FPGA Lab Sessions in a (GGeneral-Purpose

Image Processing Course

Philippe Guermeur!, Petr Dokladal?, Eva Dokladalova®, Antoine Manzanera!

1) ENSTA, LEI, 32, Boulevard Victor, 75015 Paris, France, philippe.guermeur@ensta.fr, antoine.manzanera@ensta.fr

2) ENSMP, CMM, 35, St. Honoré, 77805 Fontainebleau, France, petr.dokladal@ensmp.fr
3) ESIEE, A2SI, 2, boulevard Blaise Pascal, 93162 Noisy le Grand, France, e.dokladalovaQesiee.fr

Abstract This paper presents an advanced course
for CS master program students who have a solid
background in image processing and partial (or none
since the group is heterogeneous) knowledge in the
logic design.

This course presents advanced notions like data
synchronism /availability, parallelization, access to
the pixel neigborhood, rethinking the algorithm to
make it more hardware-efficient (sharing ressources,
using parallel data flow paths).

We illustrate these notions on a contour detec-
tor using the zero crossing of the Laplacian.

1 Introduction

The image processing represents a large field with
numerous applications (object and scene recogni-
tion, data mining, compression, image synthesis,
and many others). These applications are imple-
mented by very different algorithms coming them-
selves from various mathematical frameworks.

Even if the image processing algorithms are of-
ten of a reasonable complexity, the considerable
amounts of data to process, real-time constraints,
data structures and their dependency make the re-
quirements on the hardware very specific (a good
analysis can be found in [5]).

The widely ignored fact is that the major con-
cern is not the data processing but rather feeding
the processor with the data. Many algorithms need
random (!) access to data in several images. The
image size makes difficult to store several images in
the cache of the processor and one generally can-
not run real-time image processing applications on
small processors like ARM or NIOS, without cou-
pling them with some specialized hardware block
[1]. Digital signal processors (DSPs) are adapted
only to a limited class of algorithms (linear process-
ing) [5] . In the context of embedded systems,
one often needs specialized hardware. The design
of dedicated image processing hardware (HW) re-
quires skills from both domains: the logic design
and the image processing.

2 Educational objectives

The FPGA labs presented in this paper take place
within an Image Processing and Artificial Vision
course of 12 sessions given at ENSTA (Paris). The
general philosophy of engineering education at EN-
STA is to train generalist engineers with a broad
knowledge, and able, at the same time, of a deep
involvement in every technical aspect of their cur-
rent project.

In that spirit, the Image Processing course has
a general purpose. It is at the crossroads of vari-
ous elective curricula : Multimedia, Robotics, Em-
bedded systems, Information systems. It aims at
providing the students with a solid background in
linear and non linear image processing (filtering,
segmentation, colour image processing, scale-space,
partial derivative equations models, motion analy-
sis, 3d reconstruction, shape analysis).

The practical sessions (computer labs) associ-
ated with this course (5 sessions over 12) have a
three-level ambition:

e experimental: the student can, with a min-
imal programming investment, apply the operators
seen in the theoretical sessions on his (her) own
data. At the same time, it allows to introduce the
notions of systems specifications and its integration.

e algorithmical: the student must understand
the transition between the mathematical and the
numerical models ; (s)he is expected to propose a
data structure, program the algorithm and think to
the consequences in terms of complexity.

e real-time: the student must be aware of the
adequacy of the data structure and the algorithm
to the hardware it runs on, in terms of real-time
and compactness of the system.

This multi-level objective implies multi-platform
labs: Matlab, C, SIMD-within-register (SSE-2), and
finally FPGA boards are successively used in the
practical sessions.

The purpose of the FPGA labs is to provide an
advanced insight into the issues of real-time, em-
bedded image processing. For the reasons given in

Section 1, we think that this knowledge is impor-
tant for any engineer involved in a video applica-
tion. But it is a challenging purpose because of the
various curricula of the students: if all of them have
a basic background in digital electronics, only a few
have any practical experience on FPGAs.

At this point, we can consider two alternate so-
lutions:

e cither using a higher level framework (e.g.
Simulink or Celoxica) to generate the logic
synthesis. The advantage of this solution is
to be more rapidly accessible to all the stu-
dents, but the risk is to hide the difficulties
and thus limit the reflections of the student
on the embedded video system constraints.

e or using a hardware description language (e.g.
VHDL or Verilog) to be closer to the logic
blocks. The advantage is that it is easier to
make the student work on a given specific as-
pect of embedded image processing system,
but this implies a high degree of preparation
of the lab session, in order to make the prac-
tical work accessible to a student with a small
knowledge of FPGAs.

We have chosen the second solution, and then
the problem we are going to develop in the following
is: how can we propose a deep involvement in the
real-time embedded image processing system, in-
cluding real experimentations with a camera, while
making, as much as possible, abstraction of the
hardware description language and of the platform
specific constraints ?

The real-time issues we typically wish to be con-
sidered by the student are the following ones:

e memory management: what is the amount
of memory that needs to be available by the algo-
rithm at the same time?

e time management: how to manage real-
time considering the clock frequency, the computa-
tion time, and the memory delays?

e processing model: what is the available in-
structions set, and what are the operands (fixed vs
floating point)?

e computation paradigm: data flow compu-
tation, data parallelism, pipe-line.

e data structure: how many different data
representations are there and what granularity is
more adapted?

Our choice for a suitable subject has been made
on the following arguments:

e fast-to-implement and interesting application:
the algorithm should not be too low-level, be-
cause the student needs to understand its in-
terest as an embedded module. In that sense,

an application leading to a massive data re-
duction is preferable to image filtering or en-
hancement. At the same time, the algorithm
must be implementable in the allotted time.

e containing blocks with various complexity to
implement: we can take advantage of the het-
erogeneity in the group of students to make
them work in pairs or groups of three on dif-
ferent aspects of the project.

e algorithm that does not immediately fit HW
implementation needs, but which might be
slightly modified in order to share ressources:
an additional optimization margin must be
available in order to increase the interest of
the labs and allow a greater variability be-
tween the different groups.

e containing reusable generic blocks: students
can see in that case the incremental and hier-
archical capabilities of sequential logic.

Figure 1: Contour detection by zero-crossing of the
Laplacian.

Taking into account all these features we have cho-
sen a contour detection algorithm running in real
time. This application represents an sufficient data
reduction to justify its implementation on dedicated
HW. It is complex enough to lend itself to a multi-
ple level data flow description, containing blocks
of different complexity. We have chosen to use
the basic operators of Mathematical Morphology,
which leads naturally to a description using generic
blocks, which can be reused, or even shared.

The input video is furnished by a B&W camera.
The results can immediately be seen on a VGA dis-
play. See an example of the input image and the
contours detected on Fig 1.

3 Algorithm description

The contours are detected by detecting the change
of sign of the Laplacian [3] (or [8] for more details).
The two elementary operators used are the dilation
0 and erosion €. Let f : D — Z be the input image

defined on some domain D C Z2. The erosion ¢f
and dilation § f of f in some pixel z € D is :

ef(z) = wi?é?w){f (z:)}
of(x) = J?%)é){f (z:)}

given some so-called structuring element B C D,
B(z) denotes the translation of B by z.

The so-called ezternal and internal gradients are
Gext () = 6f — f and gine(f) = f — £f. The mor-
phological gradient g and morphological Laplacian
L are then g = gyt + ging and L = Gext — Ging-

The change of sign in £ (zero crossing) is ob-
tained by £* = 6£T N 6L~ with LT (2) = {= |
L(z) > 0} and L~ (z) = {z|L(z) < 0}. The con-
tours ¢ in the image are obtained ¢ = {z | = €
L* and g(z) > Th} where Th is a contrast thresh-
old filtering out weak contours (see e.g. the “pep-
pers” image and the detected contours at Fig. 1).

In this application, the structuring element B
will be the eight neighborhood of some pixel (i, j) :
B(z(i,j)) = {z(i+1,j+1)}. We will enumerate the
current pixel and its eight neighbors by subscript
indices L11, 2125 -+ -,L33-

The dilation and erosion are dual operations,
operating locally on the neighborhood of a point.
These operations serve in this application twice:
first, to compute the gradient in the image, and sec-
ond, to compute the laplacian £. We add a thresh-
old to control the level of necessary contrast for an
edge to be accepted by the detector.

LINEWIDTH_
X X X
11 12 13
a
= Xqq] X X, X, X,
5] S ONEWIDTH2) Sl Bl e B
I Xz, Xo3
X X
Xor | X0 I 31 32 33
) 31| Xa2 | Xaz| wm—)pp ~(LINEWIDTH-2) ']<—o—E"
(] . X
(&) arrival of new pixels
new pixelsf

Figure 2: Neighborhood extraction.

LINEWIDTH_
':E X111 X12) X15
O | %, %55 %
o | X222
Xa1 Xag —
(o] . N
o arrival of new pixels

Figure 3: Missing values when processing the image
border pixels.

Implementing dilation/erosion requires the ex-
traction of the neighborhood of the current pixel

X992, see Fig. 2, and computation of max/min on
these values. For processing the image borders, one
needs to substitute the value of the outlying pixels
(see Figure 3) by some value that will not affect
the result (i.e. -oo for dilations and +oo for the
erosions). The line and column counters detect the
border of the image. Substituting the missing val-
ues in the set of the neighors values is the role of
the edge handling block.

4 HW implementation costs

From many years, morphological operators are im-
plemented on different HW platforms, we can cite
[9] for one of the first dedicated architectures, [2],
[7] as examples of more recent custom computing
or [6] for reconfigurable approach.

In this implementation, no memory is used for
storing the entire image. The pixels are processed
on the fly during the video scanning of the input
image. See Fig. 2 left, the central pixel xq9 is
processed and output once its complete neigbor-
hood is known, i.e. as soon as its latest pixel (x33)
is read. Therefore, the one-line latency introduced
by the algorithm is due to the fact that all the nec-
essary data are available only once the following
line is read.

Hence we are in the context of SISO (Stream In-
put Stream Output) image processing applications.
If some algorithm allows the SISO implementation,
it can be implemented with a very low memory cost,
and a very low latency of the processing.

Surface occupation Various blocks have vari-
ous surface occupation cost. The neigborhood ex-
traction block needs to store two complete rows of
the image, see Fig. 2 right. These rows need to be
stored in a delay line the size of which is exactly the
width of the image (LINEWIDTH). Two registers
z~! are used separately and the rest in a block of
LINEWIDTH-2 units (denoted by z (MNEWIDTH-2))

Hence, one dilation/erosion block needs to store
2 rows of the image. Its processing latency is 1 im-
age row. The subtraction of the dilated image and
the original also needs to compensate this delay:
one image row of storage. The implementations
costs resume to Table 1.

The by far most costly block is the neighbor-
hood extraction. Its cost depends on the image
size.

It is important to show to the students the very
basic fact that this allows outputting the output
image frame even before the input image frame is
entirely read. On the other hand, a simple sub-
traction of image and its erosion requires adding a

Table 1: Implementation costs.

two 8-bit §/e blocks :

- four 8-bit FIFOs (size: 1 image row)
two 1-bit §/e blocks :

- four 1-bit FIFOs (size: 1 image row)
two delay compensations :

- one 8-bit FIFOs (size: 1 image row)

- one 1-bit delay line (size: 1 image row)

block compensating the latency of the erosion.

Optimizing the dataflow Dilation and erosion
are two dual, set-wise (in this context) operations.
We have LT = (£7)¢, where X¢ being the comple-
ment of X. The duality comes from the identity
0X¢ = (eX)°. However, the equation

X NoXc=0XN(eX)° (1)
doesn’t have the same surface occupation on both
sides. If dilation and erosion run on the same data
(as in the first stage of the Laplacian) they can
share the most costly neighorhood extraction block,
see Fig. 4.

| Extraction of

> Handling of edges
im <
bitstream| neighborhood Handling of edges erode %ag
| S | oy (T

T |EEEEEI
T

I

elk Column
| _counter
Row
counter 0l bitstream

Figure 4: Dilation and erosion share the neighbor-
hood extraction block.

& |imlbitstream

reset

Modifying the algorithm according to Eq. 1 al-
lows a considerable reduction of silicon occupation,
see Table 2.

Table 2: Optimized implementation costs.

two 8-bit §/e blocks :

- two 8-bit FIFOs (size: 1 image row)
two 1-bit §/e blocks :

- two 1-bit FIFOs (size: 1 image row)
one delay compensations :

- one 1-bit FIFOs (size: 1 image row)

Threshold

contours
bitstream,

Figure 5: Algorithm modified using Eq. (1). X¢
denotes complementation.

5 The educational platform

5.1 The hardware environment

The specifications of the hardware platform are set
up to provide convenient resources for a great vari-
ety of student projects. This versatility is desired
to develop many real time image projects without
multiplying the material equipment and then to re-
duce the complexity and the cost. This should en-
able the students to get more familiar with a given
complex environment and get a better understand-
ing of their FPGA hardware platform. As a conse-
quence, students are expected to go deeper in con-
ceiving their embedded image processing system.

These educational purposes lead us to define the
following system requirements specification:

e inputs-outputs: conveniently, the platform
has to contain hardware for enabling video acqui-
sition and a VGA output is required for a rapid
testing and debugging of implementations.

e local memory: the typical applications to be
developed concern basically low-level image process-
ing. Most of these applications (convolution, recur-
sive filtering, wavelet transform, ...) can be per-
formed on a stream of data, using a neighborhood
processing. This neighborhood could be implemented
using FIFOs as it was done in many DSP com-
ponents in the 1990’s (Thomson IMSA110, Tex-
as C80...). In 1998 we have proposed a solution
to implement these resources using dual-port sta-
tic RAMs [4]. The advantages of the dual-port
solution was to propose reusable hardware when
no neighbourhood is needed but other kind of re-
sources are required (LIFOs, data passing between
tasks...). Nowadays, the architecture of the XIL-
INX components has evolved and the Spartan se-
ries, for instance, integrate columns of dual-port
RAMSs, which make them much more appropriate
for image processing.

e global memory: usually, low level image
processing is not an end in itself. It transforms a
video sequence in another video sequence, but the

produced data are too bulky and not very prac-
tical to handle. A data transformation is neces-
sary to get an intermediate knowledge representa-
tion (Freeman chains, quad-tree, image moments...)
which can be better digested in the image under-
standing tasks. While this intermediate level im-
age processing usually requires peculiar image scan
(such as content-based scan or Peano scan...) we
decide to acquire a platform equipped with a mem-
ory space big enough to store a few images.

In 2005, only a few commercial boards offer-
ing the previous hardware resources were available.
We selected a platform built by XESS Corpora-
tion composed of the XSA351000 board [10] (the
processing unit) combined with the XST-3 board
providing analog and digital I/O capabilities (video
input, USB, Ethernet...). This platform (see Fig. 6)
contains a 1,000,000-gate Spartan3 component, 32
MByte SDRAM and a VGA output.

Figure 6: The development board.

Figure 7: The results on a VGA monitor: the cam-
era stream (above), the contours (below).

5.2 The integration environment

The software environment must allow the students
to get a rapid familiarization with the Design Im-
plementation tools, and the associated HDL design
flow. So, the main labs concern is to provide the
students with a simple interface keeping them out
of the menial task of managing the various input-
output of the board (board configuration, commu-

nication protocols, multi-port SDRAM interface,
image acquisition and VGA display...). This en-
ables the student to concentrate on the more sat-
isfying task of conceiving the core of the image
processing unit (black-box) in Fig 8.

XILINX Spartan 3

VIDEO CAMERA

Image Processing

Frame—-grabbe;

video—-decode

12C controller

SDRAM

Black box

VGA SCREEN

PC parallel por ’—‘CPLD
(configuration + J

bitstream download|].

SDRAM controller

VGA controller =

EDUCATIONAL PLATFORM

Figure 8: Schematic representation of the various
data managements.

The side effect is that we had to cope with the
difficult task of designing and implementing such a
simple interface. This lead us to modify or imple-
ment and test various component cores (multi-port
SDRAM controller, framegrabber, VGA core...), to
develop some drivers and to model some compo-
nents (video bus model, SDRAM...) and test the
whole simulation environment. This environment
reveals to be a great help for testing or debugging
students implementations. While simulation can il-
lustrate them the functioning of essential element
of the board, it is supposed to help the most mo-
tivated students to go deeper in the understanding
of the platform. In the context of SISO, images
could be displayed as soon as they are processed
Fig 9(a), but such a process leads to ugly displays
when using interlaced cameras:

e image flicker appears when the odd fields are
displayed below the even fields (or vice versa);

e milled contours appear when the fields are in-
terlaced.

A VGA interface composed of a RAMDAC should
have avoided this drawbacks. Here, there is no
RAMDAC available and the solution is to store the

Image Image
Processing Processing
Display

(a) (b)

VGA
Display

video
camera

camera
VG

Figure 9: Pixels are processed on the fly: a) no
memory and no RAMDAC is available (poor qual-
ity rendering). b) intermediate storage allows to
eliminate the visual defects.

image data in the SDRAM, as soon as they are
processed Fig 9(b). A very simple protocol has been
built to make this step transparent for students. In
the context of SISO, the processing unit they have
to implement is the content of a black box whose
inputs are composed of the data bus (pixels) and
two control signals (Fig 10) and the outputs are the
processed data and the two delayed control signals.

Data
Data_avail [[[1
clock

Figure 10: Protocol defined at the input of the im-
age processing unit.

6 Organization of the course

The course consists of an introductory 3h lecture,
followed by two 3h30 lab sessions.

Lecture: Students are presented the algorithm,
get familiar with the data flow, estimate the surface
occupation cost, and modify the algorithm accord-
ing to the identity Eq. (1) in order to reduce the
implementation costs.

The Laplacian is computed in two stages. These
two stages are similar, since they use same opera-
tors : morphological dilation and erosion, addition,
subtraction and/or thresholding.

The first stage of the Laplacian operates on grey-
scale data whereas the second one on binary data.
This allows to stress out various important aspects
of HW design and makes the students think about
the correct data widths of various operators, take
into account the width of the operands, results and
the intermediate results and use generic definitions
and avoid unnecessary penalizing silicon occupa-
tion.

Practicals: The labs are composed of two ses-
sions:

During the first session, the students choose and
implement one block of the elementary operation
which is the dilation/erosion, see Fig. 4. They
choose the block to implement according to their
previous knowledge (beginners or more advanced).
They simulate them on the block level.

During the second session, the students put to-
gether their blocks and/or are given the missing
blocks by the teacher and simulate the application
on the top-most level. Finally they place&route the
design, upload the bitstream and verify the design
in a real FPGA with a camera and a display (see a
photograph of the results Fig. 7).

7 Conclusions

The lecture leads the students to think of algo-
rithms in terms of their HW implementation: data
flow on the operator level, data widths, data avail-
ability, delay compensations and implementation
costs.

Two different lab sessions allow to work at both
low (logic) level and high (operator) level of the de-
sign, allowing the students to simulate at the HDL
level as well as the algorithmic level of the applica-
tion.

The second session allows to put things together,
simulate the algorithm, synthesize and download
the bitstream into the FPGA. This allows to have
a global vision of the entire hardware development
chain.

References

1] ALTERA. Nios II custom instructions user
guide. http://www.altera.com.cn, June 2005.

[2] Peter M. Athanas and A. Lynn Abbott. Real-
time image processing on a custom computing
platform. Computer, 28(2):16 24, 1995.

[3] S. Beucher. Méthodes d’analyse des contrastes
a l'analyseur de textures. Technical Report
CMM N-625, Ecoles des Mines de Paris, 1977.

[4] P. Guermeur. A New FPGA Architecture for
Image Processing : CYCLOP. In EUSIPCO,
pages 1113 1116, september 1998.

[5] Marc Heijligers. XeTaL-II: a low-power multi-
processing simd architecture. MEDEA+ De-
sign Automation Conference, Germany, June
2006.

[6] S. Klupsch, M. Ernst, S.A. Huss, M. Rumpf,
and R. Strzodka. Real time image processing
based on reconfigurable hardware acceleration.
IEEE Workshop Heterogeneous reconfigurable
Systems on Chip, 2002.

[7] F. Lemonnier. Architecture électronique dédiée
aux algorithmes rapides de segmentation basés
sur la morphologie mathématique. PhD thesis,

ENSMP, 1996.

[8] J. Serra. Image Analysis and Mathematical
Morphology. Academic Press, London, 1982.

[9] J. Serra and J.C. Klein. The texture analyser.
J. of Microscopy, 95(2):349-356, 1972.

[10] XESS. XSA-351000 Board Manual, June 2005.

