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Abstract

We present a genetic programming system to evolve vi-

sion based obstacle avoidance algorithms. In order to de-

velop autonomous behavior in a mobile robot, our purpose

is to design automatically an obstacle avoidance controller

adapted to the current context. We first record short se-

quences where we manually guide the robot to move away

from the walls. This set of recorded video images and com-

mands is our learning base. Genetic programming is used

as a supervised learning system to generate algorithms that

exhibit this corridor centering behavior. We show that the

generated algorithms are efficient in the corridor that was

used to build the learning base, and that they generalize to

some extent when the robot is placed in a visually different

corridor. More, the evolution process has produced algo-

rithms that go past a limitation of our system, that is the

lack of adequate edge extraction primitives. This is a good

indication of the ability of this method to find efficient solu-

tions for different kinds of environments.

1. Introduction

The goal of our research is to automatically design vi-

sion based controllers for robots. In this work we focus on

obstacle avoidance, which is the first necessary function for

a robot to be able to explore autonomously its environment.

One of the most popular method to perform obstacle avoid-

ance with a single camera is based on optical flow. It has

been used recently with an autonomous helicopter for in-

stance [9]. However, systems using optical flow don’t cope

well with thin or lowly textured obstacles. On the other

hand, more simple primitives can be used to extract useful

informations in the image, generally based on texture, color

and luminosity. For instance, Michels and Saxena imple-

mented a system to estimate depth from texture information

in monocular images and they used it to drive a robot in

an outdoor environment [8, 11]. This system can be quite

accurate but it needs a ground truth (depth images) for the

learning phase and the number of computed features in each

image is quite important. Other obstacle avoidance systems

use this kind of information to discriminate the floor from

the rest of the scene and calculate obstacle distances in sev-

eral directions [13]. Nevertheless those methods suppose

that the floor may be clearly discriminated and they neglect

potentially useful information from the rest of the scene.

All those methods are either too complex to be used on

an onboard PC or not robust enough to deal with all kind

of environments. So we want to design a system able to

automatically select the kind of visual features that allow

obstacle detection in a given environment and to parame-

terize the whole obstacle avoidance controller to use those

features efficiently. For that, we propose to use genetic pro-

gramming as it allows us to evolve algorithms with little a

priori on their structure and parameters. In the experiments

presented in this paper, the evolution is an offline supervised

learning process. We first record short video sequences in

which the robot is manually guided. The algorithms are

evaluated on their ability to imitate the commands issued

by the human during those sequences.

Evolutionary techniques have already been widely used

for robotic navigation and the design of obstacle avoidance

controllers [14] but in general vision is either overly simpli-

fied or not used at all. For instance, Marocco used only a

5 × 5 pixels retina as visual input [6]. On the other hand,

genetic programming has been proved to achieve human-

competitive results in image processing systems, e.g. for

the detection of interest points [12]. Parisian evolution has

also been shown to produce very good results for obstacle

detection and 3D reconstruction but those systems need two

calibrated cameras [10].

To our knowledge, only Martin tried evolutionary tech-

niques with monocular images for obstacle avoidance [7].

The structure of his algorithm is based on the floor segmen-

tation technique and the evaluation is done with a database

of hand labeled real world images. In our work, we don’t

have any a priori on the method to use for obstacle detec-

tion and our sequence recording phase is less tedious than

the hand labeling of images.



We already showed in a simulation environment that our

method can produce algorithms adapted to the visual con-

text and that the use of imitation in the evolution process can

greatly improve the results [1]. In this paper, we also use

imitation during the evolution as the algorithms are eval-

uated on their ability to imitate recorded commands. The

main difference is that the robot moves in a real indoor en-

vironment and not in simulation. We show that with this

evolution by imitation method, the robot can learn to wan-

der autonomously in its environment.

2. Material and Methods

2.1. Structure of the Vision Algorithms

Generally speaking, a vision algorithm can be divided

in three main parts: First, the algorithm will process the

input image with a number of filters to highlight some fea-

tures. Then these features are extracted, i.e. represented by

a small set of scalar values. Finally these values are used

for a domain dependent task, here to generate motor com-

mands to avoid obstacles. We designed the structure of our

algorithms according to this general scheme. First, the filter

chain consists of spatial and temporal filters, optical flow

calculation and projection that will produce an image high-

lighting the desired features. Then we compute the mean of

the pixel values on several windows of this transformed im-

age (feature extraction step). Finally those means are used

to compute a single scalar value by a linear combination.

We will use this scalar value to determine the presence of

an obstacle and to generate a motor command to avoid it.

An algorithm is represented as a tree, the leaves being

input data or constant values, the root being output com-

mand, and the internal nodes being primitives (transforma-

tion steps). The program can use different types of data

internally, i.e. scalar values, images, optical flow vector

fields or motor commands. For each primitive, the input and

output data types are fixed. Some primitives can internally

store information from previous states, thus allowing tem-

poral computations like the calculation of the optical flow.

Here is the list of all the primitives that can be used in the

programs and the data types they manipulate:

• Spatial filters (input: image, output: image): Gaus-

sian, Laplacian, threshold, Gabor, difference of Gaus-

sians, Sobel and subsampling filter.

• Temporal filters (input: image, output: image): pixel-

to-pixel min, max, sum and difference of the last two

frames, and recursive mean operator.

• Optical flow (input: image, output: vector field): Horn

and Schunck global regularization method, Lucas and

Kanade local least squares calculation and simple block

matching method [3]. The rotation movement is first

eliminated by a transformation of the two images in or-

der to facilitate further use of the optical flow.

• Projection (input: vector field, output: image): Projec-

tion on the horizontal or vertical axis, Euclidean or Man-

hattan norm computation, and time to contact calculation

using the flow divergence.

• Windows integral computation (input: image, output:

scalar): For this transformation, we define a global coef-

ficient α0 and several windows on the left half of the im-

age with different positions and sizes. With each window

is paired a second window defined by symmetry along

the vertical axis. A coefficient αi and an operator (+ or

−) are defined for each pair. The resulting scalar value

R is a simple linear combination calculated with the fol-

lowing formula:

R = α0 +
∑

n

i=1
αiµi

µi = µLi + µRi or µi = µLi − µRi

where n is the number of windows and µLi and µRi are

the means of the pixel values over respectively the left

and right window of pair i.

• Scalar operators (input: scalar(s), output: scalar): Ad-

dition, subtraction, multiplication and division operators,

a temporal mean calculation and an if-then-else test.

• Command generation (input: two scalars, output:

command): The motor command is represented by two

scalar values: the requested linear and angular speeds.

Most of those primitives use parameters along with the

input data to do their calculations (for example, the stan-

dard deviation value for the Gaussian filter or the position of

windows for the windows integral computation). Those pa-

rameters are specific to each algorithm; they are randomly

generated when the corresponding primitive is created by

the genetic programming system described in Sect. 2.3.

Fig. 1 shows an example controller built with this struc-

ture. Rectangles represent primitives and ellipses represent

data. The algorithm is a single tree, and all the primitives

between the input data and the resulting motor command

are created and parameterized by the evolution.

2.2. Environment and Evaluation Function

The environment used for the experiments presented in

this paper is a corridor in our lab, i.e. the long central cor-

ridor represented on Fig. 2. It’s a relatively simple environ-

ment for vision because the floor is dark and the walls are

light colored, but the changes in lighting and the openings in

the walls create non-trivial challenges for a vision system.

The robot that will move in this environment is a Pioneer

3 DX equipped with an onboard PC and a Canon VC-C50i

camera. We use 8-bits gray-value images of size 320× 240
representing a field of view of approximately 42◦×32◦, the

video rate is 10 images / second.



Figure 1. Example of a controller for obstacle

avoidance based on optical flow.

We want the robot to learn to avoid the walls, in order to

be able to wander autonomously in this corridor. For this,

we first record several short sequences where we manually

guide the robot to move away from the walls and to center

itself in the corridor. We record the camera images and the

commands given to the robot at each time step. The goal

is to find the algorithm that best matches the recorded com-

mands given the recorded images. This set of sequences

will be our learning base, and we use genetic programming

as an offline supervised learning system. Fig. 2 shows some

of the trajectories and images we used in this learning base.

Note that as we don’t have an absolute positioning system,

all the trajectories in this paper are drawn by hand from the

video sequences and are thus quite imprecise. In the im-

ages, the arrow represents the yaw speed command (maxi-

mum left corresponds to 30◦/s, maximum right to −30◦/s).

Figure 2. Top: Examples of trajectories used

for the learning base. Bottom: Examples of

recorded images and commands.

For the evaluation of the algorithms, we replay the

recorded sequence offline and compare at each time step the

command issued by the evaluated algorithm with the com-

mand recorded during the manual control of the robot. The

goal is to minimize the difference between these two com-

mands along the recorded sequence. Formally, we try to

minimize two variables F and Y defined by the formulas:

F =

√

√

√

√

n
∑

i=1

(fRi − fAi)
2

and Y =

√

√

√

√

n
∑

i=1

(yRi − yAi)
2

where fRi and yRi are the recorded forward and yaw speed

commands for frame i, fAi and yAi are the forward and

yaw speed commands from the tested algorithm for frame i
and n is the number of frames in the video sequence. The

evaluations consist in fact in twenty short sequences. Final

scores are the means of the scores obtained for the different

sequences. Note that as we generally drive the robot at the

maximum speed (which is 30 cm/s in these experiments),

the forward command is trivial to learn. We’ll focus more

on the yaw command for the discussion of the results.

2.3. The Genetic Programming System

We use genetic programming to evolve vision algorithms

with little a priori on their structure. As usual with evo-

lutionary algorithms, the population is initially filled with

randomly generated individuals. We use the grammar based

genetic programming system introduced by Whigham [15]

to overcome the data typing problem. It also allows us to

bias the search toward more promising primitives and to

control the growth of the algorithmic tree.

In the same way that a grammar can be used to generate

syntactically correct random sentences, a genetic program-

ming grammar is used to generate valid algorithms. The

grammar defines the primitives and data (the bricks of the

algorithm) and the rules that describe how to combine them.

The generation process consists in successively transform-

ing each non-terminal node of the tree with one of the rules.

This grammar is used for the initial generation of the algo-

rithms and for the transformation operators. The crossover

consists in swapping two subtrees issuing from identical

non-terminal nodes in two different individuals. The mu-

tation consists in replacing a subtree by a newly generated

one. Table 1 presents the exhaustive grammar that we used

in these experiments for the creation and transformation of

the algorithms.

The numbers in brackets are the probability of selection

for each rule. A major advantage of this system is that

we can bias the search toward the usage of more promis-

ing primitives by setting a high probability for the rules

that generate them. We can also control the size of the

tree by setting small probabilities for the rules that are



Table 1. The genetic programming grammar.

[1.0] START → COMMAND

[1.0] COMMAND → directMove(REAL, REAL)

[0.2] REAL → scalarConstant

[0.05] REAL → add(REAL, REAL)

[0.05] REAL → subtract(REAL, REAL)

[0.05] REAL → multiply(REAL, REAL)

[0.05] REAL → divide(REAL, REAL)

[0.05] REAL → temporalRegularization(REAL)

[0.05] REAL → ifThenElse(REAL, REAL, REAL, REAL)

[0.5] REAL → windowsIntegralComputation(IMAGE)

[0.3] IMAGE → videoImage

[0.4] IMAGE → SPATIAL FILTER(IMAGE)

[0.15] IMAGE → PROJECTION(OPTICAL FLOW)

[0.15] IMAGE → TEMPORAL FILTER(IMAGE)

[0.15] SPATIAL FILTER → gaussian

[0.14] SPATIAL FILTER → laplacian

[0.14] SPATIAL FILTER → threshold

[0.14] SPATIAL FILTER → gabor

[0.14] SPATIAL FILTER → differenceOfGaussians

[0.14] SPATIAL FILTER → sobel

[0.15] SPATIAL FILTER → subsampling

[0.2] TEMPORAL FILTER → temporalMinimum

[0.2] TEMPORAL FILTER → temporalMaximum

[0.2] TEMPORAL FILTER → temporalSum

[0.2] TEMPORAL FILTER → temporalDifference

[0.2] TEMPORAL FILTER → recursiveMean

[0.33] OPTICAL FLOW → hornSchunck(IMAGE)

[0.33] OPTICAL FLOW → lucasKanade(IMAGE)

[0.34] OPTICAL FLOW → blockMatching(IMAGE)

[0.2] PROJECTION → horizontalProjection

[0.2] PROJECTION → verticalProjection

[0.2] PROJECTION → euclideanNorm

[0.2] PROJECTION → manhattanNorm

[0.2] PROJECTION → timeToContact

likely to cause an exponential growth (rules like REAL →

ifThenElse(REAL, REAL, REAL, REAL) for instance). The

parameters of the primitives are generated randomly when

the corresponding rule is selected. We define the bounds

for each parameter along with the distribution to use for its

generation (uniform or normal). For normal distribution we

also define the mean value of the parameter and its standard

deviation.

As described previously, we wish to minimize two cri-

teria (F and Y ). For that, our system uses the widely used

multi-objective evolutionary algorithm called NSGA-II in-

troduced by K. Deb [5]. Nevertheless, the forward speed

command is trivial to learn in this experiment so a classi-

cal mono-objective evolutionary algorithm would probably

have given similar results.

In order to prevent premature convergence, we separate

the population of algorithms in 4 islands, each containing

100 individuals. Those islands are connected with a ring

topology; every 10 generations, 5 individuals selected with

binary tournament will migrate to the neighbor island while

5 other individuals are received from the other neighbor is-

land. The evolution lasts for 100 generations. For the pa-

rameters of the evolution, we use a crossover rate of 0.8

and a probability of mutation of 0.01 for each non-terminal

node. We use a classical binary tournament selection in all

our experiments. Those parameters were determined em-

pirically with a few tests using different values. Due to the

length of the experiments, we didn’t proceed to a thorough

statistical analysis of the influence of those parameters.

3. Experiments and Results

3.1. Analysis of the Evolved Controllers

In total, the learning phase lasts for 100 generations, that

is 40,000 evaluations. Fig. 3 presents the Pareto fronts ob-

tained by taking the best algorithms in all the four islands

at different times of the evolution and keeping only non-

dominated ones. As said before, the target forward com-

mand is almost constant in all the learning set so it is very

easy to learn. For the yaw command, we clearly see a pro-

gressive improvement from the first generation to the last.
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Figure 3. Pareto fronts of the solutions ob

tained along the generations.

We present on Fig. 4 an example of an evolved algo-

rithm. Only a part of it can be presented here because the

filter chain contains 29 filters. This high number of filters

is partly due to bloating, which means that the evolved pro-

grams contain some irrelevant parts that have no significant

effect on the final result. The only action we took against

bloating is to limit the computation time of the algorithm,

but it does not prevent the accumulation of quickly com-

puted filters like in this case. Several solutions have been

proposed to limit bloating in genetic programming. Among

them, the inclusion of program size as an independent cri-

terion in a multi-objective evolutionary algorithm has been



shown to produce efficient and small-sized programs (see

[4] for instance). As we already use multi-objective opti-

mization in our system, we plan to adapt and test this tech-

nique in the near future.

The second and more interesting reason for this high

number is that the evolution found a way to go past a lim-

itation of our system. Indeed, the only available operator

to transform an image into a scalar is the windows inte-

gral computation described before. This operator is well-

adapted for the computation of large features in the image,

but not for point or edge features. The evolved algorithm

uses a sobel filter that produces an edge corresponding to

the separation between the wall and the floor. Most of the

subsequent filters just enlarge this edge to allow the win-

dows integral computation to produce a value depending on

this edge. Of course, this could have been done more easily

with a simple dilatation filter and we plan to add morpho-

logical filters in our system, but the fact that the evolution

found a way to go past this limitation is a good indication

of the adaptability of this system.

Figure 4. Example of an evolved algorithm.

Fig. 5 illustrates the method used by this evolved algo-

rithm to compute the motor command. The red arrow is

the command issued by the algorithm, the yellow one is the

recorded command. The filter chain highlights and enlarges

the boundary between the floor and the wall, as well as the

more contrasted zone at the end of the corridor. In the re-

sulting image, the wall appears completely white and the

boundary is darker. This difference is used by the windows

integral computation operator to produce a command that

drives the robot away from the wall (the resulting command

depends on the difference between the mean pixel value of

each red window).

Figure 5. Left: Resulting command from the

evolved algorithm on an image from the learn

ing base. Right: The same image trans

formed by the filter chain.

3.2. Generalization Performance

In order to test the robustness and generalization perfor-

mance of these evolved controllers, we place the robot at

different positions in the corridor and let it move driven by

the evolved algorithm. The robot should move to the end

of the corridor without hitting the walls. We place the robot

so that the direction it faces and the corridor make an angle

of approximately 30◦. This way, the problem is possible to

solve without being trivial. We made about ten tests with

different starting positions. Each time, the robot managed

to reach the end of the corridor except once where it turned

into one of the openings in the wall. In one test, it even

turned at the end of the corridor to go into the smaller corri-

dor on the right of the map. Fig. 6 shows an example trajec-

tory followed by the robot driven by the evolved algorithm

presented before. Note that the two last images correspond

to situations that were not included in the learning set.

Figure 6. Top: Trajectory followed by the

robot when driven by an evolved algorithm.

Bottom: Images and commands issued by

the algorithm in the generalization tests.

We also tested this evolved algorithm in another corridor

visually different from the previous one. In one direction

the robot reaches the end of the corridor without problem.

On the return trip it failed against two obstacles as shown

on Fig. 7. The middle and right images correspond to the

two obstacles that the robot failed to avoid. Nevertheless



this result is encouraging since this corridor is very different

from the one in which the learning base was recorded.

Figure 7. Top: Trajectory followed by the

robot driven by the evolved algorithm in an

other corridor. Bottom: Images and com

mands issued by the evolved algorithm in this

other corridor.

These experiments prove that our system can produce vi-

sion algorithms adapted to a given context to drive a mobile

robot in an indoor environment. We now plan to validate it

on a wider range of environments. It will also be necessary

to give a functional goal to the controllers, like going to a

given point or simply exploring the environment as quickly

as possible. We have already shown in simulation how to

deal with two possibly conflicting goals [2] but we still have

to validate these techniques in a real environment.

In real applications, it’s inconceivable to evolve con-

trollers for each kind of environment and task the robot may

have to face. Our goal is to build a small database of quite

generic controllers, to automatically select one depending

on the visual context and to adapt it online to improve its

performance. We can not use the complete evolution pro-

cess online but we could slightly change only the values

of the numerical parameters of the algorithm and reward

the customized version that drive the robot for the longest

time without hitting obstacles for instance. Of course, this

would also require a collision detector and a way to move

the robot away from the obstacle automatically after the col-

lision. But we hope that starting with an evolved algorithm,

this adaptation phase could quickly produce efficient algo-

rithms and thus make the controllers more adaptable to dif-

ferent environments.

4. Conclusion

We presented in this paper a method to automatically

generate algorithms adapted to a given environment. We

applied it to the obstacle avoidance problem in a real indoor

environment. We showed that our system created efficient

algorithms, able to drive the robot in a corridor without hit-

ting the wall and using only monocular vision. We now plan

to design an online system to adapt the vision algorithm de-

pending on the context in real-time, in order to have a fully

autonomous and adaptive robot.
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