
—
Response

*.srv
Service
definition

> rosservice list

> rosservice type /service_name

> rosservice call /service_name args

requestresponse response

Example:
map_server/static_map –
retrieves the current grid map
used by the robot for navigation

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 38 / 59

ROS Services:
Examples

indicate successful
run of triggered service
bool success

informational, e.g.
for error messages
string message

Get a plan from the current
position to the goal Pose

The start pose for the plan
geometry_msgs/PoseStamped start

The final pose of the goal position
geometry_msgs/PoseStamped goal

If the goal is obstructed, how
many meters the planner can
relax the constraint in x
and y before failing.
float32 tolerance

nav_msgs/Path plan

std_srvs/Trigger.srv

nav_msgs/GetPlan.srv

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 39 / 59

ROS Actions (actionlib)
● Similar to service calls, but with the

ability to
– Cancel the task (preempt)
– Receive progress feedback

● Best way to implement interfaces to
long, goal-oriented behaviors

● Non-blocking behavior
● Similar in structure to services, actions

are defined in *.action files
● Internally, actions are implemented

with a set of topics

Node 1
Action Client

Node 2
Action Server

Action

Goal

Cancel

Status

Result

Feedback

Goal

Result

Feedback

*.action
Action
definition

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 40 / 59

Topics, Services, and
Actions Comparison

● Topics
– Description: continuous data streams
– Application: one-way continuous data stream
– Examples: sensor data, robot state

● Services
– Description: blocking call to process a request
– Application: short triggers or calculations
– Examples: trigger change, request state, compute quantity

● Actions
– Description: non-blocking, preemptable goal-oriented tasks
– Application: task executions and robot actions
– Examples: navigation, grasping, motion execution

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 41 / 59

ROS Architecture
● Each node is a separate process
● Inter-process communication

– Direct communication between nodes
– via TCP/IP or UDP
– Easy on multiple computers (set ROS_MASTER_URI)
– Shared memory (nodelet) on a single computer: avoid copying

and using a lot of memory.
● Rospy, Roscpp, …

– Libraries to interact with the ROS network in different languages

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 42 / 59

Exercice 1 – chatter/listener
● Live Demonstration
● Topics covered:

– Launching roscore,
– Launching the talker and listener nodes of the roscpp_tutorials

package,
– Using tools to analyze,
– Publishing a message.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 43 / 59

Exercice 2 – Turtlesim
● Live Demonstration
● Topics covered:

– Launching roscore,
– Launching the turtlesim_node and turtle_teleop_key nodes from

the turtlesim package,
– Using ROS tools to analyze,
– Publishing a message to control the turtle.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 44 / 59

Course Summary

● Why does ROS exist?

● How does ROS work?

● How to use ROS with your own code ?

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 45 / 59

Workspace: catkin 1/2
● The ROS packages used in your future project will come from :

– Preinstalled packages, located in /opt/ros/noetic/
– Newly installed packages, located in /opt/ros/noetic/

– downloaded packages, usually from Github,
– Your own self-coded package

● The last two need to be compiled before use !
● Catkin is the name of the ROS build system to generate

executables, libraries, and interfaces
● A catkin workspace is the place where one or more catkin

packages can be built.
24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 46 / 59

Workspace: catkin 2/2
● The first time you create a catkin workspace:

● The first build in your catkin workspace:

● ⇒ Creating the environment for developing new packages
● ⇒ 3 folders build, devel and src

> mkdir -p ~/catkin_ws/src
> cd ~/catkin_ws/src
> catkin_init_workspace

> cd ~/catkin_ws/
> catkin_make

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 47 / 59

Workspace: folders
● In your catkin workspace, you have 3 folders build, devel and src

– src: Work here
● The source space contains the source code. This is where you can clone,

create, and edit the source code for the packages you want to build, i.e. the
ones you have created or the ones you have downloaded

– build: should not normally be touched.
● The build space is where CMake is called to build the packages in the source

space. Cache information and other intermediate files are stored here.
– devel: should not normally be touched.

● The development (devel) space is where built targets are placed (prior to being
installed).

● If necessary, you can clean up the entire build and devel space by
simply deleting the build and devel directories

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 48 / 59

 Workspace: package 1/2
● The preinstalled packages are located in

/opt/ros/noetic/,
● Your own or downloaded packages should be

placed in the ~/catkin_ws/src directory,
● Technically, a package directory is a directory that

contains a package.xml file that describes the
package.

● If you rename package.xml, the package becomes
invisible to ROS.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 49 / 59

 Workspace: package 2/2
● A package directory

follows a common
structure:
– Package.xml
– CmakeLists.txt
– src / include
– Etc.

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 50 / 59

 Workspace: setup.bash
● The default workspace is loaded with:

● Overlay your catkin workspace with:

● Check your workspace with

● Every time we want to open a terminal to run a ROS
command, we have to execute this setup.bash file

● Good idea: put the first two commands at the end of the .bashrc
file.

> source /opt/ros/noetic/setup.bash

> source ~/catkin_ws/devel/setup.bash

> echo $ROS_PACKAGE_PATH

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 51 / 59

Workspace: add a new package
from source

● Open a terminal and go in your workspace

● Clone the Git repository of the package, for example:

> cd ~/catkin_ws/src/

> git clone https://github.com/ros-drivers/usb_cam.git

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 52 / 59

Workspace: compile the new
package

● Go to your catkin workspace

● (Here we specifically need to install before libv4l for usb_cam)

● Build the package with

● Re-source your workspace setup

● Start the node with roslaunch, for example:

● Ctrl+C to stop the program

> cd ~/catkin_ws

> catkin_make

> source devel/setup.bash

> roslaunch usb_cam test_img_view.launch

> sudo apt install libv4l-dev

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 53 / 59

ROS Launch
● launch is a tool for launching multiple nodes (as well as

setting parameters)
● Are written in XML as *.launch files
● If not already running, launch automatically starts a

roscore
● A launch file can be executed in two ways:

– Browse to the folder and start a launch file with:

– Start a launch file from a package with:

> roslaunch file_name.launch

> roslaunch package_name file_name.launch

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 54 / 59

ROS Launch:
file structure

launch: Root element of the launch file
● node: Each <node> tag specifies a node to launch
● name: Name of the node (free to choose). Two nodes of the same type should have

different names.
● pkg: Package containing the node
● type: Type of the node, there must be a corresponding executable with the same

name
● output: Specifies where to output log messages (screen: console, log: log file)

<launch>

 <node name="my_usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen"/>

 <node name="my_image_view" pkg="image_view" type="image_view" output="screen"/>

</launch>

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 55 / 59

● When launching, arguments can be
set with

● More info:
http://wiki.ros.org/roslaunch/XML/arg

ROS Launch: arguments
● Create reusable launch files with

<arg> tag, which works like a
parameter (default optional)

● Use arguments in launch file with

<arg name="arg_name" default="default_value"/>

$(arg arg_name)

> roslaunch launch_file.launch arg_name:=value

<launch>
 <arg name="show_camera" default="false" />

 <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
 <rosparam command="load" file="$(find usb_cam)/config/usb_cam.yml"/>
 </node>
 <node if="$(arg show_camera)" name="image_view" pkg="image_view" type="image_view"
 respawn="false" output="screen">
 <remap from="image" to="/usb_cam/image_raw"/>
 <param name="autosize" value="true" />
 </node>
</launch>us

b_
ca

m.
la

un
ch

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 56 / 59

ROS Launch:
Including Other Launch Files

● Include other launch files with
<include> tag to organize large projects

● Find the system path to other packages
with

<include file="package_name"/>

$(find package_name)

<arg name="arg_name" value="value"/>

● Pass arguments to the included file
set with

● More info:
http://wiki.ros.org/roslaunch/XML/inclu
de

<launch>
 <arg name="show_image" default="true" />

 <include file="$(find usb_cam)/launch/usb_cam.launch">
 <arg name="show_camera" value="$(arg show_image)" />
 </include>

</launch>

te
st

_i
mg

_v
ie

w.
la

un
ch

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 57 / 59

Gazebo Simulator
● Simulate 3D rigid body

dynamics
● Simulate a wide variety of

sensors including noise
● 3D visualization and user

interaction
● Includes a database of

many robots and
● environments (Gazebo

worlds)
● Provides a ROS interface
● Extensible with plugins

> rosrun gazebo_ros gazebo

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 58 / 59

Exercice 3 – play with husky
● Topics covered:

– Gazebo
– ROS architecture
– ROS master, nodes, and topics
– Console commands
– Catkin workspace and build system
– Launch-files

24/01/2025 CSC_5RO14_TA - Emmanuel Battesti 59 / 59

Further References
● ROS Wiki:

– http://wiki.ros.org/
● Installation:

– http://wiki.ros.org/ROS/Installation
● Tutorials:

– http://wiki.ros.org/ROS/Tutorials
● Available packages:

– http://www.ros.org/browse/
● ROS Cheat Sheet:

– https://www.clearpathrobotics.com/ros-robot-operating-system-cheat-sheet/
– https://kapeli.com/cheat_sheets/ROS.docset/Contents/Resources/Documents/index

● ROS Best Practices:
– https://github.com/leggedrobotics/ros_best_practices/wiki

● ROS Package Template:
– https://github.com/leggedrobotics/ros_best_practices/tree/master/ros_package_template

