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Abstract

This paper is dedicated to the study of metrical properties of a collection of 2D
thinning algorithms that we have proposed. Here, we characterize their underly-
ing metrics and use it to reduce the classical metrical biases that affect thinning
algorithms in the square grid. We show that some algorithms from the collection
lead to skeletons based on a particular geometry, corresponding to the (4,8)-median
axis, which is a new shape descriptor, featuring nice robustness and conditioning
properties.
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1 Introduction

We have recently proposed a family of 2-dimensional thinning algorithms to
compute the skeleton of binary discrete images. We systematically constructed
them from the discretization of the evolution equation of a monotonous prop-
agating front, under topology preservation constraints, in the different con-
nectivity models of the square grid, and for different parallelization schemes.
Logic minimization was an important issue in their genesis. The eight algo-
rithms, referred to as MB, are summarized on Figure 1, with a comparison of
their different properties. The name of every algorithm is given according to
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the three binary labels: (1) -fp or -dir for fully parallel or directional, (2) -1
or -2 depending on the number of directions of propagation (4 or 8 respec-
tively), and (3) -4 or -8 depending on the topology. The Boolean definition
of every algorithm is presented on Figure 1: the principle of the algorithms
is to delete iteratively all pixels matching the removing condition, provided
that they do not match the non removing condition. For the fully parallel
algorithms, all patterns are to be considered with their π/2 rotated versions.
For the MBfpx-4 algorithms (x = 1 or 2), a special convention is used: the
white pixels with a red dot (resp. black pixels with a green square) are the
black pixels of the original image matching (resp. not matching) the removing
condition. The derivation, proof, and details of implementation of each one
of these algorithms can be found in [8]. Note that MBfp1-8 is equivalent to
the algorithm proposed in [3], and MBfp1-4 is equivalent to the algorithm pro-
posed in [6]. Figure 1 synthesizes some combinatorial (e.g. Boolean complexity
and support) and topological (e.g. P-simpleness [1]) properties that are not
addressed in this paper, but detailed in [8].
The aim of this paper is to study the metrical properties of these algorithms.
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Fig. 1. The MB family of parallel thinning algorithms.

In Section 2, we show that the geometry of the MB skeletons can be formally
characterized by the type of median axis that they each contain. In particular,
the (4,8)-median axis is defined as the mixed case of a generic median axis
including the classical morphological skeletons for the two canonical distances
of the square grid. We show that the (4,8)-median axis is the locus of the cen-
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ters of the maximal elements from a collection of sets called (4,8)-fuzzy balls,
which are formally defined. In Section 3, we show how the different underlying
metrics of the algorithms lead to different behaviors with respect to rotation
invariance and noise immunity, and discuss the issue of approximating Eu-
clidean skeletons with thinning algorithms in the square grid.
Conclusions and perspective work are presented in Section 4.

2 (K-P)-median axis and metrical properties of MB

As shape descriptor, it is obvious that the metrical properties of a skeleton are
very important ; the initial shape must be recovered at least approximately
from its weighted skeleton, slight variations on the contour should not lead to
significant changes in the skeleton, and the skeleton must be fairly invariant to
arbitrary rotations or scalings. Nevertheless, these issues are rather poorly ad-
dressed by the thinning approaches. There are other skeletonization methods
designed in Euclidean frameworks, either continuous [9] or discrete [4], that
address explicitly the metrical issues, at the price of a representation change,
implying a higher computational cost and a loss of regularity.
We wish to give in this paper a formal description of the metrical behavior

of the proposed thinning algorithms, whose results can be seen on Figure 2.
The geometry of the skeletons are based on different median axis, depending
on the type of parallelism and the directions of deletion. We now recall the
formalism needed to introduce our generic median axis:
The discrete plane is mapped to the square grid Z

2, a (binary) image X is a
subset of Z

2. A pixel x is an element of Z
2. The two canonical discrete dis-

tances of the square grid are respectively the 4-distance d4, and the 8-distance
d8. If x = (x1, x2) and y = (y1, y2), then d4(x, y) = |x1 − y1| + |x2 − y2| and
d8(x, y) = max(|x1 − y1|, |x2 − y2|).
The (K,P )-median axis of image X (K and P are equal to 4 or 8 and K ≤ P )
is defined as:

SP
K(X) =

⋃{x ∈ X; (y ∈ X and dP (x, y) = 1) ⇒ dK(x,Xc) ≥ dK(y,Xc)}

So the (K,P )-median axis is the set of the maxima of distance dK , in the
P -neighborhood. Depending on the values of K and P , this leads to three
different median axes, shown on row 1 of Figure 2. We are going to show that
these different median axes determine the metrical properties of the different
algorithms.
As every iteration (resp. four successive sub-iterations) of MBfp (resp. MBdir)
examines the 4-contour (resp. the 8-contour), the geometry of the resulting
skeleton is based on distance d4 (resp. d8), as it can be seen on Figure 2. In the
case of the MBfp 8-connected algorithms, the isotropy allows even to prove
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Original S(8,8) S(4,4) S(4,8)

MBdir2-4 MBdir1-4 MBfp1-4 MBfp2-4

MBdir2-8 MBdir1-8 MBfp1-8 MBfp2-8

MBhyb1-4 MBhyb2-4 MBhyb1-8 MBhyb2-8

Fig. 2. Metrical properties of the MB skeletons.

(α1) (α2)

Fig. 3. Deletion patterns of the MBfp- skeletons.

formally that, if the pixels are examined in the order induced by the distance
d4 to the border, then:
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(1) S4
4(X) ⊂ MBfp1-8(X) and (2) S8

4(X) ⊂ MBfp2-8(X).

Indeed, if a pixel p matches pattern (α1) (resp. (α1) or (α2)) shown on Figure 3
(or one of their π/2 rotated versions), then it is 4−adjacent (resp. 8−adjacent)
to a 4-interior point q, such that d4(q,X

c) = d4(p,X
c)+1, so p �∈ S4

4(X) (resp.
p �∈ S8

4(X)). These properties are verified for most images, because except in
pathological cases (some examples can be seen in [7]), the MBfp thinning re-
spect the order induced by distance d4. It follows that the geometry of the
each MB-skeleton is determined by the geometry of the corresponding (K,P )-
median axis. We are now going to characterize the geometry of the (4, 8)-
median axis, thanks to the notion of (4, 8)-fuzzy balls, that we define further:
For K = 4 or 8, the K-ball of center x and radius n is defined as BK(x, n) =
{z ∈ Z

2, dK(x, z) ≤ n}. A ball BK(x, n) is said to be maximal in the image X
if ∀(y, n′) ∈ Z

2 × N, BK(x, n) ⊂ BK(y, n′) ⊂ X ⇒ (x, n) = (y, n′).
For K = P , it is well known that the (K,K)-median axis corresponds to the
union of the centers of maximal K-balls [5]. We are going to prove that the
(4, 8)-median axis corresponds to the union of the centers of maximal (4, 8)-
fuzzy balls (see Figure 4), which are recursively defined as follows:

(1) A (4, 8)-fuzzy ball of radius 1 and center x B(4,8)(x, 1) is any set verifying:
B4(x, 1) ⊂ B(4,8)(x, 1) ⊂ B8(x, 1).

(2) A (4, 8)-fuzzy ball of radius n+1 and center x is a set such that there
exists F x

n , a (4, 8)-fuzzy ball of center x and radius n such that:
B(4,8)(x, n + 1) =

⋃

y∈F x
n

BKy(y, 1), where Ky is 4 or 8, depending on y.

�� �� ���� ��

Fig. 4. Some (4, 8)-fuzzy balls of radius 7. The extremal cases of (4, 8)-fuzzy balls
are respectively the 4-ball (on the left), and the 8-ball (on the right).

To prove the identity between the (4, 8)-median axis and the locus of the cen-
ters of maximal (4, 8)-fuzzy balls, we need to use the morphological erosion
and dilation:
Let b ∈ Z

2. The translated of X by b is the set Xb = {x + b; x ∈ X}.
Let B ⊂ Z

2. The morphological dilation of X by B is defined as:

X ⊕ B =
⋃

b∈B

X−b = {z ∈ Z
2; Bz ∩ X �= ∅}

The morphological erosion of X by B is defined as:
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X � B =
⋂

b∈B

X−b = {z ∈ Z
2; Bz ⊂ X}

We also need to prove the following lemma:

Lemma 1 If B(4,8)(x, n) is a (4, 8)-fuzzy ball of radius n and center x, and
if y ∈ B8(x, 1), then [B(4,8)(x, n) ∪ B4(y, n + 1)] is a (4, 8)-fuzzy ball of radius
n + 1 and center y.

Preliminary remark: it is clear, by the definition of fuzzy balls, that if F x
n is a

(4, 8)-fuzzy ball of center x and radius n, then any set S verifying:

F x
n ⊕ B4(0, 1) ⊂ S ⊂ F x

n ⊕ B8(0, 1) (1)

is a (4, 8)-fuzzy ball of center x and radius n + 1. Now we prove the lemma
by induction on n. If n = 0, B(4,8)(x, 0) = {x}. If y ∈ B8(x, 1), B4(y, 1) ⊂
{x} ∪ B4(y, 1) ⊂ B8(y, 1), so [B(4,8)(x, 0) ∪ B4(y, 1)] is a (4, 8)-fuzzy ball of
radius 1 and center y.
Now suppose the lemma true for radii less than or equal to (n − 1). Let
B(4,8)(x, n) be a (4, 8)-fuzzy ball of radius n and center x. By definition, there
exists F x

n−1, a (4, 8)-fuzzy ball of center x and radius (n − 1) such that:

B(4,8)(x, n) =
⋃

z∈F x
n−1

BKz(y, 1) (2)

and

F x
n−1 ⊕ B4(0, 1) ⊂ B(4,8)(x, n) ⊂ F x

n−1 ⊕ B8(0, 1) (3)

Let y ∈ B8(x, 1). By induction hypothesis, Gy
n = F x

n−1 ∪ B4(y, n) is a (4, 8)-
fuzzy ball of radius n and center y.

Gy
n ⊕ B4(0, 1) = (F x

n−1 ⊕ B4(0, 1)) ∪ (B4(y, n) ⊕ B4(0, 1)) (4)

= (F x
n−1 ⊕ B4(0, 1)) ∪ B4(y, n + 1) (5)

So, from (3), we get:

Gy
n ⊕ B4(0, 1) ⊂ [B(4,8)(x, n) ∪ B4(y, n + 1)] (6)

On the other hand, we have:

Gy
n ⊕ B8(0, 1) = (F x

n−1 ⊕ B8(0, 1)) ∪ (B4(y, n) ⊕ B8(0, 1)) (7)
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and as

B4(y, n + 1) ⊂ (B4(y, n) ⊕ B8(0, 1)) (8)

from (3), we get:

[B(4,8)(x, n) ∪ B4(y, n + 1)] ⊂ Gy
n ⊕ B8(0, 1) (9)

Finally, as Gy
n is a (4, 8)-fuzzy ball of radius n and center y, we conclude thanks

to (6) and (9) that [B(4,8)(x, n) ∪ B4(y, n + 1)] is a (4, 8)-fuzzy ball of radius
(n + 1) and center y.

�

Theorem 1 S(4,8)(X) is the locus of the centers of maximal (4, 8)-fuzzy balls
in X.

(1) Right inclusion. Let x be the center of a (4, 8)-fuzzy balls B(4,8)(x, n) that
is maximal in X. Now suppose that there exists y ∈ (B8(x, 1) ∩ X) such that
d4(y,Xc) > d4(x,Xc). Then we must have B4(y, n + 1) ⊂ X. And so:

[B(4,8)(x, n) ∪ B4(y, n + 1)] ⊂ X (10)

But from lemma 1, [B(4,8)(x, n) ∪ B4(y, n + 1)] is a (4, 8)-fuzzy ball of radius
n + 1 (see Figure 5(1)), which is in contradiction with the maximality of
B(4,8)(x, n).

y

x z

B4(y,p)
B4(y,m)
B4−8(x,n)

(1) (2)

Fig. 5. (1) The center of a maximal (4, 8)-fuzzy ball is an element of S(4,8)(X).
(2) An element of S(4,8)(X) is center of a maximal (4, 8)-fuzzy ball.
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(2) Left inclusion. Let x ∈ S(4,8)(X). Let B(4,8)(x, n) be the biggest (4, 8)-
fuzzy ball of center x contained in X. We are going to prove that B(4,8)(x, n)
is maximal in X.
Suppose that there exists a (4, 8)-fuzzy ball F y

m of center y and radius m such
that (y,m) �= (x, n) and B(4,8)(x, n) ⊂ F y

m ⊂ X. We have:

B4(y,m)⊂F y
m (11)

B4(x, n)⊂B(4,8)(x, n) (12)

The erosion of the ball B4(y,m) by B4(0, n) is a ball B4(y, p) containing x.
But x �∈ B4(y, p)�B4(0, 1), otherwise it would mean that B4(x, n+1) ⊂ F y

m ⊂
X, and then B(4,8)(x, n)∪B4(x, n + 1) would be a (4, 8)-fuzzy ball of center x
and radius (n+1) (see lemma 1) contained in X, which is in contradiction with
the fact that B(4,8)(x, n) is the biggest (4, 8)-fuzzy ball of center x contained
in X.
So there must exist z ∈ B4(x, 1) (see Figure 5(2)) such that z ∈ B4(y, p) �
B4(0, 1). Then B4(z, n + 1) ⊂ F y

m ⊂ X, and so d4(z,X
c) > d4(x,Xc). As z ∈

B4(x, 1), we get x �∈ S(4,8)(X), which is in contradiction with our hypothesis.

�

We have now identified the relation between the mixed median axis S(4,8)(X)
and a particular class of sets, the (4, 8)-fuzzy balls. These balls are a new
shape description tool, which interest lies in the robustness of morphological
or connected skeletons defined in the square grid, as we shall illustrate in the
following section.

3 Consequences on the geometrical behavior of MB

The fact that the MB-2 algorithms do not distinguish different (4, 8)-fuzzy
balls (Figure 6(1)), make them more robust with respect to noise (Figure 6(2)),
and rotation (Figure 6(3)). Obviously, the outcome is that only partial re-
constructibility is possible, unlike MBfp1-8, that allows exact re-constructibility
(Figure 6(4), re-constructibility is performed over the skeleton weighted with
the distance to the border, with d4 balls for MBfp1-8, and octagonal balls as
a median choice of (4, 8)-fuzzy balls for MBfp2-8).
Nevertheless, the better behavior of the MB-2 algorithms with respect to ro-
tation is limited to the fact that fewer branches are generated (Figure 6(3)),
but if the number of branches is fairly stable for MB-2 on the different rotated
versions, their relative positions can vary significantly: see for example Fig-
ure 7, and the changes in the hierarchy of the branches. This bias is due to the
different errors of the underlying distances (d4 or d8 for the fully parallel or
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MBfp1−8

MBfp2−8

MBdir1−8

MBdir2−8

MBfp1−8

MBfp2−8

(1) (2)

MBfp1−8 MBfp2−8

MBfp1−8

MBfp2−8

(3) (4)

Fig. 6. (1) Some (4, 8)-fuzzy balls of radius 7 (2) noise immunity (3) rotation invari-
ance (4) re-constructibility.

directional algorithms, respectively) with respect to the Euclidean distance,
depending on the angles of the objects.
A first basic idea to get a “more Euclidean” geometry for the skeleton is to

MBfp2−8 MBdir2−8

Fig. 7. Limitations of the rotation invariance shown on the image lizard at scale 2:
the radius of the biggest d4 (resp. d8) ball is ρ = 27 (resp. r = 19).

alternate fully parallel and directional iterations. For example the MB hybrid
algorithms are defined by Σ-∆ modulation of directional or fully parallel itera-
tions as follows: starting from S0 = 0, at iteration n > 0, if |Sn−1+

√
2/2−n| <

|Sn−1 +
√

2 − n|, do Sn = Sn−1 +
√

2/2 and perform one fully parallel iter-
ation, else do Sn = Sn−1 +

√
2 and perform four directional iterations. By

9



construction, it turns out that the underlying metrics of the MB hybrid thin-
ning algorithms is generated by the octagonal discrete balls minimizing the
maximal error with respect to the Euclidean distance (see an example of such
“optimal” octagonal ball on Figure 8). MBhyb1 and MBhyb2 are shown on
the last row of Figure 2. This method leads to a significant improvement (com-
pare images of Figure 7 with image at scale 2 of Figure 8), but the bias with
respect to Euclidean distance keeps increasing with scale.
Another interesting property of the fuzzy metrics of the MB-2 algorithms

Optimal octogonal ball of radius 15

Fig. 8. The MB hybrid skeleton shown on image lizard at scales 1, 2 and 3: the
radius of the biggest optimal octagonal ball is respectively 41, 21 and 11.

is their ability to be conditioned by a Euclidean or pseudo-Euclidean pre-
processed distance. For example, in Figure 9, a chamfer distance transform of
support 5 [2] is computed, and then the thinning algorithms are applied by
imposing that the pixels deleted at the same iteration are at the same distance
to the border. The difference of behaviors between MB-1 and MB-2 shown on
Figure 9, and the good invariance to rotation that shows MB2 in that case is
explained by the fact that Euclidean discrete balls are (4, 8)-fuzzy balls. So in
the case of images where the maximal fuzzy balls are Euclidean, a quasi Eu-
clidean skeleton can be obtained by conditioning MB-2 by the corresponding
distance.
The limitation of conditioning lies in the fact that the set of all (4, 8)-fuzzy
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MBfp1−8 MBfp2−8

Fig. 9. Conditioning the MB thinning algorithms by a distance transform.

balls is not stable by arbitrary rotation, and this lead to important biases in
case of big non Euclidean (4, 8)-fuzzy balls (big 4-balls or 8-balls, typically),
so for shapes with large perpendicular straight contours.

4 Conclusion

We have shown in this paper the consistency in terms of metrical properties of
the family of thinning algorithms we have recently proposed. The geometrical
behavior, the advantages and limitations of every algorithm have been clearly
identified.
We have shown in [7] that the 8-connected MBfp algorithms could be naturally
expressed in the n-dimensional cubic grid, and we have proved the validity of
the corresponding algorithms for n = 3. The same extension can be done for
the other algorithms, but their validity remains to prove. This will be the
subject of future work, in order to get hopefully a unified and cleanly justified
thinning methodology for n-dimensional binary images.
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