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Objectives and problem statement

Our global objective is to propose a uni�ed framework for
representing and processing the visual data, trying to reach the
maximal:

Universality: from the lowest (denoising, registration,...) to the
highest level (recognition, understanding,...) of vision.

Computational e�ciency: tractable complexity for embedded
video systems.
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Objectives and problem statement

The principle of our framework is to adjoin to the video data an
alternate (feature space) data structure whose metrics is related to
visual similarity, and made up of di�erent components:

Feature space (local jet) projection.

Quantisation (Codebook) of the feature space.

Nearest Neighbour Search in the feature space.

Indexing of the feature space for back-projection.
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Manifold Image Processing

The projected data form a manifold in some feature space [Peyré
09]. Image processing is made by transformation of the manifold,
followed by a back-projection onto the image space.

Filter Banks and Codebook

Many visual representation frameworks, for texture (e.g. textons)
or objects (e.g. visual bag of features) are based on �lter banks and
clustering [Freeman 91], [Rubner 99].

Nearest Neighbour Search

We use Binary Search Trees to represent highly sparse sets from the
feature space with a minimal amount of memory, and e�ciently
perform Nearest Neighbour Search [Arya and Mount 07].
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Local derivatives and visual similarity

SSD based similarity

df (x, y) =
∑

i∈W(O)

k(||i||)(f (x + i)− f (y + i))2

Taylor expansion

f (x + c) =
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k=0

k∑
i=0

(
k
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)
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∂xk−i
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2
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Local jet based similarity

df (x, y) '
∑
i+j≤r

α(i ,j)(fij(x)− fij(y))2, with fij = ∂i+j f

∂x i1∂x
j
2
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Local jet based representation

The Local jet seen as a
summary of the patch
information
(Reconstruction of the
patch using Taylor
expansion)...

1 Original 15× 15
patches

2 Order 0 (1d feature)

3 Order 1 (3d feature)

4 Order 2 (6d feature)

(1) (2)

(3) (4)
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Gaussian multiscale local jet

We do not use patches, but Gaussian Local Jet at a certain scale:

Projection in the Local Jet space

x 7→ x̂ = (aσij f
σ
ij (x))i+j≤r

Gaussian multiscale local jet

f σij = f ? ∂i+jGσ
∂x i1∂x

j
2

Normalised local jet

aσij = σi+j

i+j+1

Gσ is the 2d Gaussian function with variance σ2.

σi+j is the scale space normalisation [Lindeberg 98].

i + j + 1 is the number of (i + j)th order derivatives.
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Multiscale �Cartesian� Local jet
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Rotation invariance

f = f00

fg = (f 210 + f 201)1/2

ft = 0

fgg = (f20f
2

10 + 2f11f10f01 + f02f
2

01)f −2

g

ftt = (f20f
2

01 − 2f11f10f01 + f02f
2

10)f −2

g

fgt = (f10f01(f20 − f02) + f11(f 201 − f 210))f −2

g
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Multiscale Rotation Invariant Local jet

f 1.0 f 1.0g f 1.0gg f 1.0gt f 1.0tt

f 4.0 f 4.0g f 4.0gg f 4.0gt f 4.0tt
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Contrast change (and inversion !) Invariant Local jet

Gradient direction Main absolute curvature direction
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Local jet pixel categories and similarity metrics

A reduced
description useful
for pixel
comparison can be
obtained by
categorizing the
local jet. See also
[Crozier 10].
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Some metrics

Single scale distance

dσf (x , y) =
∑
i+j≤r

(f σij (x)− f σij (y))2

Pan-scalic distance

DS
f (x , y) =

∑
i+j≤r ,σ∈S

(f σij (x)− f σij (y))2

Trans-scalic distance

dSf (x , y) = min
(σ1,σ2)∈S2

∑
i+j≤r

(f σ1ij (x)− f σ2ij (y))2
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Local jet similarity map: one example

(1)

(2) (3)
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Parallel computation of the Local Jet

The local jet features lend themselves
to a high level of parallel / cascaded
computation. As an example, the
recursive computation [Van Vliet 98]
of the local jet at order 2 requires 9
couples of image scans, with only 2
levels of dependance.
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Data projection and representation

The pixel data are projected in the feature space.

The feature vectors are collected within a binary search tree.

Every feature vector is attached to a pixel index.
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Quantisation of the feature space

The feature space can be quantised through vector
quantisation.

Every codebook word keeps record of a set of pixel indices.
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NL-means in the feature space

The NL-means �lter calculates a weighted average of every pixel,
with the weights de�ned as a function of local similarity. Here we
simply use the distance in the feature space...

ω(u, v) = e
− ||u−v||2

h2

with:
||.|| a norm in the feature space.
h a decay parameter.
...and perform the average on a neighbourhood of x in the image
space (Limited Range),
or on a neighbourhood of x̂ in the feature space (Unlimited range).
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Limited Range LJ-NL-Means

The weights (in the LJ space)
are calculated in a limited
neighbourhood of x in the

image space:

Limited range NL-means

f NLLR (x) =
1

ζ(x)

∑
y∈N (x)

f (y)ω(x̂, ŷ)
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Unlimited Range LJ-NL-Means

The weights (in the LJ space)
are calculated in a limited
neighbourhood of x̂ in the LJ

space:

Unlimited range NL-means

f NLUR (x) =
1

ξ(x)

∑
u∈W(x̂)

f (ǔ)ω(x̂,u)
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LJ-NL-means: Relative computation time

Patch based LR Local Jet

100 16.1
LR LJ (|N (x)| = 17× 17), order 2.

1 scale 2 scales 3 scales 4 scales

14.0 36.4 73.5 93.3
UR LJ (|W(x̂

f
)| = 30), order 2, exact search

ε = 0.0 ε = 1.0 ε = 3.0 ε = 10.0

93.3 35.1 18.8 10.4
Same (4 scales), approximate search

No quantisation 1622 words 795 words

18.8 45.6 (40.9) 23.0 (19.7)
Same (ε = 3.0), with quantisation (In parentheses: quantisation time).
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LJ-NL-means: results

1 Classical Patch
based (|N (x)| =
17× 17)

2 Limited range
(|N (x)| =
17× 17)

3 Unlimited range,
exact search
(|W(x̂

f
)| = 30,

single scale).

4 Same, 4 scales.

5 Same,
approximate
search
(ε = 3.0).

6 Same, with
quantisation
(≈ 800 word
codebook).

(1) (2) (3)

(4) (5) (6)Antoine Manzanera Visual Feature Spaces et caetera 25 / 53



Introduction
Local jet features
Image processing

Image representation
Conclusion and ongoing work

NL-means �ltering
Optical �ow
Background subtraction

Apparent motion in the feature space

The optical �ow estimation can be expressed by a simple nearest
neighbour search in the feature space:

u(ft−1, ft , x) = arg min
v∈Fft−1

dF (x̂ft , v)

followed (in the case of a quantised feature space) by an
optimization in the image space:

y(ft−1, ft , x) = arg min
z∈F−1

ft−1
(u(ft−1,ft ,x))

d I (x , z)
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Apparent motion in the feature space
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Feature space optical �ow: NL-Mean formulation

A more general formulation can be obtained following the NL-Mean
framework:

y(ft−1, ft , x) =
1

ξF (x)

m∑
k=1

ωF (x̂ft , ν
Fft−1
k (x̂ft ))

ξI (x)

∑
z∈F−1

ft−1
(ν
Fft−1
k

(x̂ft ))

ωI (x, z)z


Every nearest neighbour in the quantised feature space is
weighted according to the feature space distance.

Every image point from the reciprocal image of the quantised
feature is weighted according to the distance between pixels.
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Optical �ow: results
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Application: Characterization of Cardiac Motion Patterns

[PhD F. Rodríguez, UNAL Bogotá]
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Background modelling by the feature space codebook

The codebook of the quantised feature space can be used to model
the visual apparence of the background in the methods based on
sample and consensus.
The principle is to keep record, for every pixel x, of a collection of
M prototypes {mj(f , x)}j∈{1,M}, such that every prototype is a
word from the quantised feature space (sampling phase).

Antoine Manzanera Visual Feature Spaces et caetera 32 / 53



Introduction
Local jet features
Image processing

Image representation
Conclusion and ongoing work

NL-means �ltering
Optical �ow
Background subtraction

Background subtraction in the feature space

The foreground classi�cation is then performed by counting, for
every x at time t, the number of prototypes that are close enough
to x̂ft (consensus phase).

e(f , t, x) = 1 if |{j ∈ {1,M}; dF (x̂ft ,mj(f , x)) > ρ}| > τ

= 0 otherwise

Nota: The same codebook is used for the whole sequence.
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The ViBe algorithm in the feature space
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Motion detection: results
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Codebook histograms

The distribution of the words (histogram) of the codebook provides
a possible representation for an image or any visual category. See
for example [Rubner 99]
Second order statistics of the codebook, i.e. co-occurrence in the
image domain of the back-projected words should also be a useful
descriptor.
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Singularities of the feature space

The isolated points in the feature space (i.e. the feature vectors
whose average distance to their K nearest neighbours is the
greatest), can be consider as a relevant way to fuse the detection of
salient point and the calculation of attached descriptors. See also
[Kervrann 08].
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Singularities of the feature space
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Modes of the feature space

The clusters in the feature space (whose center are the feature
vectors whose average distance to their K nearest neighbours is the
smallest), are also an interesting way to reduce the visual
information to the most relevant features.
The clusters (or modes) are calculated - see [Burman 09] - by
(dynamically) de�ning a topology in the cloud of feature vectors,
then labelling the connected component containing the current
center point (feature point with smallest distance to its
neighbours).
The back-projection of the clusters in the image space correspond
to the detection of large homogeneous coulours, long straight edges
or regular texture elements.
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Overview of the framework
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Parallel NN search [Matthieu Garrigues 2010]

E�cient parallel NN search is developped on GP-GPU: It is based on a

volumic representation of the image × NN spaces, and a recursive search

of the NN that allow exponential search in the image space
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Parallel NN search [Matthieu Garrigues 2010]
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Parallel NN search [Matthieu Garrigues 2010]
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