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Abstract—We present in this paper a novel nonlinear model
predictive control scheme that guarantees asymptotic closed-
loop stability. The scheme can be applied to both stable and
unstable systems with input constraints. The objective func-
tional to be minimized consists of an integral square error (ISE)
part over a finite time horizon plus a quadratic terminal cost.
The terminal state penalty matrix of the terminal cost term has
to be chosen as the solution of an appropriate Lyapunov equa-
tion. Furthermore, the setup includes a terminal inequality con-
straint that forces the states at the end of the finite prediction
horizon to lie within a prescribed terminal region. If the
Jacobian linearization of the nonlinear system to be controlled is
stabilizable, we prove that feasibility of the open-loop optimal
control problem at time t"0 implies asymptotic stability of the
closed-loop system. The size of the region of attraction is only
restricted by the requirement for feasibility of the optimization
problem due to the input and terminal inequality constraints
and is thus maximal in some sense. ( 1998 Elsevier Science Ltd.
All rights reserved.

1. INTRODUCTION

The history of model predictive control (MPC),
also referred to as moving horizon control or reced-
ing horizon control, began with an attempt to use
the powerful computer technology to improve the
control of processes that are constrained, multivari-
able and uncertain (Cutler and Ramaker, 1980;
Richalet et al., 1978). In the last decade, many
formulations have been developed for linear or
nonlinear systems (Garcı́a et al., 1989; Rawlings
et al., 1994; Mayne, 1995; van den Boom, 1996; Lee,
1997), that found successful applications especially
in the process industries (Richalet, 1993; Qin and
Badgwell, 1996).
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In general, the MPC problem is formulated as
solving on-line a finite horizon open-loop optimal
control problem subject to (linear or nonlinear) sys-
tem dynamics and constraints involving states and
inputs. However, as shown in Bitmead et al. (1990),
this general form of MPC does not guarantee
closed-loop stability, because a finite horizon cri-
terion is not designed to deliver an asymptotic prop-
erty such as stability. Closed-loop stability can only
be achieved by a suitable tuning of design param-
eters such as prediction horizon, control horizon
and weighting matrices. Therefore, Bitmead et al.
(1990) suggested an infinite horizon method (closely
related to LQ control), which, however, results in an
optimization problem that can generally be solved
only for unconstrained linear systems.

For linear systems with constraints, the work of
Rawlings and Muske (1993) represents a significant
leap forward in the MPC theory. They propose
a receding horizon control scheme with infinite
prediction horizon and finite control horizon. For
both stable and unstable systems, nominal closed-
loop stability is guaranteed by the feasibility of the
constraints, independent of the choice of perfor-
mance parameters. For other MPC approaches
and stability results see, for example, Genceli and
Nikolaou (1993) and Polak and Yang (1993).

Mayne and Michalska have contributed some
very important issues on the stability of nonlinear
receding horizon control. They have shown in
Mayne and Michalska (1990) that under some
rather strong assumptions, receding horizon con-
trol is able to stabilize a class of nonlinear systems
with constraints (see also Chen and Shaw, 1982;
Keerthi and Gilbert, 1988). The finite horizon con-
strained optimal control problem is posed as min-
imizing a standard quadratic objective functional
subject to an additional terminal state equality con-
straint requiring the states to be zero at the end of
the finite prediction horizon. The strong assump-
tions are needed to ensure that the optimal value
function is continuously differentiable. Those as-
sumptions are relaxed in Michalska and Mayne
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(1991) to ensure merely local Lipschitz continuity
of the optimal value function. However, from
a computational point of view, an exact satisfaction
of the terminal equality constraint requires an infi-
nite number of iterations in the nonlinear case. An
approximate satisfaction means that the achieved
stability is lost inside the region of approximation.
In order to avoid this, they extend their work in
Michalska and Mayne (1993) with a terminal in-
equality constraint such that the states are on the
boundary of a terminal region at the end of a vari-
able prediction horizon. They suggest a dual-mode
receding horizon control scheme with a local linear
state feedback controller inside the terminal region
and a receding horizon controller outside the ter-
minal region. Closed-loop control with this scheme
is implemented by switching between the two con-
trollers, depending on the states being inside or
outside the terminal region.

Yang and Polak (1993) present a moving horizon
control scheme that deviates from conventional
MPC schemes in that the control horizon is also
a minimizer and the whole input sequence is imple-
mented. In this scheme inequality contraction con-
straints are added so as to ensure the state vector to
contract by a prespecified factor before a new op-
timization begins. Like in the linear case of this
scheme (Polak and Yang, 1993), guaranteed stabil-
ity is achieved when the existence of a solution to
the optimization problem at each time is assumed.
However, this is a very strong assumption and
cannot be guaranteed in general (Mayne, 1995). In
analogy to the linear case (Genceli and Nikolaou,
1993), Genceli and Nikolaou (1995) derive an end
condition for nonlinear MPC with second-order
Volterra models, when the system being controlled
is square and stable. The end condition requires the
input values at the end of the finite horizon to be
equal to the steady-state values corresponding to
the setpoint and the steady-state estimates of dis-
turbances. With the end condition, closed-loop
stability is achieved under some restrictions not
only on prediction and control horizons but also
on control move suppressions in the objective func-
tional. This makes an independent specification of
control performance difficult. Another method to
achieve stability for nonlinear MPC is suggested by
Nevistic and Morari (1995), combining state feed-
back linearization and stability issues of linear
MPC with constraints, for feedback linearizable
systems. However, because the exact state feedback
linearization law is state-dependent and generally
nonlinear, the originally linear input constraints
are transformed into state-dependent and in gen-
eral nonlinear constraints. In addition, an origin-
ally quadratic cost functional will become an
arbitrary nonlinear cost functional in the trans-
formed coordinates.

For discrete nonlinear systems subject to con-
straints, Keerthi and Gilbert (1988) discuss the
moving horizon control problem as an approxima-
tion of an infinite horizon optimal feedback control
problem. They provide sufficient conditions for the
existence of a solution to the general nonlinear
program and for closed-loop stability, based on
a controllability assumption that is however not
easy to verify in the nonlinear case. With terminal
equality constraints, Meadows et al. (1995) propose
a comparatively easily implementable formulation
and discuss the existence and stability conditions.

In this paper, we introduce a quasi-infinite hori-
zon nonlinear MPC scheme that optimizes on-line
an objective functional consisting of a finite hori-
zon cost and a terminal cost subject to system
dynamics, input constraints and an additional ter-
minal state inequality constraint. The feasibility of
the terminal inequality constraint implies that the
states at the end of the finite horizon are in a pre-
scribed terminal region. The terminal states are
penalized in such a way that the terminal cost
bounds the infinite horizon cost of the nonlinear
system controlled by a ‘‘fictitious’’ (i.e. not imple-
mented) local linear state feedback. Thus, the pro-
posed nonlinear model predictive controller has
a quasi-infinite prediction horizon, but the input
profile to be determined on-line is only of finite
nature. If the Jacobian linearization of the nonlin-
ear system to be controlled is stabilizable, the
unique positive-definite, symmetric solution of an
appropriate Lyapunov equation can serve as ter-
minal penalty matrix of the terminal cost, and
a neighborhood of the origin serving as terminal
region can be determined off-line. Closed-loop
asymptotic stability is then guaranteed by the feasi-
bility of the open-loop optimal control problem at
time t"0. As is usual in MPC, the closed-loop
control is calculated by solving the optimization
problem on-line at each time, no matter whether
the states are inside or outside the terminal region.
Thus, no switching between controllers is needed.
The local linear state feedback is only used to
determine a terminal penalty matrix and a terminal
region off-line. The contribution of this paper is
thus a computationally attractive formulation of
nonlinear MPC for which asymptotic stability can
be guaranteed. Compared to other nonlinear MPC
approaches that also guarantee stability (terminal
equality constraint and dual-mode), this approach
appears to be more general and computationally
more attractive.

The paper is structured as follows: Section 2
describes the mathematical formulation of the pro-
posed quasi-infinite horizon nonlinear MPC prob-
lem. Section 3 gives some preliminary results about
a region of attraction and a performance bound of
the nonlinear system controlled by a local linear
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state feedback. Based on these results, a procedure
for systematically determining a terminal region
and a terminal penalty matrix off-line is sum-
marized. In Section 4, asymptotic stability of the
proposed nonlinear MPC scheme is discussed and
sufficient stability conditions are given. Simulation
results for an unstable constrained system are given
in Section 5.

2. A QUASI-INFINITE HORIZON NONLINEAR MODEL

PREDICTIVE CONTROL SCHEME

The class of systems to be controlled is described
by the following general nonlinear set of ordinary
differential equations (ODEs):

x5 (t)"f (x(t), u(t)), x(0)"x
0
, (1)

with state vector x(t)3Rn, input vector u(t)3Rm,
and subject to input constraints

u(t)3º , ∀t50 . (2)

It is assumed in this paper that

(A1) f :Rn]RmPRn is twice continuously differ-
entiable and f(0, 0)"0. Thus, 03Rn is an
equilibrium of the system with u"0.

(A2) ºLRm is compact, convex and 03Rm is
contained in the interior of º.

(A3) System (1) has a unique solution for any initial
condition x

0
3Rn and any piecewise continu-

ous and right-continuous u ( ) ) : [0, R)Pº.

Assumption f(0, 0 )"0 is not very restrictive, since
if f(x

s
, u

s
)"0, one can always shift the origin of the

system to (x
s
, u

s
). We consider in this paper the state

feedback case and thus assume that all states are
measurable.

In the following, we describe the problem setup
for the quasi-infinite horizon nonlinear MPC
scheme introduced in this paper. For a description
of the general idea and the principle of nonlinear
MPC we refer for example to the excellent papers
by Mayne and Michalska (Mayne and Michalska,
1990; Michalska and Mayne, 1993).

We shall first introduce some notations that will
be used in this paper. For any vector x3Rn, ExE
denotes the 2-norm and the weighted norm ExE

P
is

defined by ExE2
P
:"xTPx, where P is an arbitrary

Hermitian, positive-definite matrix. For any Her-
mitian matrix A, j

.!9
(A) and j

.*/
(A) denote the

largest and the smallest real part of the eigenvalues
of the matrix A, respectively, and EAE stands for the
induced 2-norm of A. In order to distinguish clearly
between the system, that evolves in ‘‘real’’ time, and
the system model, used to predict the future ‘‘with-
in’’ the controller and evolving in some fictitious
time, we denote the internal variables in the con-
troller by a bar (x6 , u6 ) to indicate that the predicted

values need not and will not be the same as the
actual values.

For the particular setup considered in this
paper, the open-loop optimal control problem at
time t with initial state x (t) is formulated as

min
uN ( ) )

J (x(t), u6 ( ) )) (3)

with

J(x(t), u6 ()))"P
t`Tp

t
AEx6 (q)(x (t), t)E2

Q
#Eu6 (q)E2

RBdq

#Ex6 (t#¹
1
; x (t), t)E2

P
(4)

subject to

x60 "f(x6 , u6 ), x6 (t; x (t), t)"x(t) (5a)

u6 (q)3º, q3[t, t#¹
1
] (5b)

x6 (t#¹
1
; x (t), t)3), (5c)

where Q3Rn]n and R3Rm]m denote positive-defi-
nite, symmetric weighting matrices; ¹

1
is a finite

prediction horizon; x6 ( ) ; x (t), t) is the trajectory of
equation (5a) driven by u6 ( ) ) : [t, t#¹

1
]Pº (for

simplicity of exposition, the control and prediction
horizons are chosen to have identical values in this
paper). Note the initial condition in equation (5a):
The system model used to predict the future in the
controller is initialized by the actual system states
x(t) at ‘‘real’’ time t.

The objective functional (4) consists of a finite
horizon standard cost to specify the desired control
performance and a terminal cost to penalize the
states at the end of the finite horizon. The terminal
inequality constraint (5c) will force the states at the
end of the finite prediction horizon to be in some
neighborhood ) of the origin, called here terminal
region. This terminal region ) will be chosen such
that it is invariant for the nonlinear system control-
led by a local linear state feedback. The quadratic
terminal cost Ex (t#¹

1
; x (t), t)E2

P
bounds the infi-

nite horizon cost of the nonlinear system starting
from ) and controlled by the local linear state
feedback, i.e.

Ex6 (t#¹
1
; x (t), tE2

P
5P

=

t`T1

(Ex6 (q; x(t), t)E2
Q

#Eu6 (q)E2
R
) dq

u6 "Kx6 , ∀x6 (t#¹
1
; x(t), t)3). (6)

We will show that this allows us to guarantee
closed-loop stability. The positive definite and sym-
metric terminal penalty matrix P3Rn]n together
with the terminal region ) is determined off-line
such that the invariance property of ) holds and
the input constraints are satisfied in ). If we
substitute inequality (6) into equation (4), we can
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conclude that the cost functional to be minimized
bounds the infinite horizon cost defined by

J=(x(t), u6 ( ) )) :"P
=

t

(Ex (q; x (t), t)E2
Q
#Eu6 (q)E2

R
) dq,

where u6 (q)"Kx6 (q; x (t), t) for q5t#¹
1
, i.e. J=(x(t),

u6 ( ) ))4J(x (t), u6 ( ) )). In this sense, the prediction
horizon of the proposed nonlinear predictive con-
troller expands quasi to infinity, hence the name
quasi-infinite horizon nonlinear MPC scheme.

An optimal solution to the optimization prob-
lem (3)—(5) (existence assumed), will be denoted
by u6 *( ) ;x (t), t, t#¹

1
) : [t, t#¹

1
]Pº and the

corresponding objective value is denoted by
J*(x(t), t, t#¹

1
) :"J (x(t), u6 *).

The idea behind this setup is to guarantee stabil-
ity of the closed-loop system with a quasi-infinite
horizon objective functional, where the input pro-
file needs to be determined on-line only for a finite
horizon. In the sense of MPC, the ‘‘open-loop’’
control can be thought of as having two steps: over
a finite horizon, an optimal input profile found by
solving the open-loop optimal control problem
drives the nonlinear system model into the terminal
region; after that, a local linear state feedback con-
trol is assumed to steer it to the origin. In the
moving horizon implementation, the local linear
state feedback controller will never be directly ap-
plied to the system. Indeed, the input profile found
is applied to the system only until the next measure-
ment becomes available. We assume that this will
be the case every d time-units. So d denotes the
‘‘sampling time’’ with d(¹

1
, and the closed-loop

control represented by u* ( ) ) is defined by

u*(q) :"u6 *(q ; x (t) , t, t #¹
1
) , q3[t, t#d]. (7)

Updated with the new measurement, the above
optimization problem will be solved again to find
a new input profile. Thus, the closed-loop control is
obtained by solving the open-loop optimal control
problem on-line at each time, no matter whether
the states are inside or outside the terminal region.
The linear state feedback is only used to determine
a terminal penalty matrix P and a terminal region
) off-line, as described in the next section.

3. PRELIMINARY RESULTS

By a slight modification of the associated content
in Michalska and Mayne (1993), we present pre-
liminary results about a region of attraction and
a performance bound of the nonlinear system con-
trolled by a local linear state feedback. These
results allow us to outline a procedure to system-
atically determine a terminal region and a terminal
penalty matrix, and will be used to prove closed-

loop asymptotic stability of the proposed control
scheme. Since a terminal region and a terminal
penalty matrix can be calculated off-line, variables
without a bar will be used in this section.

We consider the Jacobian linearization of the
system (1) at the origin

x5 "Ax#Bu, (8)

where A :"(L f/Lx)(0, 0) and B :"(L f/Lu)(0, 0). If
equation (8) is stabilizable, then a linear state
feedback u"Kx can be determined such that
A

K
:"A#BK is asymptotically stable. Conse-

quently, we can state the following lemma.

¸emma 1. Suppose that the Jacobian linearization
of the system (1) at the origin is stabilizable. Then,

(a) the following Lyapunov equation

(A
K
#iI)TP#P (A

K
#iI)"!Q* (9)

admits a unique positive-definite and symmet-
ric solution P, where Q*"Q#KTRK3Rn]n

is positive definite and symmetric; i3[0, R)
satisfies

i(!j
.!9

(A
K
) . (10)

(b) There exists a constant a3 (0, R) specifying
a neighborhood )a of the origin in the form of

)a :"Mx3Rn DxTPx4aN (11)

such that
(i) Kx3º, for all x3)a, i.e., the linear feed-

back controller respects the input con-
straints in )a ,

(ii) )a is invariant for the nonlinear system (1)
controlled by the local linear feedback
u"Kx,

(iii) for any x
1
3)a , the infinite horizon cost

J=(x
1
, u)"P

=

t1

(Ex(t)E2
Q
#Eu(t)E2

R
) dt

subject to nonlinear system (1), starting
from x(t

1
)"x

1
and controlled by the local

linear state feedback u"Kx, is bounded
from above as follows:

J=(x
1
, u)4xT

1
Px

1
. (12)

Proof. Since Q*'0, by the general conditions for
the solvability of Lyapunov equations, it is known
that the Lyapunov equation (9) has a unique
positive definite and symmetric solution, if the real
parts of all eigenvalues of (A

k
#iI) are negative.

Because of the asymptotic stability of A
K
, any

constant i3[0, !j
.!9

(A
K
)) ensures the negativity

of the real parts of all eigenvalues of (A
k
#iI).

Thus, (a) is true.
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Since the point 03Rm is in the interior of º, we
can always—for any fixed P'0—find a constant
a
1
3 (0, R), that specifies a region in the form of

(11), such that Kx3º, for all x3)ai. Thus, the
linear feedback control values satisfy the input con-
straints in )a1.

Let a3 (0, a
1
] specify a region in the form of

equation (11). Since a4a
1
, the input constraints

are satisfied in )a and thus (i) is true. In other
words, the system can be thought of as being un-
constrained in )a.

We differentiate xTPx along a trajectory of

x5 "f (x, Kx) (13)
and obtain

d

dt
x (t)TPx(t)"x (t)T(AT

K
P#PA

K
)x (t)

#2x(t)TP/ (x(t)), (14)

where /(x) :"f(x, Kx)!A
K
x. The term involving

/(x) in the above equation is bounded above as
follows:

xTP/ (x)4ExTPE ) E/(x)E4EPE )¸
(
) ExE2

4

EPE )¸
(

j
.*/

(P)
ExE2

P
, (15)

where ¸
(
:"supME/(x)E/ExE D x3)a, xO0N. Now

we choose an a3 (0, a
1
] such that in )a

¸
(
4

i ) j
.*/

(P)

EPE
. (16)

Then, inequality (15) leads to

xTP/ (x)4i ) xTPx . (17)

Substituting inequality (17) into equation (14)
yields

d

dt
x (t)TPx(t)4x(t)T ((A

K
#iI)TP#P (A

K
#iI))x (t)

that by equation (9) leads to

d

dt
x (t)TPx(t)4!x(t)TQ*x(t) . (18)

Since P'0 and Q*'0, inequality (18) implies that
the region )a defined by equation (11) is invariant
for the nonlinear system (1) controlled by the local
linear state feedback u"Kx. Moreover, any tra-
jectory of equation (13) starting in )a stays in
)a and converges to the origin.

Then, for any x
1
3)a, integrating inequality (18)

from t
1

to R with initial condition x(t
1
)"x

1
yields the desired result (12). K

It should be pointed out that if we use the nota-
tion introduced in Section 2 for internal variables in

the controller and set x
1
"x6 (t#¹

1
;x(t), t), then

inequality (12) is equivalent to inequality (6). The
solution P of equation (9) and the region )a in the
form of equation (11) are able to serve as a terminal
penalty matrix and a terminal region. From the
above proof, a procedure can be stated to deter-
mine a terminal penalty matrix P and a terminal
region )a (preferably as large as possible) off-line
such that inequality (14) holds true and the input
constraints are satisfied:

Step 1. Solve a control problem based on the Jac-
obian linearization to get a locally stabiliz-
ing linear state feedback gain K.

Step 2. Choose a constant i3[0, R) satisfying
inequality (10) and solve the Lyapunov
equation (9) to get a positive-definite and
symmetric P.

Step 3. Find the largest possible a
1

such that
Kx3º, for all x3)a1.

Step 4. Find the largest possible a3 (0, a
1
] such

that inequality (16) is satisfied in )a.

Remark 3.1. In Step 4, inequality (16) is not easy to
satisfy for an arbitrary large terminal region )a.
Due to a typically small value of j

.*/
(P)/EPE, it is

possible that for some systems this inequality can
only be met for an extremely small terminal region
)a. From the proof of Lemma 1, we know that if
inequality (17) holds true for all x3)a, then, in-
equality (18) is also valid. In addition, since /(x)
satisfies / (x)P0 and E/(x)E/ExEP0 as ExEP0,
there exists a constant e'0 such that inequality
(17) holds true for all x with ExE4e. Hence, in
order to get a less conservative terminal region, we
may take a different approach. First, we follow the
above procedure until Step 3. Then, we may make
iterations of the simple optimization problem

max
x

MxTP/(x)!i ) xTPx DxTPx4aN (19)

for the chosen i by reducing a from a
1

until the
optimal value of (19) is nonpositive. A discussion on
the optimization problem (19) and on finding the
maximum a

1
in Step 3 can be found in Michalska

and Mayne (1993). If a suitable a is found in this
way, it specifies a region )a in the form of (11), in
which inequality (17) holds true. In turn, inequality
(18) is valid and the results in Lemma 1 hold conse-
quently. This region can then serve as a terminal
region.

Remark 3.2. Following the above procedure does
not yield a unique terminal region for a given
nonlinear system. For the sake of reducing the
on-line computational burden, we are interested in
determining the largest possible region. This is,
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however, not an easy task. First, this requires a suit-
able selection of the stabilizing linear feedback gain
K, where many linear control methods can in prin-
ciple be used. Because of the ‘‘optimality’’ of MPC,
the linear optimal control technique (LQR) may be
preferentially applied for determining a stabilizing
K. Secondly, for a given gain K, an appropriate
choice of i is needed. This will be discussed in
Section 5. Moreover, the size of the terminal region
depends generally on the nonlinearity of the system
to be controlled. The stronger nonlinear the system
is, the smaller the terminal region will be. For linear
or some mildly nonlinear systems, the size of the
terminal region will only be restricted by the input
constraints. This will also be shown in the example
in Section 5.

Remark 3.3. If there exists no linear feedback con-
troller that can locally asymptotically stabilize the
nonlinear system, )a contracts to the origin. Thus,
the terminal inequality constraint (5c) reduces to
the terminal equality constraint x(t#¹

1
)"0,

which is well known to lead to stability (Mayne and
Michalska, 1990; Rawlings and Muske, 1993). For
a generalization of the proposed approach to sys-
tems with non-stabilizable Jacobian linearization
see Chen and Allgöwer (1997a).

Remark 3.4. If the system to be controlled is linear,
i.e. /(x)"0 and ¸

(
"0 for all x3Rn, then, i"0

satisfies equation (16). In turn, equation (9) be-
comes the Lyapunov equation for linear systems,
and equation (12) is satisfied with equality. That
means that the following equality:

P
t`T1

t

(Ex(q)E2
Q
#Eu(q)E2

R
) dq#Ex(t#¹

1
)E2

P

"P
=

t

(Ex(q)E2
Q
#Eu(q)E2

R
) dq

is valid for linear systems. Thus, the model predic-
tive controller has exactly an infinite prediction
horizon with only a finite horizon input profile to
be determined on-line. For ‘‘open-loop’’ control,
the control law beyond the finite horizon would be
given by the local linear state feedback u"Kx (cf.
Rawlings and Muske (1993) and Muske (1995),
where the control beyond the finite horizon is
chosen to be zero). A similar result can be found in
Scokaert and Rawlings (1996).

4. ASYMPTOTIC STABILITY RESULTS

According to the principle of MPC, the open-
loop optimal control problem given by equations
(3)—(5) will be solved repeatedly, updated with new
measurements. The closed-loop control u*( ) ) is de-

fined by equation (7), where u6 *( ) ; x (t), t, t#¹
1
): [t,

t#¹
1
]Pº is a solution to the optimization prob-

lem. In this section, we address the stability prop-
erty of the closed-loop system

x5 (t)"f(x (t), u* (t)). (20)

To do this, we use the following standard defini-
tions (e.g. Khalil, 1992) and assume for the moment
(later it will be shown) that x"0 is an equilibrium
of equation (20).

Definition 1. The equilibrium point x"0 of equa-
tion (20) is stable if for each e'0 there exists
g(e)'0, such that Ex(0)E(g(e) implies Ex(t)E(e
for all t50.

Definition 2. The equilibrium point x"0 of
equation (20) is asymptotically stable if it is stable
and g can be chosen such that Ex(0)E(g implies
x(t)P0 as tPR.

For the sake of a clear proof, we use in this
section the notation for internal controller vari-
ables and distinguish between the predicted values
in the controller and the actual ones in the ‘‘real’’
system. Thus, x6 ( ) ; x(t), t) denotes the predicted tra-
jectory of the nonlinear system starting from the
actual state x(t) and driven by an open-loop con-
trol u6 ( ) ) , when the prediction is made in the
controller at ‘‘real’’ time t.

4.1. Feasibility of the optimization problem
Due to the repeated solution of the optimization

problem given by equations (3)—(5), we need its
feasibility at each time t50. Feasibility of the
optimization problem means that there exists at
least one (not necessarily optimal) input profile
u6 ( ) ) : [t, t#¹

1
]Pº such that the generated tra-

jectory of equation (5a) satisfies the terminal in-
equality constraint (5c), and such that the value of
the objective functional (4) is bounded. In the fol-
lowing, we give a lemma on the feasibility of the
optimization problem at each time. This lemma
follows a standard argument also used for example
in Genceli and Nikolaou (1993), Michalska and
Mayne (1993) and Rawlings and Muske (1993).

¸emma 2. For the nominal system with perfect
state measurement and no disturbances, and for
a sufficiently small sampling time d'0, the feasi-
bility of the open-loop optimal control problem (3)
with equation (4) subject to equation (5) at time
t"0 implies its feasibility for all t'0.

Proof. It is assumed for the moment that, at time t, an
optimal solution u6 *( ) ;x(t), t, t#¹

1
) : [t, t#¹

1
]Pº

to the optimization problem described by equa-
tions (3)—(5) exists and is found. When applied in
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open loop, this finite horizon optimal input profile
drives the system model (5a) from initial state x (t)
into the terminal region ) along the corresponding
open-loop optimal state trajectory x6 *() ;x(t), t, t#¹

1
)

on [t, t#¹
1
] with x6 *(t#¹

1
;x (t), t, t#¹

1
)3).

In terms of MPC, the closed-loop control u* ( ) )
from time t to t#d is defined by equation (7).
Since, by assumption, there are no disturbances
and we only consider the nominal system, the
state measurement at time t#d is then x (t#d)"
x6 *(t#d; x (t), t, t#¹

1
). Therefore, for solving the

open-loop optimal control problem at time t#d
with initial condition x6 (t#d; x (t#d), t#d)"
x(t#d), a candidate input profile u6 ( ) ) on
[t#d, t#d#¹

1
] may be chosen with

u6 (q)"

G
u6 *(q; x(t), t, t#¹

1
) for q3[t#d, t#¹

1
],

Kx6 (q ; x(t#d), t#d) for q3[t#¹
1
, t#d#¹

1
],

(21)

where K is the local linear state feedback gain
used in determining P and ) off-line (compare
Section 3). From Lemma 1, the terminal region
) is invariant for the nonlinear system model
controlled with the linear state feedback. Thus,
x6 *(t#¹

1
;x(t), t, t#¹

1
)3) implies x6 (t#d#¹

1
;

x(t#d), t#d)3), due to the choice (21) for the
input profile. In addition, since the input con-
straints are satisfied in ), input profile (21) is a
feasible but perhaps not optimal solution to the
optimization problem at time t#d. Obviously, this
reasoning is also valid, if at time t we start out with
a feasible solution only, that needs not be optimal.

For a numerical implementation, the input pro-
file is in general parameterized in a step-shaped
manner. Thus, choosing u6 (q)"Kx6 (q; x(t#d), t#d)
for q3[t#¹

1
, t#d#¹

1
] as in equation (21) is

practically impossible. However, we do have
x6 *(t#¹

1
; x (t) , t, t#¹

1
)3). Then, if we choose

u6 (q)"Kx6 (t#¹
1
; x(t#d), t#d) for q3[t#¹

1
, t#

d#¹
1
], from the continuity of the trajectory, we

can assume w.l.o.g. that for a small enough d'0,
the trajectory x6 () ; x (t#d), t#d) on [t#¹

1
, t#

d#¹
1
] stays in ). Then, the result can be achieved

by induction. K

Remark 4.1. Lemma 2 indicates that the prediction
horizon ¹

1
(tuning parameter) needs to be chosen

such that the optimization problem (3) with equa-
tion (4) subject to equation (5) is feasible at time
t"0.

4.2. Asymptotic stability
Before the asymptotic stability of the closed-loop

system (20) is addressed, we show that the optimal

value function is non-increasing. This result is cru-
cial for the stability proof.

¸emma 3. Suppose that the optimization problem
is feasible at time t"0. Then, for the unperturbed
nominal system, for any t50 and q3(t, t#d] the
optimal value function satisfies

J*(x(q), q, q#¹
1
)4J*(x (t), t, t#¹

1
)!

P
q

t

(Ex(s)E2
Q
#Eu*(s)E2

R
) ds. (22)

Proof. From Lemma 2, feasibility of the optimiza-
tion problem at each time t'0 is guaranteed by its
feasibility at time t"0.

If, at time t, a finite horizon open-loop optimal
input profile u6 *() ; x (t), t, t#¹

1
) :[t, t#¹

1
]Pº

and the corresponding finite horizon open-loop
optimal state trajectory x6 *() ; x(t), t, t#¹

1
) on

[t, t#¹
1
] are given, the optimal value of the objec-

tive functional can be written as

J*(x(t), t, t#¹
1
)"P

t`T1

t

(Ex6 *(s ; x (t), t, t#¹
1
)E2

Q

#Eu6 * (s ; x (t),t, t#¹
1
)E2

R
) ds

#Ex6 * (t#¹
1
;x (t), t, t#¹

1
)E2

P
.

(23)

For any q3(t, t#d], the closed-loop control is
taken in terms of equation (7). For the nominal
system without disturbances, the closed-loop state
trajectory of the system (1) is then given by

x (s)"x6 * (s; x (t), t, t#¹
1
) , s3[t, q] . (24)

We now calculate the value of the objective func-
tional for any q3(t, t#d], if a feasible (suboptimal)
input profile

u6 (s)"

G
u6 *(s; x (t), t, t#¹

1
) for s3[q, t#¹

1
]

Kx6 (s; x (t#d), t#d) for s3[t#¹
1
, q#¹

1
]

(25)

is assumed to be applied to the system. We denote
that by JM (x(q), q, q#¹

1
) :"J (x(q), u6 ( ) )) with u6 ( ) )

according to equation (25). The generated finite
horizon open-loop state trajectory is the same as
the open-loop state trajectory given by the
optimization at time t, except for the last part on
[t#¹

1
, q#¹

1
], i.e.

x6 (s; x(q), q)"x6 *(s; x (t), t, t#¹
1
),

s3[q, t#¹
1
]. (26)

In order to characterize the contribution of the
state trajectory on [t#¹

1
, q#¹

1
] to the value

function, we use the results in Lemma 1: Since
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the feasibility of the optimization problem at time
t implies that x6 *(t#¹

1
; x (t),t, t#¹

1
)3) and on

[t#¹
1
, q#¹

1
] the system model is controlled by

the linear state feedback (see equation (25)), that
part of the state trajectory stays in ) and obeys
inequality (18). We want to remind that the ‘‘real’’
time is now q3(t, t#d] and we discuss the pre-
dicted open-loop state trajectory in the controller. In
this situation, x (t) and t in inequality (18) have to be
replaced by x6 (s ; x (q), q) and s, respectively. Then,
integrating (18) from t#¹

1
to q#¹

1
with

x6 (t#¹
1
; x (q), q)"x6 *(t#¹

1
; x(t ), t, t#¹

1
) yields

the following relationship:

Ex6 (q#¹
1
; x (q), q)E2

P
4Ex6 *(t#¹

1
; x (t), t, t#¹

1
)E2

P

!P
q`T1

t`T1

Ex6 (s ; x (q), q)E2
Q* ds .

(27)

Then, the value of the objective functional for any
q3 (t, t#d] is

JM (x (q), q, q#¹
1
)

"P
q`T1

q
(Ex6 (s; x (q), q)E2

Q
#Eu6 (s)E2

R
) ds

#Ex6 (q#¹
1
; x(q), q)E2

P

"P
t`T1

q
(Ex6 * (s; x (t), t, t#¹

1
)E2

Q

#Eu6 * (s; x (t), t, t#¹
1
)E2

R
) ds

#P
q`T1

t`T1

Ex6 (s; x (q), qE2
Q* ds

#Ex6 (q#¹
1
; x (q), q)E2

P
,

where equations (25) and (26) are used. Because of
inequality (27), the above equality becomes

JM (x (q), q, q#¹
1
)4P

t`T1

q
(Ex6 * (s; x (t), t, t#¹

1
)E2

Q

#Eu6 * (s; x (t), t, t#¹
1
)E2

R
) ds

#Ex6 * (t#¹
1
; x (t), t, t#¹

1
)E2

P
.

Combining it with (23) yields

JM (x (q), x (q), q)4J* (x (t), t, t#¹
1
)

!P
q

t

(Ex6 * (s; x (t), t, t#¹
1
)E2

Q

#Eu6 *(s; x (t), t, t#¹
1
)E2

R
) ds .

It follows from substituting equations (7) and (24)
into the above inequality that

JM (x (q), q, q#¹
1
)4J* (x (t), t, t#¹

1
)!P

q

t

(Ex (s)E2
Q

#Eu*(s)E2
R
) ds . (28)

It is clear, by the optimality of J*, that we have for
any q3(t, t#d],

J*(x (q), q, q#¹
1
)4JM (x(q), q, q#¹

1
)

4J*(x (t), t, t#¹
1
)

!P
q

t

(Ex(s)E2
Q
#Eu* (s)E2

R
) ds

as required. K

Because Q'0 and R'0, Lemma 3 implies by
induction that the optimal value function is non-
increasing. Now we are able to state the asymptotic
stability result for the closed-loop system (20).

¹heorem 1. Suppose that

(a) assumptions (A1)—(A3) are satisfied,
(b) the Jacobian linearization of the nonlinear

system (1) is stabilizable,
(c) the open-loop optimal control problem (3) with

equation (4) subject to equation (5) is feasible at
time t"0.

Then, for a sufficiently small sampling time d'0
and in the absence of disturbances, the closed-loop
system with the model predictive control (7) is nom-
inally asymptotically stable. Let X-Rn denote the
set of all initial states for which assumption (c) is
satisfied, then, X gives a region of attraction for the
closed-loop system.

Proof. From Lemma 1, assumption (b) implies that
a terminal penalty matrix P and a terminal region
) in the form of equation (11) can be found by the
procedure in Section 3. According to Lemma 2, for
a sufficiently small d'0, feasibility of the open-
loop optimal control problem at each time t'0 is
guaranteed by assumption (c).

For x (t)"0, the optimal solution to the optim-
ization problem is u6 *( ) ; 0, t, t#¹

1
) : [t, t#¹

1
]P0,

i.e. u* (q)"0 for all q3[t, t#d]. Due to f (0, 0)"0,
then x"0 is an equilibrium of the closed-loop
system (20).

Now we define a function » (x) for the closed-
loop system (20) as follows:

»(x) :"J*(x, t, t#¹
1
) . (29)

Then, » (x) has the following properties:

f »(0)"0 and » (x)'0 for xO0,
f »(x) is continuous at x"0,
f along the trajectory of the closed-loop
system starting from any x

0
3X there is for

04t
1
(t

2
4R

»(x(t
2
))!» (x(t

1
))4!P

t2

t1

Ex(t)E2
Q
dt . (30)
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The first two properties follow from Lemma A.1 in
Chen (1997) and the third property is due to
Lemma 3 and R'0. As a central consequence, we
can take the standard argument used, for example,
in Hahn (1967) and Khalil (1992) to prove that the
equilibrium x"0 is stable per Definition 1. That is,
for each e'0 there exists g(e)'0, such that
Ex(0)E(g (e) implies Ex (t)E(e for all t50. More-
over, there exists a constant b3(0, R) such that
along the closed-loop trajectory one has

»(x(t))4b , ∀t50 . (31)

In the following, we show that there exists g'0
such that x(t)P0 as tPR for all Ex(0)E(g,
without having to use a continuous differen-
tiability assumption on »(x). This implies that the
equilibrium x"0 is asymptotically stable from
Definition 2. Finally, it is shown that X is a region
of attraction for the closed-loop system.

We start out with inequality (30) to prove the
asymptotic stability. By induction, we have

» (x(R))4»(x(0))!P
=

0

Ex (t)E2
Q
dt . (32)

Due to »(x (R))50 and »(x (0))4b, the integral
:=
0

Ex(t)E2
Q
dt exists and is bounded. Let e

1
(e be

such that Ex(t)E4e
1
, then, x(t) is on the com-

pact set MExE4e
1
N for all t3[0, R). Moreover,

u*(t)3º for all t3[0, R) with º being compact.
Because f is continuous in x and u, then, f(x(t), u*(t))
is bounded for all t3[0, R). Thus, x (t) is uni-
formly continuous in t on [0, R) (Desoer and
Vidyasagar, 1975). Consequently, Ex(t)E2

Q
is uni-

formly continuous in t on [0, R), because ExE2
Q

is
uniformly continuous in x on the compact set
MExE4e

1
N. Due to Q'0, it follows from Bar-

balat’s Lemma (Khalil, 1992) that

Ex(t)EP0 as tPR. (33)

Then, the equilibrium point x"0 of the system (20)
is asymptotically stable. Clearly,

¼b :"Mx3X D»(x)4bN (34)

is a region of attraction.
Furthermore, for all x(0)3X, there exists a finite

time ¹ such that x (¹)3¼b. This can be shown by
contradiction: Assume that x (t)N¼b for all t5¹. It
follows from inequality (30) that for all t5¹

»(x(t#d))!»(x(t))4!P
t`d

t

Ex(q)E2
Q

dq

4!d infMExE2
Q
D xN¼bN

4!d ) c , (35)

where c'0, because of the positive definiteness of
»(x). By induction, » (x(t))P!R as tPR that

contradicts however the fact that » (x)50. Thus,
any trajectory of equation (20) starting from X en-
ters into ¼b in a finite time. Then, the asymptotic
stability of equation (20) in X follows by the fact
that ¼b is a region of attraction.

Finally, X has also the property that any closed-
loop trajectory starting from X stays in X. This can
be proven again by contradiction: We assume that
the closed-loop trajectory starting from any
x(0)3X has left X at some time t

1
'0, i.e. x (t

1
)NX.

From Lemma 2, we know that the optimization
problem at time t

1
with initial condition

x6 (t
1
; x (t

1
), t

1
)"x (t

1
) is feasible. This contradicts

that X is the set of all initial states for which
assumption (c) is satisfied. Together with the
achieved asymptotic stability, X gives a region of
attraction for the closed-loop system. K

Remark 4.2. The given stability conditions are only
sufficient and not necessary. The fact that the lin-
earized system is not stabilizable does of course not
imply that there exists no linear feedback controller
being able to stabilize the nonlinear system locally.

Remark 4.3. When applying this control scheme to
practical systems, the numerical optimization em-
ployed may not find the globally optimal input
profile at every time step, due to real time computa-
tion time restrictions or because the optimizer is for
example caught in a local optimum. Even though
optimal performance might be lost this way, stabil-
ity can be guaranteed nevertheless, as the stability
guarantee does not depend on the optimality of the
solution found but merely on its feasibility, as long
as the problem is feasible and the optimizer finds
any feasible solution at time t"0 and as long as
each optimization problem is initialized by the shif-
ted feasible solution from the previous step.

Remark 4.4. If the nonlinear system is open-loop
asymptotically stable, the nonlinear terminal in-
equality constraint x(t#¹

p
)3) can be removed,

without loss of the achieved stability (Chen and
Allgöwer, 1997b).

5. EXAMPLE

5.1. Control problem and simulation results
As an example for demonstrating the proposed

control scheme, we consider a system described by
the following ODEs:

xR
1
"x

2
#u (k#(1!k)x

1
) , (36a)

xR
2
"x

1
#u (k!4(1!k)x

2
) . (36b)

This system is a modification of the system used in
Mayne and Michalska (1990) in that it is unstable

A quasi-infinite horizon nonlinear model predictive control scheme 1213



Fig. 1. Trajectories of the unstable constrained system (k"0.5)
controlled by the proposed nonlinear predictive controller for

different initial conditions.

and its linearized system is stabilizable (but not
controllable) for any k3(0, 1). In addition, it is
assumed that the input u has to satisfy the following
constraint:

º"Mu3R1 D!2.04u42.0N. (37)

For this unstable constrained system, assumptions
(A1)—(A3) are satisfied. The weighting matrices Q
and R in the objective functional (4) are chosen as

Q"A
0.5 0.0
0.0 0.5B , R"1.0. (38)

Assume k"0.5 for the moment. In order to find
a terminal penalty matrix P and the largest possible
terminal region ), we follow the procedure de-
scribed in Section 3. First, solving the linear opti-
mal control problem with the weighting matrices
given in equation (38) for the locally linearized
system, we get a linear locally stabilizing state feed-
back gain

K"[2.118 2.118]. (39)

The largest eigenvalue of the closed-loop linearized
system has real part j

.!9
(A

K
)"!1.0. Then, we

choose a constant i"0.95 which implies that the
unique solution of the Lyapunov equation (9),

P"A
16.5926 11.5926

11.5926 16.5926B (40)

is positive definite, symmetric and can be used as
a terminal penalty matrix. After that, a

1
"12.5 is

found to specify a region )a1 in the form of equa-
tion (11), in which the linear feedback control satis-
fies the constraint (37). Finally, we find a region
)a defined by equation (11) with a"0.025 such
that inequality (16) is satisfied. However, this region
is very small, because of the small value (0.1774) of
j
.*/

(P)/EPE. From the simple optimization (19) out-
lined in Remark 3.1, we can derive a less conserva-
tive terminal region )a with a"0.7 as follows:

)a"Mx3R2 DxTPx40.7N . (41)

The open-loop optimal control problem described
by equations (3)—(5) is solved in discrete time with
a sampling time of d"0.1 time-units and a predic-
tion horizon of ¹

P
"1.5 time-units. A few trajecto-

ries corresponding to different initial conditions of
the unstable constrained system (36) with k"0.5
controlled by the proposed quasi-infinite horizon
nonlinear predictive controller with parameters
(38), (40) and (41) are shown in Fig. 1. The solid
lines represent closed-loop trajectories; the dashed
line is the boundary of the terminal region given by
equation (41); the dash-dotted lines denote the pre-
dicted open-loop trajectories that are found by
solving the optimization problem at time t"0 and

are only of finite horizon. It is clearly seen that the
finite horizon open-loop trajectories end in the ter-
minal region, as expected to be achieved by the
terminal inequality constraint.

It should be emphasized that the linear state
feedback with gain K as in equation (39) is not
explicitly used to calculate the closed-loop control.
Like standard model predictive controllers, the
closed-loop control is determined by solving on-
line the optimization problem given by equations
(3)—(5) repeatedly. For the chosen prediction hori-
zon ¹

p
and sampling time d, the optimization prob-

lem is feasible at each time. Thus, for the nominal
system without disturbances, the stability condi-
tions given in Section 4.2 are all satisfied. The
closed-loop trajectories in Fig. 1 are guaranteed to
converge to the origin. Figure 2 shows time profiles
for the closed-loop system for two selected initial
conditions (solid lines and dashed lines, respective-
ly). It can be seen that the input constraint (37) is
not violated.

5.2. Discussion of computational burden
The proposed nonlinear MPC scheme has signif-

icant computational advantages when compared to
other existing MPC approaches. To show this, we
compare the proposed controller (case A) to two
other predictive controllers (cases B and C):

A P given by equation (40), terminal inequality
constraint x6 (t#¹

1
; x(t), t)3)a with )a given

by equation (41), ¹
1
"1.5,

B P"0, no terminal constraint, ¹
1
"3.5,

C P"0, terminal equality constraint x6 (t#¹
1
;

x (t), t)"0, ¹
1
"3.5.

Controller A is designed with the proposed method
and has guaranteed stability. For controller B,
there is no terminal constraint and the terminal
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Fig. 2. Time profiles for the closed-loop system from two initial conditions.

Table 1. Comparison of elapsed CPU time.

Initial state Elapsed CPU time (s)

x
1
(0) x

2
(0) Controller A Controller B Controller C

!0.683 !0.864 859 1521 *
!0.523 0.744 818 1492 *

0.808 0.121 615 1638 *
0.774 !0.222 570 1522 5729
0.292 0.228 820 1724 *

!0.08 !0.804 696 1544 5093

states are not penalized. This controller corre-
sponds to the nonlinear MPC scheme usually used
in applications. Closed-loop stability can only
be achieved by tuning the prediction (control) ho-
rizon ¹

p
. Here, ¹

1
"3.5 time-units is the shortest

prediction horizon determined by trial and error
such that the closed-loop system is stable (for
¹
1
"1.5 time-units, the closed-loop system is un-

stable). For controller C, the well-known terminal
equality constraint x6 (t#¹

1
; x (t), t)"0 is used.

Hence, a terminal state penalty does not make
sense. Closed-loop stability is also guaranteed for
this controller, if the optimization problem at time
t"0 is feasible.

For a total simulation time of 10 time-units, the
elapsed CPU times are shown in Table 1 for some
different initial conditions, where the controllers A,
B and C use the same optimization routine NAG
E04UCF [Numerical Algorithms Group, 1993]
and the same integration algorithm [Mitchell
& Gauthier Associates, 1991] with the same nu-
merical parameters (optimality tolerance, feasibility

tolerance, integration step, etc.). The symbol ‘‘*’’
indicates that the optimization problem is not feas-
ible at time t"0 for the corresponding initial con-
dition. It is clearly seen that controller A needs
significantly less CPU time than controllers B and
C. Here, controller B might be treated somewhat
unfairly. In practice, one can use techniques such as
blocking or confounding to reduce on-line compu-
tation time. However, an important drawback of
controller B is that stability can only be achieved
by tuning parameters such as the prediction hori-
zon. The big difficulty for controller C is the infeasi-
bility of the optimization problem caused by the
terminal equality constraint. Despite the fact that
the terminal constraint x6 (t#¹

1
; x (t), t)"0 needs

only be satisfied with feasibility tolerance 10~4, the
optimization problem is not feasible at time t"0
for most initial conditions in Table 1. Thus, no
stability can be guaranteed. Figure 3 shows two
trajectories of the constrained system controlled by
controllers A, B and C. We see that there is no big
difference in control performance.
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Fig. 3. Comparison of nonlinear predictive controllers: A (—),
B (— — ), C (2) for two selected initial conditions.

Fig. 4. Terminal region vs k: the ellipses from the outside to the
inside correspond to k"0.9, 0.8, 0.7, 0.5, 0.3, 0.1.

Fig. 5. Terminal region vs. i: the solid ellipses from the inside to
the outside correspond to i"0.15, 0.35, 0.55, 0.75, 0.95; the
dotted ellipse is for i"0.97 and the dashed ellipses from the

outside to the inside correspond to i"0.99, 0.995.

5.3. Discussion on terminal region
The model parameter k3(0, 1) describes the

nonlinearity of the system (36). It is immediately
clear that the smaller k, the stronger nonlinear the
system behaves. For k"1, the system is linear. For
some given k’s, we follow the procedure in Section
3 to determine the terminal regions. As we do so,
the linear feedback gain K is determined by solving
the linear optimal control problem based on the
Jacobian linearization with weighting matrices
Q, R as in equation (38), and i"0.95 is chosen.
The results are shown in Fig. 4. It can be seen that
the stronger nonlinear the system is, the smaller the
terminal region becomes. For the system (36) with
k"0.9, the input constraint (37) determines the
size of the terminal region directly.

The stability conditions discussed in Section 4.2
are only sufficient. In particular, it is very difficult, if
not impossible, to find the largest terminal region
for a given nonlinear system. From the Lyapunov
equation (9), P increases with i, and very rapidly as
i is near to !j

.!9
(A

K
). A large P implies strong

penalty for the states at the end of the finite
horizon, but does not automatically imply a large
terminal region )a. For a given model parameter
k"0.5, some terminal regions for different i are
shown in Fig. 5. We see that the terminal region
extends first with i, but it becomes smaller as
i approaches !j

.!9
(A

K
)"1.0. It seems that

a constant i near to the absolute value of the
largest eigenvalue of A

K
corresponds to the largest

possible terminal region. However, with this i the
matrix P will be also large. From the structure of
the objective functional, we know that a very strong
penalty of the terminal states may have a bad
influence on the achievement of the control perfor-
mance that is specified by the finite horizon cost.
Thus, we may have to trade off between a large
terminal region and good achievement of the de-
sired control performance.

6. CONCLUSIONS

In this paper we proposed a quasi-infinite hori-
zon nonlinear MPC scheme with guaranteed stabil-
ity. The setup differs from the standard setup with
quadratic objective functionals only in that a ter-
minal state penalty term (x (t#¹

1
)TPx(t#¹

1
)) is

added to the finite horizon objective functional
and an additional terminal inequality constraint
(x(t#¹

P
)3)) has to be satisfied. These two

terms do not however constitute additional tuning
parameters that can be chosen freely, but have to be
determined off-line such that the terminal region
) has an invariance property. We have proven that
this choice will guarantee asymptotic stability of
the closed loop independent of the choice of the
performance parameters Q and R in the quadratic
objective functional, if a feasible solution to the
optimization problem at time t"0 exists. Thus,
a separation between performance and stability
issues is achieved in some sense. A terminal state
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penalty matrix P and a terminal region ) can be
determined off-line in a straightforward manner,
essentially involving the solution of a linear stabil-
ization problem and a Lyapunov equation. This is
outlined in the procedure given in the paper.

The main advantage of this scheme is its guar-
anteed asymptotic stability. In addition, the
quasi-infinite horizon nonlinear MPC scheme is
computationally more attractive than other known
nonlinear MPC schemes that also guarantee
asymptotic stability (terminal equality constraint,
infinite horizon). This was also demonstrated with
the control of the unstable and constrained system
in the example.

The results presented in this paper must however
be viewed only as a further step towards a practical
nonlinear MPC theory. As usual we have assumed
that there is no model/plant mismatch, that no
disturbances are acting on the system and that the
whole state vector can be measured. We do how-
ever not need to assume that at every step the
globally optimal input profile is found numerically.
Stability does only require feasible solutions to
the optimization problem. It should however be
pointed out that the given conditions for nominal
asymptotic stability are only sufficient.

Current investigations focus on robustness prop-
erties of this control scheme, on a further reduction
of the computational burden and on a generaliz-
ation of the setup to include more general objective
functionals and additional state constraints.
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