
Efficient line tracker in the parameter space
based on one-to-one Hough Transform

Yannick Wend Kuni Zoetgnande1 and Antoine Manzanera2

1 Laboratoire Traitement du Signal et de l’Image, INSERM U1099, Université de Rennes 1, FRANCE
2U2IS-Autonomous Systems and Robotics, ENSTA ParisTech, Université de Paris Saclay, FRANCE

antoine.manzanera@ensta-paristech.fr,yannick.zoetgnande@etudiant.univ-rennes1.fr

Keywords: Video Analysis, Line Tracking, Real-Time, Hough Transform.

Abstract: We propose a new method for line detection and tracking in videos in real-time. It is based on an optimised

version of the dense Hough transform, that computes, via one-to-one projection, an accumulator in the polar

parameter space using the gradient direction in the grayscale image. Our method then performs mode (cluster)

tracking in the Hough space, using prediction and matching of the clusters based on both their position and

appearance. The implementation takes advantage of the high performance video processing library Video++,

that allows to parallelise simply and efficiently many video primitives.

1 Introduction

Feature tracking in videos, which consists in de-

tecting particular points or subsets in each image and

match them with their counterparts in the following

images of the sequence, is a fundamental problem

of computer vision. Unlike feature points or object

tracking, for which the literature is plethoric, line

tracking has not received so much attention (Wang

et al., 2009). However, in both mathematical and

combinatorial terms, the (1d) line represents a rele-

vant trade-off between the (0d) point and the (2d) re-

gion (or plane, or facet). Furthermore detecting and

matching lines along a video sequence has many use-

ful applications, in mobile robotics (Fontanelli et al.,

2015), visual servoing, image registration (Fung and

Wong, 2013b) or 3d reconstruction (Kim and Man-

duchi, 2017).

In this paper we present a fast line tracking algo-

rithm designed to detect and match lines along video

sequences in real-time. The proposed method lever-

ages three complementary frameworks:

• a fast line detection is performed by using the one-

to-one Hough Transform

• an efficient implementation is made possible by

using the Video++ high performance video pro-

cessing library

• a tracking algorithm is applied in the Hough ×
time space, combining prediction and fast mode

matching

The paper is structured as follows: Section 2 sum-

marizes the related work, first in Hough based line

detection and then in tracking in the Hough space.

Section 3 details the different parts of our algorithm

and implementation framework. Section 4 presents

some results, including computational performances.

Finally Section 5 concludes the paper and presents

some perspectives.

2 Related works

2.1 Hough based line detection

Since its introduction in the early 60’s for detect-

ing line beams in bubble chamber’s images (Hough,

1962), the Hough transform (HT) has been the sub-

ject of many studies, with thousands of citations and

references.

The general framework consists in detecting pa-

rameterised shapes in images using accumulators in

parameter spaces. More formally, if a shape is de-

fined by a parametric equation f (x,π) = 0, with x∈ I

a point in the image space, and π∈P a point in the pa-

rameter space, the shape in the image space is defined

as:

C
I
π = {x ∈ I ; f (x,π) = 0}

whereas the dual shape in the parameter space is de-

fined as:

C
P
x = {π ∈ P ; f (x,π) = 0}

Now consider a set of points from the image space:

S ⊂ I , the Hough Transform of S can be formally

defined as:

HT (S) =
⋃

x∈S

C
P
x

For line detection, polar parameterisation is used

(Duda and Hart, 1972). It represents a line by the

angle θ made by its normal with the abscissa axis, and

its distance ρ to the origin. Then the image variable

x = (x,y) and the parameter variable π = (θ,ρ), are

linked by the equation:

ρ = xcosθ+ ysinθ (1)

Using this parametrisation, the dual shape of line

is a sinusoid. The main drawback of traditional

Hough Transforms is their computational cost. This

explains why, even restricting to line detection, many

variants and optimisations of the basic framework

have been proposed (Herout et al., 2013). We shall

group them into three categories:

• One-to-many / Probabilistic HT The image

space is reduced to a small number of represen-

tative (contour) points. Then, every point of the

image space will vote for many points represent-

ing a sinusoid in the parameter space. In this case,

the number of voting (contour) points, and also

the quantization of the parameter space are criti-

cal for the complexity. In the probabilistic version

(Kiryati et al., 1991), the complexity is decreased

by reducing the number of voting points to a small

portion of contour pixels.

• Many-to-one / Randomised HT The image

space is also reduced to contour points, but here,

every pair of contour points, defining a unique

line, votes for a single point in the parameter

space. To reduce the high combinatorics, the ran-

domised version (Xu et al., 1990), only draws ran-

domly a small number of pairs of contour pixels.

One advantage with respect to the previous ap-

proach is that the parameter space does not need

to be quantized as a 2d array, making the line se-

lection more flexible.

• One-to-one / Dense HT It was early noticed that

the knowledge of the gradient orientation was suf-

ficient to get the equation of a line possibly pass-

ing at any point (O’Gorman and Clowes, 1976).

This allows to directly estimate the parameters

at any location (dense estimation) without com-

puting the contours, and using one-to-one vot-

ing. (Manzanera et al., 2016) proposed a uni-

fied one-to-one dense HT for lines and circles,

based on multiscale derivatives. Like the previous

approaches, quantization of the parameter space

is no longer necessary, and the clustering can be

made on-the-fly, which is particularly interesting

in the case of line tracking. The 1-to-1 DHT is

detailed on Algorithm 1.

Algorithm 1 Dense 1-to-1 Hough Transform

Require: Image I ⊲ The Image

1: for each pixel(px, py) ∈ {0,wI} × {0,hI} do ⊲
wI , hI resp. width, height

2: ∇I ← (Ix(p), Iy(p))
3: if ‖∇I‖> 0 then

4: d← pxIx + pxIy

5: ρ← |d|
‖∇I‖

6: θ = arctan(
Iy
Ix
)

7: Γ(ρ,θ)← Γ(ρ,θ) + ‖∇I‖ ⊲ Γ is the

accumulator

2.2 Tracking in the Hough space

A significant amount of works on line tracking have

been using Hough Transform, but for most of them,

the tracking is actually performed in the image space,

the HT being just used to detect dominant lines.

(Marchant, 1996) uses HT to follow crop rows in au-

tomated agriculture. (Voisin et al., 2005) and (Borkar

et al., 2009) also use HT to detect road marks, and

track them in the image space. (Foresti, 1998) uses

line matching to track multiple objects. (Behrens

et al., 2001) combine a Randomized HT and a dis-

crete Kalman filter to track tubular features in medical

images.

(Hills et al., 2003) propose a method to track ob-

jects in the Hough space. Their objective is to follow

objects that can be circumscribed by parallel lines,

like rectangular objects. Another limitation is that the

tracking is only performed frame to frame, without

memory. To deal with these limits (Mills et al., 2003)

use an extended Kalman filter, to adress the non lin-

earity due to the polar parameter space. In the Hough

space the line number i at the kth frame is identified by

(ρk
i ,θ

k
i). At the (k+1)th frame the position of the line

will be assumed to vary smoothly, to reduce the com-

putational load of the HT. Unfortunately in real world

situation, edges are not always parallel and it is very

hard to determine the best setting of each Kalman fil-

ter. So this model performs well when the number of

edges is small or when their motion is simple enough.

To overcome these drawbacks, (Fung and Wong,

2013b) propose a robust tracking method based on a

multiple Kalman filter. Instead of associating each

edge to one Kalman filter, they use N concurrent sub-

Kalman filters, and the best prediction is returned at

the end. The Kalman filters are run in parallel and

their updates are performed at the same time. The fi-

nal prediction is the weighted sum of the predictions

from all filters. Later, (Fung and Wong, 2013a) they

propose another method to detect and track quadran-

gles.

However these two last methods do not track more

than four lines. Furthermore, if they are able to deal

with line occlusion, they do not take into account en-

tries and exits. In addition, they are all based on clas-

sic contour-based HTs.

3 Our method

3.1 Preliminaries

Let P = (θP,ρP) and Q = (θQ,ρQ) be two points in

the parameter (Hough) space. Let Γ(P) be the value

of the HT (accumulator) at point P.

The distance between P and Q in the parameter

space is defined as:

dP (P,Q) =

√

D2
I sin2(θP−θQ)+(ρP−ρQ)2 (2)

where DI is the diagonal size of the image. This def-

inition takes into account the modularity of angle dif-

ference, and also the fact that, when ρ is close to 0,

the lines defined by parameters (θ,ρ) and (π− θ,ρ)
are very close in the image space.

We also use the similarity metrics in the Hough

accumulator, defined as follows:

dΓ(P,Q)2 =
+∆θ

∑
dθ=−∆θ

+∆ρ

∑
dρ=−∆ρ

[Γ(θP +dθ,ρP +dρ)

−Γ(θQ +dθ,ρQ +dρ)]
2 (3)

3.2 Video++ library

Video++ (Garrigues and Manzanera, 2014) is a li-

brary written in C++14 whose purpose is to allow the

fast development of high performance video process-

ing applications. It manages memory allocation and

alignment, pixel accesses and simple writing of pixel-

wise and neighborhood operations. By using meta-

programming based on lambda functions and vari-

adic templates, it generates code that is both concise

and easy to optimize and parallelize using G++6 and

OpenMP.

It has been shown (Garrigues and Manzanera,

2014) that Video++ was more efficient than OpenCV

on local and regular operations, and as fast as the raw

OpenMP version, while being much more concise.

The dense 1-to-1 HT being essentially regular, and

the tracking functions highly parallelisable, Video++

seems a good framework for implementing our algo-

rithm.

3.3 Dense one-to-one Hough Transform

3.3.1 Voting process

We implemented the 1-to-1 dense voting process (Al-

gorithm 1) on Video++, enabling parallelisation of the

gradient and parameter computation (lines 2-6) and of

the voting process (line 7). The problem of concur-

rent access to Γ happens overall when the clustering

is performed with K-means or Hierarchical cluster-

ing. In 1-to-1 DHT, like in many-to-one HT, the vote

is casted for one single point, which makes the result-

ing voting map sparse. To moderate it, the parameters

are estimated in float precision for every pixel, and

the votes are interpolated and divided between the 4

closest quantized values.

3.3.2 Selection of the N dominant lines

In order to avoid multiple detections, we use a non-

maxima suppression through a copy of the Hough

space noted Γ′, by putting Γ′(P) = 0 to every cell

P such that there exist another cell Q in the λθ× λρ

neighborhood of P such that Γ(Q)> Γ(P). This pro-

cess is fully parallelized using SIMD paradigm be-

cause the search is performed in Γ and the updates are

performed in Γ′ To reduce the computational cost, we

only apply non-maxima suppression to cells where Γ
exceeds a certain threshold.

Finally the N dominant lines are extracted as the

N greatest values of Γ′ , sorted in descendant or-

der: C = {C1, . . . ,CN}, and such that the values of

Ci are obtained in float precision as the weighted av-

erage of the 9 neighbors that surround the maximum

in the quantized parameter space. The weighting cor-

responds to the number of votes obtained by each cell.

In our experiments, the default value of N is 50 and

the couple (λθ,λρ) is initialized to (15,12). During

the tracking this value can change depending on the

density of clusters.

3.4 Tracking in the Hough space

Our tracking procedure is based on several com-

mon assumptions, as used by previously mentionned

works (Mills et al., 2003; Yilmaz et al., 2006; Fung

and Wong, 2013b):

• Proximity: the position of a feature does not

change much between two frames.

• Maximum velocity: the apparent velocity of a fea-

ture in the image is upper bounded.

• Small velocity change: the acceleration of the fea-

ture is small.

• Common motion: neighboring features have sim-

ilar velocity.

We also use the two following specific assump-

tions:

• Smooth changes in the contrast order: if a line

is ranked in jth position at frame t, it should be

ranked between positions j − α and j + αth at

frame t +1.

• Smooth changes of the line beams: Between two

possible closest matches, the best is the one whose

neighborhood is the closest in the Hough space.

The Algorithm 2 details the complete tracking

procedure. It starts from a list of M so-called clus-

ters, corresponding to the current tracked lines repre-

sented by their parameters, their life time (the number

of frames they have existed) and their inactivity time

(the number of frames since when they have not been

updated).

The matching between clusters and the new lines

is made using the N best dominant lines, with N >
M, since a line can be less dominant from one frame

to the other. We take into account line occlusions,

exits and entries. First when a cluster becomes more

dominant it enters the list of most dominant clusters.

Second when a cluster become less dominant it exits

the same list. And third when two clusters at frame t

match the same line at frame t + 1, it means that one

of clusters occludes the other one. The most dominant

is kept in that case.

So each cluster at frame t is compared to 2α lines

at frame t + 1. The first match is performed by con-

sidering only the position of clusters in the param-

eter space, providing at most three best matches for

each cluster whose distance is less than some thresh-

old. Then the neighborhood of the cluster in the ac-

cumulator array is compared to the neighborhood of

each of the three candidates and the best matches is

retained. The new best clusters are then added to the

list of the current clusters.

In the algorithm 2 we have:

• The set℘t = {Pt
1,P

t
2,,P

t
M} represents the list of

dominant lines (clusters) at time t. The number M

is not fixed and is linked to the number of clusters

whose value in Γ is greater than a certain threshold

noted Γthreshold , but it has to remain significantly

less than N.

• To each cluster Pt
i we associate the value f wu rep-

resenting the number of consecutive frames where

it got no update.

• The set ϒ= {Q1,Q2,,QN} represents the list of

N dominant lines detected. Their value have not

to be greater than Γthreshold , and their number N

must be greater than M+α.

• To each cluster Pt
i we associate at most three best

matches according to their proximity in the Hough

space. We will denote those three best matches by

Ψi (lines 7-11).

• mtt
i represents a motion threshold for the cluster

Pt
i . It prevents the cluster to be associated if its

nearest neighbor is too far. It can be chosen as a

constant, or depend on the cluster i and the frame

t, to adapt to the dynamics of the different lines.

• Finally, the clusters that have not been associ-

ated for more than m f wu successive frames are

removed from the cluster list (exits, lines 17-19),

and the new lines, i.e. those that have not been as-

sociated to an existing cluster, and that are more

dominant than some cluster, are added to the clus-

ter list (entries, lines 20-22).

4 Results

4.1 Dense one-to-one Hough Transform

We evaluate in this section the computation time of

the 1-to-1 dense HT implemented with Video++ on

a 8-core computer with Intel Core i7, 2.40 GHz,

and compare it with the Standard Hough Transform

(SHT) and an optimized version of the Progressive

Probabilistic Hough Transform (PPHT) of OpenCV

(Matas et al., 2000). So we use three images (Fig.1 to

3) and for each type of HT, we launch the algorithm

1000 times to get an accurate comparison. For the

array accumulator Γ, we use a 256 values for θ, and

the resolution of the image determines the number of

Algorithm 2 Line Tracking Hough Space

1: for each frame t do

2: Γ← Dense Hough Transform(It)

3: ϒ← Select Best Lines(Γ,N)
4: if t = 0 then

5: ℘0 = {P0
1 , . . . ,P

0
M}

6: else

7: for each Pt−1
i ∈℘t−1 do

8: for each Q j ∈ ϒ do

9: if (i−α 6 j 6 i+α) then

10: if dP (P
t−1
i ,Q j)6 mti then

11: update Ψi = {Ψi
1,Ψ

i
2,Ψ

i
3}

12: for each Pt−1
i ∈℘t−1 do

13: if Ψi = /0 then

14: Pi. f wu++

15: else

16: Pt
i = arg min

Qk∈Ψi
dΓ(P

t−1
i ,Qk)

17: for each Pt
i ∈℘t do

18: if Pi. f wu > m f wu then

19: Delete Pt
i from ℘t

20: for each Q j ∈ ϒ do

21: if Q j /∈℘tandΓ(Q j)> Γ(Pt
M) then

22: add Q j to ℘t

Figure 1: Building 563 × 422

values for ρ. To get a very fast and accurate compu-

tation of the arctangent, we used the approximation

proposed in (Rajan et al., 2006). This approximation

presents the advantage to consume less memory than

a lookup table and is three times faster than the im-

plementation of arctangent in GCC.

As shown in the table 1, our DHT algorithm (row

3) performs better than the implementations of SHT

(row 1) and PPHT (row 2) in OpenCV. If needed, it

can be made even faster by adding a threshold param-

eter th on Algorithm 1, by computing the HT only if

the magnitude of the gradient is greater than th. This

then corresponds to the Semi-Dense HT.

Figure 2: Subway 422 × 563

Figure 3: Bridge 2560 × 1600

building subway bridge

SHT (th = 100) 20 60 2206

PPHT (th = 100) 13 17 155

DHT (th = 0) 6.2 6 69

DHT (th = 100) 3.1 3.2 32

Table 1: Comparison of computation time (in ms) with
other HT methods

We have separately assessed the execution time of

each part of the Dense one-to-one Hough Transform:

(1) computation of the gradient of the whole image,

(2) the HT itself, i.e. computing the parameters and

voting (3) the search of the dominant lines. To get

relevant results we launched the program 1000 times

on each of the three images. For the true Dense HT,

i.e. without using a threshold for the gradient, the

results can be seen in Table 2. For the Semi-Dense

HT (th = 100), results are displayed on Table 3.

subway building bridge

Gradient 0.3 0.3 8

Hough Transform 2.8 2.6 51

Dominant lines 3 3.2 10

Table 2: Computation time (in ms) for each part of the DHT

4.2 Tracking in the Hough space

For optimization purposes we compute the DHT in

the whole image only every r frame, the rest of the

time, it can be computed only in the neighborhood

subway building bridge

Gradient 0.3 0.3 8

Hough Transform 0.3 0.3 16

Dominant lines 2.5 2.6 8

Table 3: Computation time (in ms) for each part of the
Semi-Dense Hough transform (th = 100)

Normal Optimized

Moving paper 1 10 ms 8 ms

Corridor 1 12 ms 10 ms

Corridor 2 12 ms 11 ms

Table 4: Computation time for tracking, per frame

of existing clusters or by defining a gradient thresh-

old. The parameter r is set to 5 in our experiments.

We intend to adapt the value of r depending on the

quality of the tracking. This allows to decrease sig-

nificantly the computational time because this semi-

dense Hough transform is sparser.

Sometimes there are not many entries (new lines)

or the existing lines (clusters) do not move fast, so we

can constrain each cluster into a box (ρ∓ ι×dρ,θ∓
ι× dθ). We have assessed each part of our tracking

algorithm. The objective is to show the effectiveness

of our optimizations. We use three videos that can be

downloaded from (Zoetgnande, 2017).

As shown in Table 4, we have a gain in computa-

tion time, due to the fact the DHT is not computed in

the whole image. Sometimes the gain is not signifi-

cant because, for every pixel, we must check if it be-

longs to the neighborhood of a already detected line.

To each cluster we associate a random color to vi-

sually differentiate it from the others. In Fig. 4 and 5,

we track clusters in the Hough space and back-project

the result in the image space.

In Fig. 5, we track lines in a corridor and each line

is characterized by a beam of points. More a line is

spread in the image, more this line is moving. As the

color is generated randomly, some lines may visually

look the same.

Figure 4: Result of tracking on ”Moving paper” with a
frame size 640 × 480

Figure 5: Result of tracking on ”Corridor 1” with a frame
size 640 × 480

5 Conclusion

In a human-made environment, there are a lot

of lines. We have implemented a dense one-to-

one Hough transform that can densely detect a large

amount on lines on real images. Our implementation

uses the library Video++ so we can get better com-

putational performance compared to applications in

OpenCV library. In 640× 400 videos, we can com-

pute the Hough transform in around 6 ms, which rep-

resents more than 150 frames per second.

Our second significant contribution concerns the

tracking in the Hough space. The tracking is not only

performed in the neighborhood in terms of cluster co-

ordinates but also in terms of ranking in the list of

dominant lines. Depending on the time requirements,

the application can automatically adjust the number

of lines to track, as well as the computation frequency

of the new lines, and the size of the neighborhoods in

the matching procedure.

The DHT has the advantage to output a Hough ac-

cumulator that can be used for not only point tracking

but also appearance tracking. We have proposed sev-

eral optimizations that improve the frame rate with-

out affecting too much the quality of the tracker. We

have tested our tracker in three videos, and showed

that the whole process was computed in around 10

ms per frame.

Using the assumption that the order in the accu-

mulator values of dominant lines should not change

dramatically from one frame to the other, we can im-

prove both the robustness and the efficiency of our

tracker. One limitation of line trackers being their

poor interest in natural environment, it would be inter-

est to couple it with efficient point trackers (Garrigues

et al., 2014), to be able to track different kind of ob-

jects depending on the context and on image content.

Acknowledgment

The authors wish to warmly thank Matthieu Gar-

rigues for his help in the Video++ framework.

REFERENCES

Behrens, T., Rohr, K., and Stiehl, H. S. (2001). Using an
extended Hough transform combined with a Kalman
filter to segment tubular structures in 3d medical im-
ages. In Structures in 3D Medical Images. Workshop
Vision, Modeling, and Visualization, pages 491–498.

Borkar, A., Hayes, M., and Smith, M. T. (2009). Ro-
bust lane detection and tracking with RANSAC and
Kalman filter. In 16th IEEE International Conference
on Image Processing, pages 3261–3264. IEEE.

Duda, R. O. and Hart, P. E. (1972). Use of the Hough trans-
formation to detect lines and curves in pictures. Com-
munications of the ACM, 15(1):11–15.

Fontanelli, D., Macii, D., and Rizano, T. (2015). A fast and
lowcost visionbased line tracking measurement sys-
tem for robotic vehicles. Acta IMEKO, 4(2).

Foresti, G. L. (1998). A line segment based approach for
3d motion estimation and tracking of multiple objects.
International journal of pattern recognition and arti-
ficial intelligence, 12(06):881–900.

Fung, H. K. and Wong, K. H. (2013a). Quadrangle de-
tection based on a robust line tracker using multiple
Kalman models. Journal of ICT Research and Appli-
cations, 7(2):137–150.

Fung, H. K. and Wong, K. H. (2013b). A robust line track-
ing method based on a multiple model Kalman filter
model for mobile projector systems. Procedia Tech-
nology, 11:996–1002.

Garrigues, M. and Manzanera, A. (2014). Video++, a mod-
ern image and video processing C++ framework. In
Design and Architectures for Signal and Image Pro-
cessing (DASIP), 2014 Conference on, pages 1–6.
IEEE.

Garrigues, M., Manzanera, A., and Bernard, T. M. (2014).
Video extruder: a semi-dense point tracker for extract-
ing beams of trajectories in real time. Journal of Real-
Time Image Processing, pages 1–14.

Herout, A., Dubská, M., and Havel, J. (2013). Review of
Hough transform for line detection. In Real-Time De-
tection of Lines and Grids, pages 3–16. Springer.

Hills, M., Pridmore, T., and Mills, S. (2003). Object track-
ing through a Hough space. In International Confer-
ence on Visual Information Engineering, pages 53–56.

Hough, P. V. (1962). Method and means for recognizing
complex patterns. US Patent 3,069,654.

Kim, C. and Manduchi, R. (2017). Indoor manhattan spa-
tial layout recovery from monocular videos via line
matching. Computer Vision and Image Understand-
ing, 157:223 – 239.

Kiryati, N., Eldar, Y., and Bruckstein, A. M. (1991). A
probabilistic Hough transform. Pattern Recognition,
24(4):303–316.

Manzanera, A., Nguyen, T. P., and Xu, X. (2016). Line and
circle detection using dense one-to-one Hough trans-
forms on greyscale images. EURASIP Journal on Im-
age and Video Processing, 2016(1):46.

Marchant, J. (1996). Tracking of row structure in three
crops using image analysis. Computers and electron-
ics in agriculture, 15(2):161–179.

Matas, J., Galambos, C., and Kittler, J. (2000). Robust
detection of lines using the progressive probabilistic
Hough transform. Computer Vision and Image Un-
derstanding, 78(1):119 – 137.

Mills, S., Pridmore, T. P., and Hills, M. (2003). Tracking
in a Hough space with the extended Kalman filter. In
British Machine Vision Conference, pages 1–10.

O’Gorman, F. and Clowes, M. (1976). Finding picture
edges through collinearity of feature points. IEEE
Transaction on Computers, 25(4):449–456.

Rajan, S., Wang, S., Inkol, R., and Joyal, A. (2006). Ef-
ficient approximations for the arctangent function.
IEEE Signal Processing Magazine, 23(3):108–111.

Voisin, V., Avila, M., Emile, B., Begot, S., and Bardet, J.-
C. (2005). Road markings detection and tracking us-
ing Hough transform and Kalman filter. In Advanced
Concepts for Intelligent Vision Systems, pages 76–83.
Springer.

Wang, Z., Wu, F., and Hu, Z. (2009). MSLD: A robust
descriptor for line matching. Pattern Recognition,
42(5):941 – 953.

Xu, L., Oja, E., and Kultanen, P. (1990). A new curve de-
tection method: randomized Hough transform (RHT).
Pattern recognition letters, 11(5):331–338.

Yilmaz, A., Javed, O., and Shah, M. (2006). Object track-
ing: A survey. Acm computing surveys (CSUR),
38(4):13.

Zoetgnande, Y. (2017). Videos of lines to track. https:

//www.dropbox.com/sh/4x0aamffxx5c448/

AACHN6K0o6IvvIs-_PE7apAWa?dl=0. Accessed:
2017-09-11.

