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Introductory Experiment: What do you see?

Motion is an essential clue to the interpretation of visual data [Mart́ınez 14]
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Motion Estimation and Optical Flow

Objectives of the Tutorial

This tutorial is about motion estimation from video. It presents the underlying theory of
optical flow and its interest for video interpretation or robot navigation. It also presents the
main algorithms for computing the optical flow in practice.

Outline of the Tutorial

What is the optical flow?

What is it used for?

Sparse (local) estimation of the optical flow

Dense (global) estimation of the optical flow

Multiscale approaches

Learning based approaches
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Optical Flow: definition
The theoretical optical flow is the 2d vector field of the apparent velocity of pixels: it
corresponds to the projection of the 3d velocity of points projected onto the focal plane,
with respect to the camera coordinate system.
The practical optical flow is a collection of 2d vectors of apparent velocity estimated
from two (or more) consecutive images.
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Theoretical Optical Flow

The theoretical optical flow can be derived from the equations of projection of a 3d point
(X ,Y ,Z ) onto the focal plane (pinhole model): x = fX

Z and y = fY
Z :

Theoretical Optical Flow

ẋ = f
(
Ẋ
Z −

XŻ
Z2

)
ẏ = f

(
Ẏ
Z −

Y Ż
Z2

)
(Notation: ṁ = ∂m

∂t )
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Particular Optical Flow: Horizontal travelling

If moving into a static scene, the 3d velocity vector (Ẋ , Ẏ , Ż ) is the same everywhere!
In the particular case of a camera moving laterally, i.e. such that Ż = 0 (e.g. pure
translation along OX axis), we get:

From [Tautz 08]

Horizontal travelling

ẋ = f Ẋ
Z ⇐⇒ Z = f Ẋ

ẋ
The depth of a point is
inversely proportional to its
apparent speed.

Applications:

Centering behaviour with
two laterally viewing
cameras.
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Example on a computed flow on a drone fly

Horizontal (Right) travelling

Drone: Parrot Anafi

Pilot: C. Pinard

Optical flow: [Garrigues 14]
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Example on a computed flow on a drone fly

Vertical (Up) travelling

Drone: Parrot Anafi

Pilot: C. Pinard

Optical flow: [Garrigues 14]
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Particular Optical Flow: Radial zoom

In the particular case of a camera moving in the direction of its optical axis, (pure translation
along OZ axis), we get:

Applications:

Automatic landing

Vision based stabilisation

Radial zoom

ẋ = −f XŻ
Z2 = −x Ż

Z

ẏ = −f Y Ż
Z2 = −y Ż

Z

The optical flow vectors di(con)verge
from (toward) the direction of motion
(Focus of Expansion).
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Example on a computed flow on a drone fly

Forward zoom

Drone: Parrot Anafi

Pilot: C. Pinard

Optical flow: [Garrigues 14]

A. Manzanera (ENSTA Paris) Motion Estimation Methods 10 / 42



Difficulties and Constraints of the Practical Optical Flow

The practical optical flow is estimated from consecutive images, and is based on the
assumption of appearance consistency over time. It is then based on the following requisites
and constraints:

Lambertian reflection

Illumination consistency

Unambiguous Texturing
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Difficulties and Constraints of the Practical Optical Flow

Another difficulty is the Aperture Problem: in absence of sufficient structure...

Illumination consistency

Lambertian reflection

Unambiguous Texturing
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Difficulties and Constraints of the Practical Optical Flow

...the motion can be at best estimated along the direction of the spatial gradient.

Illumination consistency

Lambertian reflection

Unambiguous Texturing
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Local matching measures for Optical Flow estimation

The basic method for estimating the velocity (v t
x , v

t
y ) at pixel (x , y) and time t is minimising

a local matching (sum-of-squared) distance like:

Mt
(x ,y)(δx , δy) =

∑
(b1,b2)∈B

(I (x + b1, y + b2, t)− I (x + δx + b1, y + δy + b2, t + δt))2

B is a small neighbourhood (patch).

K is the search domain for displacements.
(v t

x , v
t
y ) = arg min

(δx ,δy)∈K
Mt

(x ,y)(δx , δy)
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Local Lucas and Kanade’s Optical Flow method

Lucas and Kanade’s method [Lucas & Kanade 81] is based on:

1 Approximating the Matching measure Mt
(x ,y)(δx , δy) by assuming the image I regular

and the displacement (δx , δy) small.

2 Finding the minimum of the approximated function as the point where its derivatives
with respect to δx and δy are equal to zero.
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Local Lucas and Kanade’s Optical Flow method

Lucas and Kanade’s method [Lucas & Kanade 81] is based on:

1 Approximating the Matching measure Mt
(x ,y)(δx , δy) by assuming the image I regular

and the displacement (δx , δy) small.

2 Finding the minimum of the approximated function as the point where its derivatives
with respect to δx and δy are equal to zero.

I (x + δx , y + δy , t + δt) ' I (x , y , t) + ∂I
∂x δx + ∂I

∂y δy + ∂I
∂t δt

Mt
(x ,y)(δx , δy) '

∑
(x ,y)∈B

(
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t

)2

(δt = 1)
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Local Lucas and Kanade’s Optical Flow method

Lucas and Kanade’s method [Lucas & Kanade 81] is based on:

1 Approximating the Matching measure Mt
(x ,y)(δx , δy) by assuming the image I regular

and the displacement (δx , δy) small.

2 Finding the minimum of the approximated function as the point where its derivatives
with respect to δx and δy are equal to zero.

arg min
(δx ,δy)

∑
(x ,y)∈B

(
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t

)2

2
∑

(x ,y)∈B

(
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t

)
∂I

∂x
= 0

2
∑

(x ,y)∈B

(
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t

)
∂I

∂y
= 0
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Local Lucas and Kanade’s Optical Flow method

Finally the method consists in locally solving for each pixel (x , y , t) the following system:
∑

(x ,y)∈B

(
∂I

∂x

)2 ∑
(x ,y)∈B

∂I

∂x

∂I

∂y∑
(x ,y)∈B

∂I

∂x

∂I

∂y

∑
(x ,y)∈B

(
∂I

∂y

)2


︸ ︷︷ ︸

Ξ(x ,y)

.

(
v t
x

v t
y

)
=


−

∑
(x ,y)∈B

∂I

∂x

∂I

∂t

−
∑

(x ,y)∈B

∂I

∂y

∂I

∂t



(v t
x , v

t
y )T is the unknown velocity vector.

Ξ(x , y) is identical to the structure matrix used in Harris corner point detection.

The system is practically solved using an iterative (Gauss-Seidel) method.
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Local Lucas and Kanade’s Optical Flow method

In practice LK’s local method only produces reliable matching when the structure matrix Ξ
has rank 2, i.e. for corner points!
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Local Lucas and Kanade’s Optical Flow method
The computation for each pixel being independent, Lucas and Kanade’s method can be
massively parallelised.
However because of its limitation related to the structure matrix, it can only provide a sparse
optical flow:
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Global Dense Horn and Schunck’s Optical Flow method

Horn and Schunck’s method [Horn & Schunck 81] provides a dense optical flow by
minimising a global function combining:

1 A data term relating the velocity vector, the spatial gradient and the temporal gradient.

2 A regularisation term corresponding to the spatial gradient of the velocity field.
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Global Dense Horn and Schunck’s Optical Flow method

Horn and Schunck’s method [Horn & Schunck 81] provides a dense optical flow by
minimising a global function combining:

1 A data term relating the velocity vector, the spatial gradient and the temporal gradient.

2 A regularisation term corresponding to the spatial gradient of the velocity field.

The appearance consistency constraints writes: I (x , y , t) = I (x + δx , y + δy , t + δt).
The first order Taylor expansion provides: I (x , y , t) ' I (x , y , t) + ∂I

∂x δx + ∂I
∂y δy + ∂I

∂t δt, and
then:

Optical Flow Equation

∇I .v + ∂I
∂t = 0

v = (v t
x , v

t
y ) the unknown velocity

vector.

∇I the gradient vector.

Scalar equation with two unknowns!
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Global Dense Horn and Schunck’s Optical Flow method

Horn and Schunck’s method provides a dense optical flow by minimising a global function
combining:

1 A data term relating the velocity vector, the spatial gradient and the temporal gradient.

2 A regularisation term corresponding to the spatial gradient of the velocity field.

Horn & Schunck cost function

C t
(x ,y)(v) =

(
∇I .v + ∂I

∂t

)2
+ λ

((
∂v t

x
∂x

)2
+
(
∂v t

x
∂y

)2
+
(
∂v t

y

∂x

)2
+
(
∂v t

y

∂y

)2
)

the 1st term is the data term.

the 2nd term is the regularisation term.

λ is a weighting factor.
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Global Dense Horn and Schunck’s Optical Flow method

C t
(x ,y)(v) is finally minimised by finding the point where its derivatives with respect to vx and

vy are equal to zero (superscript t is discarded), which leads to a system of two equations,
that is solved iteratively (Gauss-Seidel), leading to:

Horn & Schunck resolution algorithm

Initialisation: v
(0)
x = v

(0)
y = 0.

Repeat until convergence:

I v
(k)
x = v

(k−1)
x − ∂I

∂x
N
D

I v
(k)
y = v

(k−1)
y − ∂I

∂y
N
D

v is the average value of v over
a certain neighbourhood.

N = ∂I
∂x v

(k−1)
x + ∂I

∂y v
(k−1)
y + ∂I

∂t .

D = λ+
(
∂I
∂x

)2
+
(
∂I
∂y

)2
.
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Global Dense Horn and Schunck’s Optical Flow method

Because of the iterative estimation of the averaged (smoothed) version of vx and vy , the
Horn and Schunck’s method is a global one, that cannot be parallelised the same way as
Lucas and Kanade’s.
But thanks to its spatial regularity hypothesis, it can provide a dense optical flow field:

Images from boofcv.org
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Multi-scale Optical Flow estimation

Both previous methods are strongly limited by (1) the regularity assumptions and (2) the
hypothesis of small displacements.
The multi-scale optical flow estimation can be applied to any (iterative!) method by applying
the estimation at different resolutions, in a coarse-to-fine manner.
The advantages are multiple:

Estimate larger displacements.

Mitigate the texture ambiguity.

Densify the flow field.

Decrease the weight of spatial regularisation.
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Multi-scale Optical Flow estimation
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Long Term Parallel Flow estimation

[Garrigues 14]: long term coarse-to-fine point
matching.

Massively parallel management of a particle
field.

Hybrid prediction based on trajectory and
multi-scale.

Outputs a semi-dense trajectory field.
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Multi-scale Long Term Optical Flow estimation

Real-time semi-dense long-term Optical Flow [Garrigues 14] on a Anafi fly

Drone: Parrot Anafi

Pilot: C. Pinard

A. Manzanera (ENSTA Paris) Motion Estimation Methods 30 / 42



One use of the optical flow: Homography estimation

A homography is the
transformation that relates two
different views of the same
planar surface : x ′ = Hx .

It can be expressed, using
homogeneous 2d coordinates, by
a 3× 3 matrix with 8 degrees of
freedom.

At least 4 pairs of matching
points are necessary to estimate
a homography.
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One use of the optical flow: Homography estimation

x ′ = Hx in 2d homogeneous coordinates, means:

λ

x ′1
x ′2
1

 =

H1
1 H2

1 H3
1

H1
2 H2

2 H3
2

H1
3 H2

3 H3
3

x1

x2

1


One value of H can be set arbitrarily, then there
are 8 unknowns.

Each (x , x ′) pair provides 2 equations then at least
4 pairs are needed.

However, since many matches are unreliable in
practice, much more pairs are actually needed!
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RANSAC on flow pairs for homography estimation

emin =∞
For k = 1 to Kmax:

Randomly choose N pairs among A to form B ⊂ A

Ĥ ← Estimate Homography(B)
ninliers ← 0
For each pair j such that (xj , yj ) 6∈ B:

If ||yj − Ĥxj || < ε:
ninliers ← ninliers + 1
B ← B ∪ {(xj , yj )}

If ninliers < Tinliers :

e ← Total error(Ĥ,B)
If e < emin:

Hbest = Ĥ
emin = e

inputs:

A = {(xi , yi )}i the set of matched pairs

N the number of pairs used to estimate
the homography (N ≥ 4)

Kmax the number of iterations

ε a distance threshold

Tinliers the minimal number of inliers

outputs:

Hbest the best homography
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Conclusion on Analytical Methods

From the 80’s to now, Optical Flow estimation has remained a very active research domain.

Thousands of publications: few principles, many different recipes...

Several popular benchmark datasets with ground truth:
I http://vision.middlebury.edu/flow/ (Indoor)
I http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow

(Urban outdoor)

End-to-end deep learning methods are
emerging massively, with outstanding
performance and increasing computational
efficiency.

[Ilg 17]
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Optical flow: Learning Based Methods

CNN based OF estimation: Flownet S network [Fischer 15]

Refinement sub-network [Fischer 15]

Pixel-wise prediction architecture can be used for
dense velocity estimation.

With ground truth velocity fields vGT , the loss is
simply the average of ||vGT − vE ||2.
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Optical flow: Learning Based Methods

CNN based OF estimation: Flownet C network [Fischer 15]

An alternate architecture explicitly correlates learned spatial features of the two frames.

This distinction relates to the spatial pre-processing / selection of analytical methods.
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Optical flow: Learning Based Methods

Flying Chairs Dataset: densely annotated and straightforward to augment (left) [Fischer 15]
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Optical flow: Learning Based Methods

FlowNet 2.0 [Ilg 17]
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Unsupervised Learning of Optical flow

Unsupervised learning / adaptation / fine tuning
can be done using a photometric loss, which
measures the difference between one frame and
its warped version based on the predicted optical
flow, but:

What about occluded areas?

What about homogeneous zones?

A. Manzanera (ENSTA Paris) Motion Estimation Methods 39 / 42



Motion Estimation Methods - CONCLUSIONS

What we have seen so far

Interest of the Optical Flow

Difficulties and Constraints

Local Sparse Baseline Method: Lucas and Kanade

Global Dense Baseline Method: Horn and Schunck

Multiscale Approaches

Learning optical flow from videos allows to:
I Globally addressing the context
I Natural regularization of ill-posed problem

Self supervision?
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