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Introduction

Context and Objectives

Context and Objectives

Computer Vision

I Semantic Gap

I Variability of aspects and
conditions

I Prior knowledge, context,...
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Introduction

Context and Objectives

Context and Objectives

Analytical Shapes Recognition

I Lines, circles, conic curves,...

I De�ned by an equation

Object Recognition

I Car, face, chair,...

I User de�ned parameters

I Example / Learning based



A. Manzanera - CONAIS 2012 4 / 40

Introduction

Context and Objectives

Presentation outline

Introduction
Context and Objectives
Existing tools and works

Multiscale Di�erential Geometry
Di�erential measures
Multiscale derivatives

Analytical Shapes Recognition
Order 1: lines
Order 2: circles

Object Recognition
Implicit Shape Models
Dense Generalised Hough Transform

Conclusion



A. Manzanera - CONAIS 2012 5 / 40

Introduction

Existing tools and works

Hough Transform: global view

I One of the oldest applications of Computer Vision (End 50's,
bubble chamber images)

I Adapted to both analytical (curves) or non analytical (objects)
shapes

I Based on accumulation (vote) mechanism from image space
(pixels) to multidimensional parameter space
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Introduction

Existing tools and works

Hough Transform: details (1)

Every point of the parameter space (dimension: number of
parameters) corresponds to one shape in the image space.
Example : One (θ, ρ) polar coordinates point correspond to one
line.
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Introduction

Existing tools and works

Hough Transform: details (2)

Every single curve of the parameter space corresponds to one point,
or equivalently to one beam of shapes in the image space.
Example: One sine curve corresponds to one beam of line, i.e. one
point.
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Introduction

Existing tools and works

Hough Transform: details (3)

Reciprocally, di�erent points from the same shape in the image
space form a beam of curves in the parameter space, converging to
one point de�ning the right shape.
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Introduction

Existing tools and works

Hough Transform: practice

So classically, the Hough transform (i.e. the result of the projection
of all image points in the parameter space) is calculated from a
limited set of points: the contours.
The best candidat shapes are then detected by computing the local
maxima of the Hough transform.

Contour image Classical Hough transform: di�erent accumulation points are visible
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Introduction

Existing tools and works

Scale space theory

I Mainly developed in the 80's for Computer Vision applications

I Key idea: Every measure is relative to scale.

I Principle: A multiscale version, i.e a stack of blurred images
(I σ)σ∈{σ1,...,σn} is produced from one single image I , with σ
the scale parameter.

I Causality principle: No new structure may appear in I σ that is
not already present in �ner scales I σ

′
, σ′ < σ
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Introduction

Existing tools and works

Scale space causality illustrated on contours

σ = 1.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0
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Multiscale Di�erential Geometry

Di�erential measures

The di�erential model

I In Image Processing and Computer Vision, many algorithms
are based on local features calculated using partial derivatives:
Contrast, contours, segmentation...

I In the di�erential model the image is assimilated to a
continuous and di�erentiable function.

I The local behaviour of the image near every point can be
predicted thanks to the partial derivatives (Taylor expansion).

Notations
Ix = ∂I

∂x , Iy = ∂I
∂y , Ixx = ∂2I

∂x2
, Ixy = ∂2I

∂x∂y , etc.
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Multiscale Di�erential Geometry

Di�erential measures

Order 1: Gradient and Isophote

At order 1, the main measure is the
gradient vector:

∇I = (Ix , Iy)T

I Its argument Φ = arg∇I
correspond to the direction of
steepest ascent.

I Its modulus ||∇I || is a measure
of contrast.
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Multiscale Di�erential Geometry

Di�erential measures

Order 1: Gradient and Isophote

Let v be a unit vector. The value of
the �rst derivative along v is
calculated as:

Iv = vT .∇I

In particular, the derivative along the
direction orthogonal to the gradient
is zero (isophote direction t).
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Multiscale Di�erential Geometry

Di�erential measures

Order 2: Hessian and Curvature

At order 2, the main measure is the
Hessian matrix:

HI =
( Ixx Ixy
Ixy Iyy

)
I Its eigen vectors (resp. eigen

values ΛH and λH) correspond
to the directions (resp.
intensities) of main curvatures.

I Its Frobenius norm
||HI ||F =

√
Λ2

H + λ2H is a

measure of global curvature
intensity.
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Multiscale Di�erential Geometry

Di�erential measures

Order 2: Hessian and Curvature

Let u and v be two unit vectors. The
value of the second derivative along
u and v is calculated as:

Iuv = uTHIv

In particular, the second derivative
along the isophote t is the curvature
of the isophote, i.e. the inverse
radius of the osculating circle:

κI = Itt =
Ixx I

2
y−2Ixy Ix Iy+Iyy I

2
x

||∇I ||3
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Multiscale Di�erential Geometry

Multiscale derivatives

Multiscale derivatives

According to the Scale Space framework, a derivative measure on
our discrete images only makes sense up to a scale parameter. The
derivative is then estimated at scale σ using the convolution by the
corresponding derivative of Gaussian function:

I σ
x iy j = I ? ∂i+jGσ

∂x i∂y j

I Gσ is the 2d Gaussian function with variance σ2.

I σ is the scale of estimation.

I i + j is the order of derivation.
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Multiscale Di�erential Geometry

Multiscale derivatives

Multiscale Gaussian Derivatives

I 1.0 I 1.0x I 1.0y I 1.0xx I 1.0xy I 1.0yy

I 4.0 I 4.0x I 4.0y I 4.0xx I 4.0xy I 4.0yy

I 10.0 I 10.0x I 10.0y I 10.0xx I 10.0xy I 10.0yy
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Analytical Shapes Recognition

Partial derivatives and 1-to-1 Hough transforms

Classical approaches

I sparse: Only a few points (contours, key points) are voting.

I 1-to-many: Every point from the image space is voting
uniformly on a n dimensional surface in the parameter space.

I many-to-1: Every n-tuple of points from the image space is
voting for one unique point in the parameter space.
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Analytical Shapes Recognition

Partial derivatives and 1-to-1 Hough transforms

Hough transfoms based on partial derivatives

I dense: All the points are voting...

I inegalitarian: ...but their votes don't have the same weight!

I 1-to-1: Every point from the image space is voting for one
unique point in the parameter space.
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Analytical Shapes Recognition

Order 1: lines

1-to-1 transform: order 1

At order 1, the gradient de�nes the isophote direction, and then the
direction of the candidate line. The weight of the vote is the norm
of the gradient.

Gradient and line Weight of the vote Main votes
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Analytical Shapes Recognition

Order 1: lines

1-to-1 transform: order 1

20 best lines (ρ, θ) 1-to-1 transform
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Analytical Shapes Recognition

Order 2: circles

1-to-1 transform: order 2

At order 2, the gradient direction and the isophote curvature de�ne
the radius and the centre of the osculating circle to the isophote
curve, and then the equation of the candidate circle. The weight of
the vote is the Frobenius norm of the Hessian matrix.

Positive curvature Negative curvature Weight of the vote Main votes
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Analytical Shapes Recognition

Order 2: circles

1-to-1 transform: order 2

10 best circles (ρ, x, y) 1-to-1 transform (level ρ = 19)
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Object Recognition

Implicit Shape Models

Object representation by R-Tables

The classical generalised Hough transforms are sparse: they are
calculated from a reduced set of feature points: contour [Ballard
81], or salient points [Leibe 04].

R-Table : {i , {~δji }j}i

Contour Salient points
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Object Recognition

Implicit Shape Models

Construction of the R-Table

The R-Table is a shape model, constructed from a prototype. Let
Ω be an arbitrary centre of the prototype. Every point M of the
prototype is indexed by a geometrical feature i , corresponding to
the row indices of the R-table. The R-table is constructed by

adding the displacement vector
−−→
MΩ in the line of index i .

For example consider the following contour points as a prototype,
indexed by the normal direction to the contour, quantised to 8
values:
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Object Recognition

Implicit Shape Models

Construction of the R-Table

Index List of vectors

0
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−3
) (

0
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) (

1
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2
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)

end
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Object Recognition

Implicit Shape Models

Construction of the R-Table

Index List of vectors
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Object Recognition

Implicit Shape Models

Construction of the R-Table

Index List of vectors
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and so on...
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Object Recognition

Implicit Shape Models

Dense R-Tables indexed by derivatives

In the dense approach, the indices i of the R-table are the
quantised mutiscale derivatives, available everywhere.

(o = 1;σ = 1.0) (o = 2;σ = 1.0) (o = 1;σ = 2.0) (o = 2;σ = 2.0)

Weighted R-Table: {i , {~δji , ω
j
i }j}i
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Object Recognition

Dense Generalised Hough Transform

Generalised Hough Transform: Object Detection

Initial: H(x) = 0 everywhere.
For all image point x,
let λ(x) the quantised derivative.
For all occurence j of the R-Table
associated to λ(x), do:

H(x + δjλ(x)) += ωj

λ(x)

The best object candidates are
then located at the maxima of H
(Right: Hough transform and the
10 best candidate cars).
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Conclusion

Contribution outline

I Combination of cumulative Hough approaches and Scale
space derivatives.

I Faster computation (no more feature extraction).

I More reliable voting process: more voting points, more
precise voting locations.



A. Manzanera - CONAIS 2012 37 / 40

Conclusion
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