
FPGA Lab Sessions in a General-PurposeImage Processing CoursePhilippe Guermeur1, Petr Dokladal2, Eva Dokladalova3, Antoine Manzanera11) ENSTA, LEI, 32, Boulevard Victor, 75015 Paris, France, philippe.guermeur@ensta.fr, antoine.manzanera@ensta.fr2) ENSMP, CMM, 35, St. Honoré, 77305 Fontainebleau, France, petr.dokladal@ensmp.fr3) ESIEE, A2SI, 2, boulevard Blaise Pascal, 93162 Noisy le Grand, France, e.dokladalova@esiee.frAbstract This paper presents an advanced coursefor CS master program students who have a solidbackground in image processing and partial (or nonesince the group is heterogeneous) knowledge in thelogic design.This course presents advanced notions like datasynchronism/availability, parallelization, access tothe pixel neigborhood, rethinking the algorithm tomake it more hardware-e�cient (sharing ressources,using parallel data �ow paths).We illustrate these notions on a contour detec-tor using the zero crossing of the Laplacian.1 IntroductionThe image processing represents a large �eld withnumerous applications (object and scene recogni-tion, data mining, compression, image synthesis,and many others). These applications are imple-mented by very di�erent algorithms coming them-selves from various mathematical frameworks.Even if the image processing algorithms are of-ten of a reasonable complexity, the considerableamounts of data to process, real-time constraints,data structures and their dependency make the re-quirements on the hardware very speci�c (a goodanalysis can be found in [5]).The widely ignored fact is that the major con-cern is not the data processing but rather feedingthe processor with the data. Many algorithms needrandom (!) access to data in several images. Theimage size makes di�cult to store several images inthe cache of the processor and one generally can-not run real-time image processing applications onsmall processors like ARM or NIOS, without cou-pling them with some specialized hardware block[1]. Digital signal processors (DSPs) are adaptedonly to a limited class of algorithms (linear process-ing) [5] . In the context of embedded systems,one often needs specialized hardware. The designof dedicated image processing hardware (HW) re-quires skills from both domains: the logic designand the image processing.

2 Educational objectivesThe FPGA labs presented in this paper take placewithin an Image Processing and Arti�cial Visioncourse of 12 sessions given at ENSTA (Paris). Thegeneral philosophy of engineering education at EN-STA is to train generalist engineers with a broadknowledge, and able, at the same time, of a deepinvolvement in every technical aspect of their cur-rent project.In that spirit, the Image Processing course hasa general purpose. It is at the crossroads of vari-ous elective curricula : Multimedia, Robotics, Em-bedded systems, Information systems. It aims atproviding the students with a solid background inlinear and non linear image processing (�ltering,segmentation, colour image processing, scale-space,partial derivative equations models, motion analy-sis, 3d reconstruction, shape analysis).The practical sessions (computer labs) associ-ated with this course (5 sessions over 12) have athree-level ambition:
• experimental: the student can, with a min-imal programming investment, apply the operatorsseen in the theoretical sessions on his (her) owndata. At the same time, it allows to introduce thenotions of systems speci�cations and its integration.
• algorithmical: the student must understandthe transition between the mathematical and thenumerical models ; (s)he is expected to propose adata structure, program the algorithm and think tothe consequences in terms of complexity.
• real-time: the student must be aware of theadequacy of the data structure and the algorithmto the hardware it runs on, in terms of real-timeand compactness of the system.This multi-level objective implies multi-platformlabs: Matlab, C, SIMD-within-register (SSE-2), and�nally FPGA boards are successively used in thepractical sessions.The purpose of the FPGA labs is to provide anadvanced insight into the issues of real-time, em-bedded image processing. For the reasons given in1

Section 1, we think that this knowledge is impor-tant for any engineer involved in a video applica-tion. But it is a challenging purpose because of thevarious curricula of the students: if all of them havea basic background in digital electronics, only a fewhave any practical experience on FPGAs.At this point, we can consider two alternate so-lutions:
• either using a higher level framework (e.g.Simulink or Celoxica) to generate the logicsynthesis. The advantage of this solution isto be more rapidly accessible to all the stu-dents, but the risk is to hide the di�cultiesand thus limit the re�ections of the studenton the embedded video system constraints.
• or using a hardware description language (e.g.VHDL or Verilog) to be closer to the logicblocks. The advantage is that it is easier tomake the student work on a given speci�c as-pect of embedded image processing system,but this implies a high degree of preparationof the lab session, in order to make the prac-tical work accessible to a student with a smallknowledge of FPGAs.We have chosen the second solution, and thenthe problem we are going to develop in the followingis: how can we propose a deep involvement in thereal-time embedded image processing system, in-cluding real experimentations with a camera, whilemaking, as much as possible, abstraction of thehardware description language and of the platformspeci�c constraints ?The real-time issues we typically wish to be con-sidered by the student are the following ones:
•memory management: what is the amountof memory that needs to be available by the algo-rithm at the same time?
• time management: how to manage real-time considering the clock frequency, the computa-tion time, and the memory delays?
• processing model: what is the available in-structions set, and what are the operands (�xed vs�oating point)?
• computation paradigm: data �ow compu-tation, data parallelism, pipe-line.
• data structure: how many di�erent datarepresentations are there and what granularity ismore adapted?Our choice for a suitable subject has been madeon the following arguments:
• fast-to-implement and interesting application:the algorithm should not be too low-level, be-cause the student needs to understand its in-terest as an embedded module. In that sense,

an application leading to a massive data re-duction is preferable to image �ltering or en-hancement. At the same time, the algorithmmust be implementable in the allotted time.
• containing blocks with various complexity toimplement: we can take advantage of the het-erogeneity in the group of students to makethem work in pairs or groups of three on dif-ferent aspects of the project.
• algorithm that does not immediately �t HWimplementation needs, but which might beslightly modi�ed in order to share ressources:an additional optimization margin must beavailable in order to increase the interest ofthe labs and allow a greater variability be-tween the di�erent groups.
• containing reusable generic blocks: studentscan see in that case the incremental and hier-archical capabilities of sequential logic.

Figure 1: Contour detection by zero-crossing of theLaplacian.Taking into account all these features we have cho-sen a contour detection algorithm running in realtime. This application represents an su�cient datareduction to justify its implementation on dedicatedHW. It is complex enough to lend itself to a multi-ple level data �ow description, containing blocksof di�erent complexity. We have chosen to usethe basic operators of Mathematical Morphology,which leads naturally to a description using genericblocks, which can be reused, or even shared.The input video is furnished by a B&W camera.The results can immediately be seen on a VGA dis-play. See an example of the input image and thecontours detected on Fig 1.3 Algorithm descriptionThe contours are detected by detecting the changeof sign of the Laplacian [3] (or [8] for more details).The two elementary operators used are the dilation
δ and erosion ε. Let f : D → Z be the input image2

de�ned on some domain D ⊂ Z
2. The erosion εfand dilation δf of f in some pixel x ∈ D is :

εf(x) = min
xi∈B(x)

{f(xi)}

δf(x) = max
xi∈B(x)

{f(xi)}given some so-called structuring element B ⊂ D,
B(x) denotes the translation of B by x.The so-called external and internal gradients are
gext(f) = δf − f and gint(f) = f − εf . The mor-phological gradient g and morphological Laplacian
L are then g = gext + gint and L = gext − gint.The change of sign in L (zero crossing) is ob-tained by L± = δL+ ∩ δL− with L+(x) = {x |
L(x) > 0} and L−(x) = {x|L(x) ≤ 0}. The con-tours c in the image are obtained c = {x | x ∈
L± and g(x) > Th} where Th is a contrast thresh-old �ltering out weak contours (see e.g. the �pep-pers� image and the detected contours at Fig. 1).In this application, the structuring element Bwill be the eight neighborhood of some pixel x(i, j) :
B(x(i, j)) = {x(i±1, j±1)}. We will enumerate thecurrent pixel and its eight neighbors by subscriptindices x11, x12, . . . , x33.The dilation and erosion are dual operations,operating locally on the neighborhood of a point.These operations serve in this application twice:�rst, to compute the gradient in the image, and sec-ond, to compute the laplacian L. We add a thresh-old to control the level of necessary contrast for anedge to be accepted by the detector.

arrival of new pixelsC
O

L
H

E
IG

H
T

LINEWIDTH

x33x32x31

x23x22x21

x13x12x11

x33
x32x31

x23
x22x21

x13
x12x11

z-1 z-1

z-1 z-1

z-1 z-1z-(LINEWIDTH-2)

z-(LINEWIDTH-2)

new pixelsFigure 2: Neighborhood extraction.
arrival of new pixelsC

O
L
H

E
IG

H
T

LINEWIDTH

x33
x32x31

x23
x22x21

x13
x12x11

Figure 3: Missing values when processing the imageborder pixels.Implementing dilation/erosion requires the ex-traction of the neighborhood of the current pixel

x22, see Fig. 2, and computation of max/min onthese values. For processing the image borders, oneneeds to substitute the value of the outlying pixels(see Figure 3) by some value that will not a�ectthe result (i.e. -∞ for dilations and +∞ for theerosions). The line and column counters detect theborder of the image. Substituting the missing val-ues in the set of the neigbors values is the role ofthe edge handling block.4 HW implementation costsFrom many years, morphological operators are im-plemented on di�erent HW platforms, we can cite[9] for one of the �rst dedicated architectures, [2],[7] as examples of more recent custom computingor [6] for recon�gurable approach.In this implementation, no memory is used forstoring the entire image. The pixels are processedon the �y during the video scanning of the inputimage. See Fig. 2 left, the central pixel x22 isprocessed and output once its complete neigbor-hood is known, i.e. as soon as its latest pixel (x33)is read. Therefore, the one-line latency introducedby the algorithm is due to the fact that all the nec-essary data are available only once the followingline is read.Hence we are in the context of SISO (Stream In-put Stream Output) image processing applications.If some algorithm allows the SISO implementation,it can be implemented with a very low memory costand a very low latency of the processing.Surface occupation Various blocks have vari-ous surface occupation cost. The neigborhood ex-traction block needs to store two complete rows ofthe image, see Fig. 2 right. These rows need to bestored in a delay line the size of which is exactly thewidth of the image (LINEWIDTH). Two registersz−1 are used separately and the rest in a block ofLINEWIDTH-2 units (denoted by z-(LINEWIDTH-2)).Hence, one dilation/erosion block needs to store2 rows of the image. Its processing latency is 1 im-age row. The subtraction of the dilated image andthe original also needs to compensate this delay:one image row of storage. The implementationscosts resume to Table 1.The by far most costly block is the neighbor-hood extraction. Its cost depends on the imagesize.It is important to show to the students the verybasic fact that this allows outputting the outputimage frame even before the input image frame isentirely read. On the other hand, a simple sub-traction of image and its erosion requires adding a3

Table 1: Implementation costs.two 8-bit δ/ε blocks :- four 8-bit FIFOs (size: 1 image row)two 1-bit δ/ε blocks :- four 1-bit FIFOs (size: 1 image row)two delay compensations :- one 8-bit FIFOs (size: 1 image row)- one 1-bit delay line (size: 1 image row)block compensating the latency of the erosion.Optimizing the data�ow Dilation and erosionare two dual, set-wise (in this context) operations.We have L+ = (L−)c, where Xc being the comple-ment of X . The duality comes from the identity
δXc ≡ (εX)c. However, the equation

δX ∩ δXc = δX ∩ (εX)c (1)doesn't have the same surface occupation on bothsides. If dilation and erosion run on the same data(as in the �rst stage of the Laplacian) they canshare the most costly neigborhood extraction block,see Fig. 4.
Figure 4: Dilation and erosion share the neighbor-hood extraction block.Modifying the algorithm according to Eq. 1 al-lows a considerable reduction of silicon occupation,see Table 2.Table 2: Optimized implementation costs.two 8-bit δ/ε blocks :- two 8-bit FIFOs (size: 1 image row)two 1-bit δ/ε blocks :- two 1-bit FIFOs (size: 1 image row)one delay compensations :- one 1-bit FIFOs (size: 1 image row)

Figure 5: Algorithm modi�ed using Eq. (1). Xcdenotes complementation.5 The educational platform5.1 The hardware environmentThe speci�cations of the hardware platform are setup to provide convenient resources for a great vari-ety of student projects. This versatility is desiredto develop many real time image projects withoutmultiplying the material equipment and then to re-duce the complexity and the cost. This should en-able the students to get more familiar with a givencomplex environment and get a better understand-ing of their FPGA hardware platform. As a conse-quence, students are expected to go deeper in con-ceiving their embedded image processing system.These educational purposes lead us to de�ne thefollowing system requirements speci�cation:
• inputs-outputs: conveniently, the platformhas to contain hardware for enabling video acqui-sition and a VGA output is required for a rapidtesting and debugging of implementations.
• local memory: the typical applications to bedeveloped concern basically low-level image process-ing. Most of these applications (convolution, recur-sive �ltering, wavelet transform, ...) can be per-formed on a stream of data, using a neighborhoodprocessing. This neighborhood could be implementedusing FIFOs as it was done in many DSP com-ponents in the 1990's (Thomson IMSA110, Tex-as C80...). In 1998 we have proposed a solutionto implement these resources using dual-port sta-tic RAMs [4]. The advantages of the dual-portsolution was to propose reusable hardware whenno neighbourhood is needed but other kind of re-sources are required (LIFOs, data passing betweentasks...). Nowadays, the architecture of the XIL-INX components has evolved and the Spartan se-ries, for instance, integrate columns of dual-portRAMs, which make them much more appropriatefor image processing.
• global memory: usually, low level imageprocessing is not an end in itself. It transforms avideo sequence in another video sequence, but the4

produced data are too bulky and not very prac-tical to handle. A data transformation is neces-sary to get an intermediate knowledge representa-tion (Freeman chains, quad-tree, image moments...)which can be better digested in the image under-standing tasks. While this intermediate level im-age processing usually requires peculiar image scan(such as content-based scan or Peano scan...) wedecide to acquire a platform equipped with a mem-ory space big enough to store a few images.In 2005, only a few commercial boards o�er-ing the previous hardware resources were available.We selected a platform built by XESS Corpora-tion composed of the XSA3S1000 board [10] (theprocessing unit) combined with the XST-3 boardproviding analog and digital I/O capabilities (videoinput, USB, Ethernet...). This platform (see Fig. 6)contains a 1,000,000-gate Spartan3 component, 32MByte SDRAM and a VGA output.
Figure 6: The development board.

Figure 7: The results on a VGA monitor: the cam-era stream (above), the contours (below).5.2 The integration environmentThe software environment must allow the studentsto get a rapid familiarization with the Design Im-plementation tools, and the associated HDL design�ow. So, the main labs concern is to provide thestudents with a simple interface keeping them outof the menial task of managing the various input-output of the board (board con�guration, commu-

nication protocols, multi-port SDRAM interface,image acquisition and VGA display...). This en-ables the student to concentrate on the more sat-isfying task of conceiving the core of the imageprocessing unit (black-box) in Fig 8.
VIDEO CAMERA

video−decoder Image Processing
Black box

SDRAM controller

CPLD

VGA SCREEN

PC parallel port

SDRAM

I2C controller

Frame−grabber

bitstream download)
(configuration +

EDUCATIONAL PLATFORM

XILINX Spartan 3

VGA controllerFigure 8: Schematic representation of the variousdata managements.The side e�ect is that we had to cope with thedi�cult task of designing and implementing such asimple interface. This lead us to modify or imple-ment and test various component cores (multi-portSDRAM controller, framegrabber, VGA core...), todevelop some drivers and to model some compo-nents (video bus model, SDRAM...) and test thewhole simulation environment. This environmentreveals to be a great help for testing or debuggingstudents implementations. While simulation can il-lustrate them the functioning of essential elementof the board, it is supposed to help the most mo-tivated students to go deeper in the understandingof the platform. In the context of SISO, imagescould be displayed as soon as they are processedFig 9(a), but such a process leads to ugly displayswhen using interlaced cameras:
• image �icker appears when the odd �elds aredisplayed below the even �elds (or vice versa);
• milled contours appear when the �elds are in-terlaced.A VGA interface composed of a RAMDAC shouldhave avoided this drawbacks. Here, there is noRAMDAC available and the solution is to store the

Image

Processing Processing

Imagevideo
camera

VGA

Display camera
video

VGA
Display

videoSDRAM(a) (b)Figure 9: Pixels are processed on the �y: a) nomemory and no RAMDAC is available (poor qual-ity rendering). b) intermediate storage allows toeliminate the visual defects.5

image data in the SDRAM, as soon as they areprocessed Fig 9(b). A very simple protocol has beenbuilt to make this step transparent for students. Inthe context of SISO, the processing unit they haveto implement is the content of a black box whoseinputs are composed of the data bus (pixels) andtwo control signals (Fig 10) and the outputs are theprocessed data and the two delayed control signals.
Data_avail

Data

clock

P1 P2Figure 10: Protocol de�ned at the input of the im-age processing unit.6 Organization of the courseThe course consists of an introductory 3h lecture,followed by two 3h30 lab sessions.Lecture: Students are presented the algorithm,get familiar with the data �ow, estimate the surfaceoccupation cost, and modify the algorithm accord-ing to the identity Eq. (1) in order to reduce theimplementation costs.The Laplacian is computed in two stages. Thesetwo stages are similar, since they use same opera-tors : morphological dilation and erosion, addition,subtraction and/or thresholding.The �rst stage of the Laplacian operates on grey-scale data whereas the second one on binary data.This allows to stress out various important aspectsof HW design and makes the students think aboutthe correct data widths of various operators, takeinto account the width of the operands, results andthe intermediate results and use generic de�nitionsand avoid unnecessary penalizing silicon occupa-tion.Practicals: The labs are composed of two ses-sions:During the �rst session, the students choose andimplement one block of the elementary operationwhich is the dilation/erosion, see Fig. 4. Theychoose the block to implement according to theirprevious knowledge (beginners or more advanced).They simulate them on the block level.During the second session, the students put to-gether their blocks and/or are given the missingblocks by the teacher and simulate the applicationon the top-most level. Finally they place&route thedesign, upload the bitstream and verify the designin a real FPGA with a camera and a display (see aphotograph of the results Fig. 7).

7 ConclusionsThe lecture leads the students to think of algo-rithms in terms of their HW implementation: data�ow on the operator level, data widths, data avail-ability, delay compensations and implementationcosts.Two di�erent lab sessions allow to work at bothlow (logic) level and high (operator) level of the de-sign, allowing the students to simulate at the HDLlevel as well as the algorithmic level of the applica-tion.The second session allows to put things together,simulate the algorithm, synthesize and downloadthe bitstream into the FPGA. This allows to havea global vision of the entire hardware developmentchain.References[1] ALTERA. Nios II custom instructions userguide. http://www.altera.com.cn, June 2005.[2] Peter M. Athanas and A. Lynn Abbott. Real-time image processing on a custom computingplatform. Computer, 28(2):16�24, 1995.[3] S. Beucher. Méthodes d'analyse des contrastesà l'analyseur de textures. Technical ReportCMM N-625, Ecoles des Mines de Paris, 1977.[4] P. Guermeur. A New FPGA Architecture forImage Processing : CYCLOP. In EUSIPCO,pages 1113�1116, september 1998.[5] Marc Heijligers. XeTaL-II: a low-power multi-processing simd architecture. MEDEA+ De-sign Automation Conference, Germany, June2006.[6] S. Klupsch, M. Ernst, S.A. Huss, M. Rumpf,and R. Strzodka. Real time image processingbased on recon�gurable hardware acceleration.IEEE Workshop Heterogeneous recon�gurableSystems on Chip, 2002.[7] F. Lemonnier. Architecture électronique dédiéeaux algorithmes rapides de segmentation baséssur la morphologie mathématique. PhD thesis,ENSMP, 1996.[8] J. Serra. Image Analysis and MathematicalMorphology. Academic Press, London, 1982.[9] J. Serra and J.C. Klein. The texture analyser.J. of Microscopy, 95(2):349�356, 1972.[10] XESS. XSA-3S1000 Board Manual, June 2005.6

