Learning multiple cues for depth prediction from videos

Antoine Manzanera

ENSTA Paris

KEYNOTE Quito, December 2019

ENSTA, Institut Polytechnique and Paris-Saclay

Context and Objectives of our work

APPLICATIONS:

- Autonomous vehicles: Navigation, Road detection, Obstacle avoidance...
- Assistive robotics: gesture recognition, interaction...
- Defence and Safety: Videosurveillance,...
- Medicine: Aided diagnosis from videos...

э

3d Reconstruction from Videos

Reconstructing the scene geometry from videos is useful in many applications: Robot navigation (obstacle detection), Metrology, 3d Cartography, Medicine...

+ It is a cheap and flexible approach: One single passive camera, Adaptive baseline,...

- It strongly relies on scene structure (texture) and precise camera positioning.

Presentation Outline

- 3d from images: Analytical Methods
- Natural Cues for Depth Inference
- Supervised learning based methods
- Unsupervised learning based Methods

Principles of Analytical Methods

The geometry of the camera (intrinsic parameters) identifies the projection line of any point in the focal plane.

Principles of Analytical Methods

Another position of the camera (extrinsic parameters) allows to recover the 3d position of a point projected on the two focal planes:

> $\Omega P = \Omega \Omega' \frac{\sin \hat{\Omega'}}{\sin \hat{P}}$ $\Omega' P = \Omega \Omega' \frac{\sin \hat{\Omega}}{\sin \hat{P}}$

Principles of Analytical Methods

The epipolar constraints may reduce the search area for matching points. It is expressed by the fundamental matrix **F** in the projective geometry framework: $Q_1 \mathbf{F} Q_2 = 0.$

- $Q_1 \mathbf{F}$: epipolar line n.2.
- $\mathbf{F}Q_2$: epipolar line n.1.

Epipolar Flow Estimation

Input: Image pair

Keypoint-based sparse flow estimation

- Detector: Blockwise FAST
- Descriptor: 11x11 pixel patch
- Error filtering based on local coherence

Fundamental matrix estimation

- With the 8-points algorithm + RANSAC

Dense optical flow estimation

- Search domain reduced to the epipolar lines
- Propagation of the seed flow vectors coming from the sparse flow estimation

¥ Error filtering

- Make erroneous pixels diverge from epipolar lines

- Filter them according to the epipolar line distance and to local coherence

Small holes filling

- Simple linear interpolation of the disparity to fill small holes caused by error filtering

[Garrigues 17]

< □ > < 同 > < 回 > < 回 < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < □ < < □ < < □ < □ < < □ < □ < □ < < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ <

A. Manzanera (ENSTA Paris)

Depth Prediction from Videos

9/37

Epipolar Flow Estimation

[Garrigues 17]:

- Real-Time semi-dense optical flow and relative depth estimation.
- Was ranked #1 on Kitti 2012 Optical Flow dataset (on sparse optical flow category).

Output 1: optical flow

Output 2: disparity map

Output 3: relative depth map

(if the camera projection matrix is available)

Limitations of analytical methods

- Estimation strongly relies on local structure (texture), then depth estimation on textureless areas depends on complicated regularization methods.
- Depth calculation depends on the ratio between the apparent speed of a point and its distance to the Focus of Expansion (FoE, that indicates the translation direction of the camera). Such calculation turns undetermined when the point gets close to the FoE.

- Like for Optical Flow, Depth can benefit from Deep Networks dense prediction capabilities.
- Training can be easily done on *synthetic* or *real RGB-d* data, and loss function is also relatively straightforward.
- One determining benefit of DNN is their ability to exploit potentially *all the depth indices:* parallax, perspective, size and texture gradients, shading,...

Monocular Depth Cues? Occlusions!

Giotto - Pentecoste (*circa* 1305)

Monocular Depth Cues? Object sizes!

Georges Seurat -Un après-midi à l'île de la Grande Jatte (1884-1886)

メロト メポト メヨト メヨ

Monocular Depth Cues? Object sizes, Perspective, and Texture Gradients!

Gustave Caillebotte -Rue de Paris, temps de pluie (1877)

Monocular Depth Cues? Perspective, Horizon and Vanishing Points!

Gustave Caillebotte -Rue de Paris, temps de pluie (1877)

Monocular Depth Cues? Horizon and Camera Pose!

Stanley Kubrick – Full Metal Jacket (1987)

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Depth inference from single view!

CNN based Depth estimation from single view [Eigen 14] works well on a particular context!

A. Manzanera (ENSTA Paris)

Depth Prediction from Videos

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

One very particular context...

イロト 不得 トイヨト イヨト

Colonoscopy images [Ruano 19]

19 / 37

э

Monocular Depth Cues? Shading!

Self shadowing is a strong but ambiguous depth cue (light source position *vs* concavity). Without shape prior, the concavity is determined by a prior of top lighting (right image).

When the shape prior is strong (face then convex), the concavity prior dominates the lighting prior (top-down effect, animation on the left).

Learning Shape from Shading for Automated Colonoscopy

Images from synthetic videos are used to train a CNN using a loss function based on the ground truth depthmap [Ruano 19]

Curriculum Learning Shape from Shading for Automated Colonoscopy

Synthetic exploration videos are created from a hierarchy of synthetic colons of increasing complexity [Ruano 19]

Curriculum Learning Shape from Shading for Automated Colonoscopy

The training is performed with progressive complexity [Ruano 19]

< E

SfSNet on Synthetic Videos

ShapeFromShadingNet on Synthetic Test Videos [Ruano 19]

A. Manzanera (ENSTA Paris)

24 / 37

э

イロト 不得 トイヨト イヨト

SfSNet on Real Videos

ShapeFromShadingNet on Real Videos [Ruano 19]. Single images seem to be sufficient in such particular context!

3

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

What about UAV's context?

These scenes are all taken from the same drone !

э

イロト 不得 トイヨト イヨト

Non photorealistic synthesis for learning SfM

Supervised learning of depth from synthetic sequences [Pinard 17a]

- Network is based on $FlowNet_S$
- Unrealistic scenes ↔
 Abstraction of the context
- Focus on geometry / motion, not on appearance /context
- Trained on rotationless movement, at a constant speed

Baseline adaptation using multiple image pairs

- At the inference time, the depth which is relative to the trained speed, is scaled with respect to the actual velocity.
- Adaptable precision is achieved by dynamically adapting the image pairs (baselines) to the depth distribution.

Adaptation of the baselines to the depth distribution [Pinard 17b]

A. Manzanera (ENSTA Paris)

Depth Prediction from Videos

- 本間 ト イヨト イヨト

Supervised DepthNet

Média Lecture Audio Vidéo Sous-titres Qutils Vye Ajde

Supervised DepthNet results [Pinard 17a]

イロト イヨト イヨト

Unsupervised depth estimation CNN

- Re-training on real/operative context is still essential.
- But data are rarely annotated.
- Self-supervised learning is then necessary.
- Photometric loss function can be used, that compares a pair of registered images, knowing the depth and the camera pose.
- Camera pose then needs to be known, or predicted!

(a) Training: unlabeled video clips.

[Zhou 17]

Unsupervised depth estimation CNN

[Zhou 17]

3

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

Unsupervised DepthNet

Unsupervised re-learning of Structure from Motion with adaptive baseline [Pinard 18]

A. Manzanera (ENSTA Paris)

Depth Prediction from Videos

э

イロト イヨト イヨト

Unsupervised DepthNet

Média Lecture Audio Vidéo Sous-titres Qutils Vye Ajde

Unsupervised DepthNet real fly demo [Pinard 18]

(Erroll and

33 / 37

・ロット (雪) ・ (日) ・ (日)

Conclusion and Perspectives

• Learning optical flow and depth from videos has many advantages:

- Globally addressing the context
- Multi-cues depth inference
- Natural regularization of ill-posed problem
- The main issues to adress are the hard dependence to the learned context, and the difficulties inherent to online learning. The current work perspectives are:
 - Domain adaptation: ground robotics, medical robotics,...
 - Incremental and online learning...

Contributors for this talk

- Matthieu Garrigues: PhD student 2012-2016
- Clément Pinard: PhD student (CIFRE ANRT Parrot) 2016-2019
- Josué Ruano Balseca: PhD student (w. UNAL Bogotá) 2018-

References (1)

Garrigues 17] M. Garrigues and A. Manzanera Fast Semi Dense Epipolar Flow Estimation IEEE Winter Conf. on Applications of Computer Vision (WACV). Sta Rosa, CA, pp.1-8, 2017

[Eigen 14] D. Eigen and C. Puhrsch and R. Fergus Depth map prediction from a single image using a multi-scale deep network Advances in neural information processing systems (NIPS), pp.2366–2374, 2014

[Ruano 19] J. Ruano Balseca and A. Manzanera and E. Romero Castro Curriculum-based strategy for learning shape-from-shading from colonoscopy synthetic database

Research Report, 2019

References (2)

- [Pinard 17a] C. Pinard and L. Chevalley and A. Manzanera and D. Filliat End-to-end depth from motion with stabilized monocular videos Int. Conf. on Unmanned Aerial Vehicles in Geomatics (UAV-g) Bonn, pp. 67-74, 2017
- [Pinard 17b] C. Pinard and L. Chevalley and A. Manzanera and D. Filliat Multi range Real-time depth inference from a monocular stabilized footage using a Fully Convolutional Neural Network

European Conference on Mobile Robotics (ECMR), Palaiseau, 2017

- **[Zhou 17]** T. Zhou and M. Brown and N. Snavely and D.G. Lowe Unsupervised learning of depth and ego-motion from video Computer Vision and Pattern Recognition (CVPR), 2017.
- [Pinard 18] C. Pinard and L. Chevalley and A. Manzanera and D. Filliat Learning structure-from-motion from motion European Conf. on Computer Vision Workshops (ECCV-W), pp.363-376, 2018

医水理医水理医水理医