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Abstract—We present a unified framework for processing
and representing images using a feature space related to local
similarity. The visual data is represented by the multiscale
and versatile local jet feature space, which can be reduced
by vector quantisation and/or represented by data structures
enabling efficient nearest neighbours search (e.g. kd-trees). We
demonstrate the interest of the local jet feature space processing
through three fundamental low level tasks: noise reduction,
motion estimation and background modelling/subtraction. We
also show the potential of the framework in terms of visual
representation for higher level (e.g. object modelling and
recognition) tasks.
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space; nearest neighbours; optical flow; non local means;
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I. INTRODUCTION

Many problems in image processing and vision relate to
visual similarity. Since the earliest processes of denoising
or perceptual grouping, to the higher level tasks of object
recognition, measuring the resemblance, or matching two
objects according to the visual appearance are fundamental
functions. In the traditional space × time representations
of video sequences, the canonical distance is not related
to visual similarity, which induces a major computational
drawback. Indeed, similar objects from the video data are
expected to interact in the processing, and then should be
contiguous in the representation. These general remarks do
not only apply to the current data, image or recent frames
history, but also to the global visual knowledge that the
vision system is constructing during its operating lifetime.

The purpose of this work is to design a global, generic
and computationally tractable framework for the represen-
tation and the processing of the visual data, based on:
(1) the projection of the space × time image data within
a transformed space whose metrics correspond to visual
similarity, (2) a set of functions operating in the transformed
and/or the image domain, for extracting relevant information
from the video, updating the transformed domain structure
accordingly, and/or modifying the video in the image domain
according to some specific task (filtering, detecting, pre-
dicting), and (3) dedicated data structures for making such
framework computationally feasible, in terms of memory
and processing time. In our philosophy, such unified frame-
work should be usable for the whole vision process, from the
lowest level of regularisation and enhancement to the levels

of higher semantics related to recognition and understanding.
The framework should also be compliant with real-time
video processing, which implies both dynamical and efficient
construction of the visual representation.

The inspiring and related works are presented in Sec-
tion II. In our work the preferred similarity space is made
of the collection of spatial derivatives estimated at different
scales (the local jet). This feature space and its data structure
are presented in Section III. The following sections present
the applications of the framework for different low level
visual processing tasks: non-local means image denoising
(Sec. IV), optical flow estimation (Sec. V) and background
subtraction based motion detection (Sec. VI). Section VII
presents some visual models that can be extracted from the
feature space data structure, for higher level representations.

II. RELATED WORKS

Our work is related to Peyré’s manifold model [1]. In this
theoretical framework, the image data is projected within
a higher dimensional feature space, forming a manifold.
Many inverse problems in low level computer vision can
be expressed by regularising this manifold and then back-
projecting the transformed manifold within the image space.
In this sense, the different low level algorithms proposed in
this paper can be seen as instances of the manifold model.
Conversely, our work is also an extension of this model,
with the aim of extracting higher level representations from
the manifold structure.

Our framework exploits many ideas from previous works
on textured objects modelling, segmentation and recognition.
Filter banks have been used for a long time as a way to
extract meaningful local information on direction, scale, and
frequency [2]. Quantising such information is also a com-
monplace in textons [3] or bag of features [4] approaches.
Compared with those methods, one fundamental property
of our framework is that the feature is intrinsically dense
in the image space, making the corresponding information
available at any location. Another particularity of our work
is that reducing the information support is done by finding
the isolated or clustered points in the feature space, thus
avoiding the common separation between detection and
description of the salient structures [5], [6].

The importance of the local jet in image representation
has been identified a few decades ago. Koenderink and



Van Doorn [7] pointed out the fundamental role of the first
three orders of derivatives in the human visual system. They
also noticed that some Euclidean distance on the local jet
vectors could be used to approximate the sum of squared
differences between image patches. To our knowledge this
has not been really used in the literature, maybe because the
approximation is crude for complicated patches. But, as we
will see later, distances based on the local jet are actually
significant to distinguish similar pixels.

Anyway, the local jet has been much used for the con-
struction of invariants, particularly in image retrieval [8]. It
has also been used more recently for the classification of
pixels according to their local geometry, see for example
[9]. As shown later, such classification can be exploited to
reduce the dimension of the local jet descriptor.

III. MULTISCALE LOCAL JET FEATURE SPACE

A. Similarity space
Using the partial derivatives to measure the local similar-

ity is a natural choice [10] since the local behaviour of any
differentiable function f can be predicted from its derivatives
(Taylor expansion at order r):
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. The relevance of the
local jet as a description vector is confirmed by the first
singular (or eigen) vectors that arise in SVD or PCA based
decomposition of natural image patches, that look much
like the first derivatives of a 2d Gaussian function (see for
example [11]). In digital images, the derivative only makes
sense up to a level of regularity corresponding to the scale
of estimation [12]:
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j
2

, (2)

where Gσ is the 2d Gaussian function of standard de-
viation σ. The multiscale local jet is then the collection
{fσij ; i + j ≤ r, σ ∈ S}, where r is the order of derivation,
S = {σ1, . . . σq} the selected scales. Figure 1 illustrates
the induced representation for a few points taken from a
natural image, at one scale σ = 1.0. The image is split
into 15×15 patches, and the reconstruction is performed by
Taylor expansion on patches of the same size, using only
the local jet computed at the patch centre.

Our representation does not use patches but a multiscale
local jet vector in every pixel, with normalised components
combining the scale normalisation from scale space theory
[12], and the number of (i+ j)-order derivatives:

Fσij =
σi+j

i+ j + 1
fσij . (3)

(1) (2)

(3) (4)

Figure 1. Local representation by the local jet at one scale (σ = 1.0): (1)
Original patches (2) Order 0 (1d feature) (3) Order 1 (3d feature), (4) Order
2 (6d feature)

Figure 2. Pixel categorisation for the reduction of the local jet descriptors:
at order 2, pixels can be categorised into 4 categories (7 if the polarity is
considered).

If required, rotation invariant derivatives can be obtained
by expressing the derivatives within the local basis of coordi-
nates of the gradient and isophote components. The local jet
also provides contrast invariant measures, e.g. the direction
of the gradient or isophote at order 1, or the direction of main
curvatures (eigen vectors of the Hessian matrix) at order 2.
Finally, following [9], the local behaviour of every pixel
can be categorised at every scale according to the dominant
order of derivation: flat zone for order 0, straight contours
for order 1, and elliptic or tubular curvatures for order 2
(according to the signs of Λ and λ, the eigen values of the
Hessian matrix). Once categorised, the dimensions of the
local jet descriptor can be reduced to significant derivatives
(see Figure 2).



B. Metrics

To measure similarity, we typically consider three types of
distance in the applications. Let F be the full local jet vector
F = (Fσij)i+j≤r,σ∈S , we denote x̂ = F (x) the feature vector
associated to pixel x. Let Fσ = (Fσij)i+j≤r be the local jet
at scale σ, and ||.|| the Euclidean norm. First, the single
scale distance, checking whether x at scale σ1 is similar to
y at scale σ2:

d
(σ1,σ2)
F (x̂, ŷ) = ||Fσ1(x)− Fσ2(y)|| . (4)

Second, the pan-scalic distance, checking whether x and
y are similar for all the scales σ ∈ S:

DS
F (x̂, ŷ) = max

σ∈S
d
(σ,σ)
F (x̂, ŷ) . (5)

However for representation purposes (next subsection) the
use of Euclidean distance ||x̂− ŷ|| can be more convenient.

Third, the trans-scalic pseudo-distance, checking whether
there exists a couple of scales for which x and y are similar:

δSF (x̂, ŷ) = min
(σn,σm)∈S2

max
(σn+p,σm+p)∈S2

d
(σn+p,σm+p)
F (x̂, ŷ) .

(6)
Figure 3 shows different examples of similarity maps

using those distances. For a pixel x0 the similarity map is
defined as MdF

x0
(x) = Φ(dF (x̂0, x̂)), with dF the local jet

distance, and Φ some real increasing function. In this figure
Φ(z) = 1 − e−

z2

C2 , with C = 10. Those maps show the
properties of the different distances and local jet components
in terms of rotation and scale invariance.

C. Data structures

The first step of the representation then consists in pro-
jecting the image data into the chosen similarity space. For
every pixel, a feature vector is computed, and the collection
of features is kept in adequate data structure for further
processing. If the feature space dimensionality is low, the
data structure may be a simple array, whose coordinates are
indexed by each component of the feature space, which must
then be quantised properly. The data structure is then a hash
table whose hash function is the quotient of the quantisation.
As the memory cost of such structure grows exponentially
with the dimension, other solutions must be used for higher
dimension, like the classical kd-tree [13], which is optimal
in terms of memory occupation.

The kd-tree is a useful tool for performing nearest neigh-
bours (NN) search in the feature space. It will be extensively
used in the following to perform efficiently operations based
on visual similarity, that are intrinsically non local in the
image space. However, there are many operations where NN
search will be needed very intensively (e.g. for every pixel
/ feature vector). In that case, the computational cost will
remain too important for real-time video. Two important op-
timisations are employed: (1) Approximate Nearest Neigh-
bour (ANN) search techniques [14] that reduces both worst

Figure 3. Similarity maps based on 2-order local jet metrics, for 3 different
pixels: (1), (2) and (3), and 6 different distances: Single (same) scale: (a)
canonical components (CC), (b) rotation invariant components (RIC), Pan-
scalic (4 scales): (c) CC, (d) RIC, and Trans-scalic (4 scales): (e) CC, (f)
RIC. (Painting by Lowell Herrero)

case and average search complexity, and (2) Quantisation of
the feature space, that reduces the size of the kd-tree. We
have used in our experiments the ANN library developed by
Arya and Mount [14], and a simple approximation of the K-
means clustering method for vector quantisation. Depending
on the used metrics, one kd-tree per scale or one single kd-
tree has to be calculated. The figure 4 illustrates in dimension
2 the projection in the feature space and the construction of
the kd-tree, without and with quantisation.

D. Useful notations

Let x be a pixel from the image space. We denote x̂f the
projection of x in the feature space of image f . Let Ff be
the set of features of image f . If u is a feature vector, let
ν
Ff

k (u) be its k-th nearest neighbour in the feature space of



Figure 4. (a) Image data (b) projected into the feature space, and (c)
collected into a kd-tree structure, without (top) and with (bottom) vector
quantisation.

f . We denote F−1f (u) the set of pixels which are assigned
to the codeword u in the quantised feature space (codebook)
of f . If there is no quantisation, the notation remains valid
as F−1f (u) = {x} such that x̂f = u.

IV. NON-LOCAL MEANS VIDEO FILTERING

The non-local (NL) means filter, originally proposed by
Buades et al [15] is a powerful image denoising technique, in
which every pixel value is replaced by a weighted average of
the other pixels, the weights depending on pixel similarity,
not on pixel distance in the image space (hence the “non
local” property). In our framework, the NL-means is simply
expressed by calculating the weights using a distance in the
feature space. Let u and v be two feature vectors. ω(u,v)
the relative (symmetric) weight of u with respect to v, is
defined as follows:

ω(u,v) = e−
dF (u,v)2

h2 , (7)

where h is a decay parameter, related to the amount of
noise to be removed. Now two variants of the NL means
can be considered:

1) Limited range (LR) method

fNLLR (x) =

∑
y∈N (x) f(y)ω(x̂f , ŷf )∑

y∈N (x) ω(x̂f , ŷf )
(8)

2) Unlimited range (UR) method

fNLUR (x) =

∑
u∈W(x̂f )

f̌(u)ω(x̂f ,u)∑
u∈W(x̂f )

ω(x̂f ,u)
(9)

where N (x) (resp. W(v)) is a neighbourhood of x (resp.
v), corresponding to the k nearest neighbours of x (resp. v)
in the image (resp. feature) space. See figure 5.
f̌(u) is defined as:

f̌(u) =
1

|F−1f (u)|

∑
x∈F−1

f (u)

f(x) , (10)

(a) (b)
Figure 5. Limited (a) vs Unlimited (b) range approaches in the computation
of the NL-means. N (x): nearest neighbours of x in the image space.
W̌(x̂): nearest neighbours of x̂ in the feature space back-projected in the
image space.

i.e. the average value of f on the pixels corresponding to
feature u (recursively calculated during the quantisation).

In our experiments, the decay parameter h is automatically
adjusted, using a fast estimation of the noise variance (see
[16] for more details).

(1) (2)

(3) (4)

Figure 6. NL-means filtering in the local jet feature space. (1) LR (N (x):
17 × 17 neighbourhood of x in the image domain). (2) UR, exact search
(W(x̂f ): 30 NN in the local jet domain), (3) UR, approximate search
(ε = 10.0), (4) UR, approx. search, with quantised feature space (1938
words in the dictionary).

It can be said that the local jet based NL-means, by
changing the order of derivation and number of scales, form
a continuum between tone space (or bilateral) filtering and
patch based NL-means. However, even at one single scale,
the order 2 local jet based NL-means results are very close
of patch based ones. See figure 6 for some results on the
same noisy image (only the top half diagonal is processed).
It is somewhat surprising that the denoising quality looks
better for the LR (Fig. 6(1)) than for the UR (Fig. 6(2)).



But on the one hand, the edge and corner pixels are more
affected by the UR methods, the relative weights of their
neighbours being much higher in the feature than in the im-
age space. One the other hand, for large noisy homogeneous
regions, the UR method is able to find patterns that tends
to exaggerate the texturing of these regions. Using kd-trees,
the UR method is generally faster than the LR one since
the cardinality of W(x̂f ) is usually much smaller than for
N (x). Furthermore, using approximate search (Fig. 6(3)),
and quantising the local jet space (Fig. 6(4)) significantly
lowers the computation time, while partially compensating
the drawbacks of the UR method evoked above, but more
quantitative evaluation is needed.

V. OPTICAL FLOW ESTIMATION

The apparent motion, or optical flow estimation turns out
to be - from a conceptual point of view at least - one of
the most straightforward applications of the feature space
based similarity. At frame t, for image ft, and for every
pixel x, we compute u(ft−1, ft,x), the nearest neighbour
of the feature vector associated to x, in the feature space of
ft−1:

u(ft−1, ft,x) = arg min
v∈Fft−1

dF (x̂ft ,v) = ν
Fft−1

1 (x̂ft) .

(11)
Then we can compute y(ft−1, ft,x), the pixel from ft−1

which is the most similar to x from ft:

y(ft−1, ft,x) = arg min
z∈F−1

ft−1
(u(ft−1,ft,x))

dI(x, z) , (12)

with dI the distance in the image space. Without quan-
tisation, this is simply the pixel corresponding to feature
u in ft−1, otherwise it is the pixel from the set of pixels
associated to codeword u which is the closest from x in the
image space: see Figure 7.

Finally, the velocity vector is computed as the difference:

c(ft−1, ft,x) = x− y(ft−1, ft,x) . (13)

At one single scale the result is hardly usable, but using
several scales, the method provides a dense estimation
without explicit regularisation of the vector field, that allows
a fair estimation of the motion at a global level: See Figure 8
for examples taken from classical test sequences. Here the
number of NN is 1, the local jet is at order 2, and 5 different
scales, without quantisation.

VI. BACKGROUND SUBTRACTION

Background modelling and subtraction is a popular ap-
proach of motion detection. It consists in calculating locally
(say for every pixel or block), a set of temporal statistics
measures of the background, and comparing every new
value with those measures, to decide whether this value is
typical or not. This problem is challenging in many cases
where the background is not completely static. The precision

Figure 7. Optical Flow estimation by Nearest Neighbour Search in the
Local Jet Feature Space.

(1) (2)

(3) (4)
Figure 8. Optical flow fields estimated by NN search in the feature space.
(1) Stationary camera, (2) Horizontal travelling, (3) Forward zooming,
(4) Backward zooming and moving objects.

of modelling has strong influence on the computational
cost, in terms of memory and time. One good trade-off
is obtained by the sample and consensus methods [17],
[18], which consist in keeping in memory a limited set of
sampled values, and then comparing the current value to
those samples, to decide whether the pixel is background or
not. Vector quantisation has also been used for background
modelling [19] in colour/brightness space. The algorithm
we propose here is a combination of sample/consensus and
vector quantisation in the local jet feature space.

In this application, we use for the whole sequence one
single codebook Ff of quantised features, but that may
evolve over time. The principle is the following: In every
pixel x, the temporal activity is modelled by a set of M



prototypes Π(x) = {mj(f,x)}j∈{1,M} ⊂ Ff , that represent
a sample of its past values in the feature space, and M is a
temporal depth parameter.

Let ρ be a positive number; τ an integer such that
1 < τ < M ; let BdF (u, r) be the ball of centre u and
radius r for the distance dF . The foreground label e(f, t,x),
indicating whether x in ft belongs to a moving object or not
is calculated as follows:

e(f, t,x) = 1 if |Π(x) ∩ BdF (x̂ft , ρ)| < τ , (14)
= 0 otherwise. (15)

Then a pixel whose feature vector is at a distance smaller
than ρ for less than τ of its M prototypes is considered
foreground, elsewhere it is classified as background. The
advantage of using a complex feature space instead of the
mere colour is that we are able to capture more sophisticated
image structure and then make the background modelling
more robust. On the other hand, the vector quantisation
dramatically reduces the memory cost, because only the
index of the word from the codebook is used instead of a
high dimensional vector. It is typically observed that a large
majority of pixels only have one or two different indexes
within their M background prototypes, whereas some more
complicated background pixels (e.g. waving trees) can have
much more indexes.

Our practical implementation for coding and updating
the prototypes is a simple adaptation of the state-of-the-art
ViBe algorithm [18]: The pixel prototypes are represented
by a list of codebook indexes and weights (frequencies)
such that the sum of weights is M . At time t the index
of x̂ft replaces one of the prototypes randomly selected, by
decrementing the weight of one prototype, then incrementing
the weight of another one or creating a new prototype index
(See Figure 9).

For the creation of the codebook, we use, as in the NL-
mean case a basic incremental version of the K-means algo-
rithm for real-time video purposes. It is worth mentioning
that the codebook does not need to be updated for every
frame, nor everywhere, for example, it can be updated every
5 frames for the foreground pixels, and every 100 frames
for the whole image. See Figure 10 for an example of
foreground labelling in an outdoor colour sequence, using
a 2 order, 1 scale, and 3 colour local jet feature space (i.e.
18D vector features), with a codebook of 3,000 words, a
temporal depth M = 20, distance threshold ρ = 0.08dmax,
and consensus threshold τ = M/2. Note that, unlike [18],
no spatial diffusion is performed, and the update is not
strictly conservative, i.e. the update is made every 4 frames
for background pixels, and every 16 frames for foreground
pixels.

VII. IMAGE AND OBJECT CHARACTERISTICS

In our framework, the feature space should be used not
only for image processing, but also for extracting relevant

Figure 9. Adaptation of the ViBe algorithm to the local jet feature
dictionary. Top, classification step: The pixel x is classified foreground
if the number of prototypes at distance less than ρ from x̂ft is inferior to a
certain threshold. Bottom, update step: x̂ft replaces one of the prototypes,
randomly selected.

Figure 10. Background subtraction based on sample and consensus using
a codebook of colour local jet features.

visual representation, usable at a higher level. The first
descriptor we can consider is the quantised local jet itself
(parented to the classical texton approaches), whose statistics
provide information on the visual appearance of objects (like
in the classical bag of features methods). The histogram,
or weight vector of the codebook is computed recursively
during the quantisation, or the updating of the codebook.
Figure 11 shows an example of local jet quantisation back-
projected in the image space. The detail image (right)
illustrates one advantage of the dense representation, with
the possible use in terms of higher order statistics (i.e. co-
occurrence) of visual words from the codebook.

The nearest neighbour framework also provides an inter-
esting new conception of salient points. Whereas the classi-



Figure 11. Quantisation of the local jet space (506 vectors). The right
image is a detail of the white rectangle in the left image.

cal characterisation of interest points is purely geometrical
and relatively independent of the image content, the NN
feature based salience is entirely statistical and content-
dependent: The salient points correspond to the isolated
points in the feature space. This has been done before in
the space of patches by Kervrann and Boulanger [20]. More
formally, the rarest pixels are defined as:

R
Ff

1 = F−1f (arg max
u∈Ff

1

m

m∑
k=1

dF (u, ν
Ff

k (u)) . (16)

The rarest pixels are those assigned to the word with max-
imal average distance to its m nearest neighbours. Without
quantisation, there is only one such pixel. The second rarest
pixels R

Ff

2 are defined similarly by excluding the word
with maximal distance and so on. The only parameter m
merely acts as a filtering value and is of moderate practical
importance. Figure 12 shows examples of NN based salient
points in a single scale local jet feature space. The difference
with the geometric approach is clearly visible on the left
image.

Figure 12. Salient points (isolated points in the feature space back-
projected in the image): 100 rarest pixels (m = 10, Local jet of order 2,
one single scale σ = 1.5, no quantisation); a minimal exclusion distance
of 5 pixels is used to avoid clustering of the salient pixels.

Finally we propose another descriptor whose purpose is
to provide an intermediate representation between the global
codebook histogram and local salient point. It is based on
the statistical modes of the feature space. Mode selection
in multidimensional data is a difficult problem which has
received relatively few attention. We use an adaptation of the

method proposed by Burman and Polonik [21], implemented
through the framework of geodesic reconstruction in the
feature space.

Suppose defined a topology in the feature space, and
let the centre of the main cluster κFf

1 be defined as the
feature vector with minimal average distance to its m NN.
The main cluster KFf

1 is then defined as the connected
component of Ff that contains κ

Ff

1 , or equivalently the
geodesic reconstruction of κFf

1 within Ff . The second main
cluster KFf

2 is defined the same way on Ff \K
Ff

1 , and so
on. Now we get a topology which dynamically adapts to the
data by using a distance threshold defined as the geometric
mean between µ

Ff
m and τ

Ff
m , respectively the average and

minimal mean distance of a feature vector to its m NN.
Then two feature vector u and v are connected if and only

if: dF (u,v) <

√
µ
Ff
m τ

Ff
m . Figure 13 shows the result for 2

images. The modes appear as a complementary information
of singularities (Figure 12). They represent homogeneous
zone, simple regular textures, or long straight contours.

Figure 13. 12 first modes of the local jet representation : clusters of the
feature space back-projected in the image space. (m = 20, local Jet of
order 2, with 2 scales {σ1 = 1.0, σ2 = 2.0}, no quantisation).

VIII. CONCLUSION AND DISCUSSION

We have proposed a unified framework to address: (1) a
large variety of video processing applications with the same
formalism, by projection, distance based calculation in the
feature space, and back-projection in the image space, and
(2) a higher level visual characterization obtained by search-
ing significant structures in the feature space (singularities
and modes).

Regarding the choice of the feature space, the same
framework can probably be used with other features, like
wavelets, steerable or Gabor filters. However, the local jet
space is easier to justify because of the Taylor expansion. It
is also one of the most general because it implicitly contains
many other features.

We have shown the relevance of the approach for several
low level vision tasks. This representation also naturally
provides image reduction and description tools that can be
used at a higher processing level. We particularly think



to object modelling and recognition, which is part of our
ongoing work.

The presented work also contains more specific contribu-
tions, that we recall hereunder:
• The definition of distances in the local jet space, which,

although proposed earlier, had not been used in practice
to our knowledge.

• The local jet based NL-Mean filters, which can be seen
as a continuum between tone space filtering and patch
based NL-Means by increasing the order of derivation
of the local jet.

• The optical flow solution as a nearest neighbour search
in a similarity space.

• The singularities (isolated points) of the feature space,
as way to fuse the detection and the characterization of
interest points, classically addressed independently.

• The mode detection in the feature space, as a comple-
mentary information to salient (singular) features.

Because the aim of this work is to find a vision framework
as universal as possible, we do not expect every application
to compete with state-of-the-art dedicated algorithms. Ex-
perimental results were shown in this paper to convince that
the framework makes sense, but obviously further evaluation
is needed in every single case. The same applies for some
parameters which were chosen either according to similar
algorithm from the literature or empirically.

Some of the proposed algorithms, for example local
jet based NL-means and background subtraction based on
sample and consensus in the local jet space are particularly
efficient and can be easily adapted to real-time. However, the
computational cost remains an issue for different implemen-
tations: the optical flow by nearest neighbour search in the
local jet space and the computation of the mode of the local
jet distribution are two important examples. We are then
investigating new ways to compute the nearest neighbours
in the feature space using parallel implementations.
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