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Abstract. Parkinson’s disease (PD) is a neurodegenerative disease that
produces progressive motor impairments. Dysarthria (speech disorders)
and hypomimia (face rigidity) are two major Parkinsonism patterns ob-
served even at the early stages of the disease. Nonetheless, the clinical
diagnosis is mainly observational and dependent on the specialists’ ex-
pertise. Besides, the categorization of each of these patterns is isolated,
which may lead to delayed diagnosis and misplanning of treatments. This
work introduces a non-invasive multimodal strategy that integrates video
and audio modalities into the online characterization of speech exercises.
Subjects were invited to pronounce sustained vowels while video and au-
dio were recorded. Then, a temporal window is run along the sequence to
build online covariance matrices of synchronized face landmarks position
and characteristic voice frequencies. From these temporal covariance ma-
trices are learned Riemannian descriptors that allow to discriminate be-
tween Parkinson’s and control subjects. From a study with 14 subjects,
the proposed approach achieved a mean accuracy of 70% in sustained
vowel pronunciation. Considering online predictions, the proposed ap-
proach evidenced a consistent accuracy of 0.77 during pronunciation of
close vowels.

Keywords: Mixed audio-video SPD networks · online Parkinson’s Dis-
ease prediction.

1 INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative disease with no cure,
characterized by progressive degeneration of nerve cells, decreasing the produc-
tion of dopamine, resulting in serious impairments regarding the control of move-
ment and coordination [4]. Early motor impairments are usually manifested
as dysarthria (speech affectation associated with rigidity of muscles) and hy-
pomimia (facial expression affectation associated with movement slowness and
rigidity) [16, 19]. Patients with such symptoms may experience difficulties in ar-
ticulating words or changing the tone of their voice, resulting in difficult and
monotonous speech. These symptoms are manifested between 7 and 11 years
before the definitive diagnosis of Parkinson [5, 13]. Nowadays, these patterns are
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characterized only by observational tests, highly dependent on the specialist’s
expertise [2, 6]. Additionally, they have low sensitivity in early stages, and re-
searchers need to spend a significant amount of time developing the skills for an
adequate evaluation [17].

The main contribution of this work is a geometrical online learning method
to support Parkinson classification considering multimodal sources (audio and
video). Thus, characterizing dysarthria and hypomimia, the proposed approach
use a set of video landmarks that, together with fundamental frequencies, form a
compact covariance descriptor. From this second-order representation, geomet-
rical learning is herein implemented to learn covariative patterns associated to
the disease at different temporal intervals. The paper is structured as follows:
Section 2 provides an overview of the literature on Parkinson’s disease focusing
on methodologies to support hypomimia and dysarthria. Section 3 describes the
proposed approach integrating audio and video modalities. Section 4 presents
the classification results. Section 5 discusses the advantages and limitations of
the proposed online geometrical representation.

2 Related works

Communication is a fundamental daily life task, involving the coordination of
multiple muscular, respiratory, and facial functions [10]. The facial expression
during communication is based on the gesticulation of words, producing mouth
movements and the coordination of the zygomatic muscles and the orbicular
muscle. For patients affected by PD at early stages, there exist evidences of
gesture limitations, which causing slowness and rigidity, known as mask face
or hypomimia [19, 16]. These persons may experience difficulties in articulating
words or changing the voice tone, resulting also in speech difficulties known as
dysarthria. Today, there are no significant advances on the characterization of
such pattern and even worst, in the combination of dysarthria and hypomimia
patterns, from multimodal approaches.

The quantification of hypomimia has been previously estimated using strate-
gies to classify single images [7, 15] or videos [12, 21, 24]. Approaches based on
single-image classification consider the identification of facial landmarks whose
spatial characteristics allow classification through classical machine learning meth-
ods [15] or statistical analysis [7]. Other proposed approaches have attempted
to temporally characterize the most significant expressions during classification
from activation maps of a 3D convolutional networks [21]. However, the retrieved
activation maps only coarsely distinguish regions, so that differentiating patients
and control subjects remains challenging. Recurrent networks have also been
used to extract the temporal embedding to classify PD [24]. Alternatively, land-
marks have been located in face to associate emotions expressions with Parkinson
patterns and carry out the classification [12].

Regarding dysarthria, the frequency analysis of voice has been used as de-
scriptor to classify patients with PD, in particular harmonic analysis and signal-
to-noise parameters [1, 11]. Other works have incorporated deep learning stages
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using a CNN [8, 23] or recurrent architectures [14], where these architectures
learned new representations based on the frequency characteristics of emotional
expression [8] and vowel pronunciation [14, 23]. These computational approaches
have evidenced remarked scores to classify Parkinson’s disease, but their appli-
cation is yet limited to operate in clinical scenarios, without complex setups of
recording. Besides, to the best of our knowledge, there exists limited information
about how to fuse hypomimia and dysarthria information to enhance Parkinson’s
representation.

3 PROPOSED APPROACH

This work introduces an online multimodal approach that fuses orofacial pat-
terns, following an early fusion method based on covariance patterns. The co-
variance descriptor encodes both face landmarks trajectories and fundamental
frequencies of the audio speech, aligned in intervals of time. Then, a geometrical
representation is learned on the Riemannian manifold, to classify Parkinsonian
patterns. The general pipeline of the proposed approach is illustrated in Figure 1.

Fig. 1. Multimodal Architecture: a) The position of each key-point in polar coordinates
d(t, k) and p(t, k) where d is the distance between the nose to the landmark and p is the
angle, is combined with short time spectrogram σ(t, f) through b) covariance matrices
in time intervals C∆t. c) Then, the model learns new representations more compact
for quantification of PD, with the capacity to output a prediction for each video slice.
Thus, this approach characterizes the patient’s pronunciation temporally, by predicting
the probability of PD during the vocalization (bottom right plot).
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3.1 Facial and Audio low-level features

In this work, we first computed low-level features, at each sequence time, to
encode dysarthria and hypomimia disorders. For dysarthria, we computed short-
time spectrograms σ(t, f) as fundamental representations (Fig. 1(a), top right),
capturing the essential frequency dynamics for frequencies f over sliding window
at time t. Consequently, an audio sequence is represented by a spectrogram map
with dimensions Nf ×Nt where Nf is the number of frequencies and Nt is the
number of time samples.

Regarding hypomimia, we computed the displacement of face key points in
regions around the mouth because of the association with facial muscles involved
in lip expression. The MediaPipe architecture was used to compute facial land-
marks using only video information [9]. We selected 44 landmarks near the mouth
and muscles involved in jaw movement during pronunciation. These landmarks
allow summarizing the dynamics of the subject’s face during various expressions
and movements. Specifically, at each time synchronised with the audio spectro-
gram samples, we encode the position of each keypoint in polar coordinates,
using as centre the tip of the nose (Fig. 1(a), bottom right), resulting in a se-
quence {d(t, k), p(t, k)} of dimensions 2Nk×Nt, where d is the distance between
the nose to the landmark and p is the angle. Nk is the number of keypoints and
Nt the number of time samples. Using the nose as centre of coordinates allow to
eliminate head movements and to focus on the motion of the mouth.

3.2 Temporal Covariance Computation

Now, for each time interval ∆t, made of consecutive Nt time samples, we calcu-
late the covariance matrix of the synchronised features Φ(t, i) composed of con-
catenated spectrogram frequencies σ(t, f) and face keypoints {d(t, k), p(t, k)}:

C∆t(i, j) = E∆t (Φ(t, i)Φ(t, j))− E∆tΦ(t, i)E∆tΦ(t, j)

where E∆t refers to the expectancy calculated over the Nt samples t ∈ ∆t. This
temporal covariance matrix, with dimension (Nf + 2Nk)

2 (Fig. 1(b)), encodes
the dynamic relationships among integrated facial and speech features, providing
a comprehensive description of their temporal dependencies. This representation
helps with classification performance but also results self-explainable to support
recognition of coordination patterns, which is crucial for unraveling the intricate
temporal interplay between facial and voice features.

3.3 Covariance-based learning for temporal video predictions.

Covariance matrices are Symmetric Positive Definite (SPD) matrices that lie in
Riemannian manifolds with particular geometry, and need to be processed in a
dedicated framework. For each temporal covariance C∆t, we then learn a geomet-
rical representation, capturing the inherent temporal dependencies between the
different modalities. To do so, we first code a BiMap Layer following a bilinear
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mapping in each layer l, as: Cl = WlCl−1W
T
l , with Cl−1 ∈ Rdl−1×dl−1

∗ being the
SPD matrix output of the layer l−1 and Wl ∈ Rdl×dl−1

∗ the weight matrix trans-
formation [3]. Hence, to ensure SPD property, an eigenvalue rectification layer is
carried out, as: Cl = Ul−1 max(εI,Σl−1)U

T
l−1 where Ul−1 and Σl−1 are defined

by the diagonal decomposition Cl−1 = Ul−1Σl−1U
T
l−1. Here, ε > 0 is a rectifica-

tion threshold value, I is the identity matrix and Σl−1 the diagonal matrix of
the eigenvalues of Cl−1. This operation adjusts the eigenvalues, avoiding negative
values and improving discriminative performance. This specialized block facili-
tates the extraction of relevant information from the input data, contributing to
the computation of effective covariation patterns.

Finally, to carry out the classification task, the learned matrix is projected
onto a tangent plane (i.e. back to a Euclidean space), following a logarithm map
log(C) = U log(Σ)UT . Then, classical dense layers are implemented to achieve
the classification of the multimodal pronunciation exercise input.

3.4 Dataset description

This study involved 14 participants, consisting of 7 patients diagnosed with
Parkinson’s disease (PD) and 7 control patients. The PD group had an aver-
age age of 65 ± 4, while the control group had an average age of 61 ± 3. All
PD patients were on (Levodopa) medication during data acquisition. Informed
consent was obtained from each participant, and the study was approved by
the ethics committee of the Universidad Industrial de Santander. The dataset
captured synchronized audio and video modalities, with participants performing
sustained vowel pronunciation used in the clinical routine. All recordings were
conducted in the same environment using a Nikon D3500 digital camera with an
integrated monaural microphone. Video was recorded at 1080p resolution and 60
fps, focusing on the face region, while audio was captured at a sampling rate of
48 kHz. Phonation patterns included the pronunciation of five vowels, each vowel
being repeated three times, providing a comprehensive dataset for phonation and
articulatory analysis. In the study, participants are asked to sustain the pronun-
ciation of vowels for about 5 seconds. This exercise is incorporated into clinical
routines to detect voice abnormalities and to observe the facial expressions of
the individuals.

4 Evaluation and Results

The proposed approach was validated with the oral task of sustained vowels,
which allows the identification of voice impairments such as dysarthria during PD
diagnosis, but also to peculiar conditions such as strengthening vocal muscles and
motor coordination during rehabilitation therapies. For validation was followed
leave-one-patient-out cross-validation, where at each iteration, one patient is
left out for testing and the remaining ones (13 subjects in our experiment) are
used for training. To evaluate the performance of the multimodal prediction,
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the implemented model configurations were assessed for the sensitivity, specifici-
ty, accuracy, precision, and F1-score per video. A video was considered correctly
predicted by majority vote of its temporal predictions. Specifically, table metrics
were quantified by considering either 5, or 10 or 15 predictions during each video.

A first validation was carried out to establish the best video representation to
classify PD according to hypomimia-encoded patterns. In this experiment, the
temporal covariance matrices were built from landmarks information using only
phase (dimension of 44×44), only distance (dimension of 44×44), and integrating
both variables (dimension of 88× 88). These experiments were also evaluated in
different temporal intervals, by evenly dividing the video in five, ten, and fifteen
slices respectively. Table 1 summarizes the achieved results, reporting the best
performance with the covariance descriptor using only phase information. These
results highlight a high sensitivity of 78%, with an accuracy of 65%, evidencing
a capability to capture motor coordination changes, especially with 10 slices per
video.

Table 1. Hypomimia video classification (facial expression alone) with different number
of video slices and polar coordinates of landmarks.

Facial
Features

Predictions
per video Ac Pr Sen Spec F1-s

Phase
5 0.5 0.5 0.69 0.3 0.58
10 0.65 0.62 0.78 0.52 0.69
15 0.4 0.4 0.41 0.39 0.41

Distance
5 0.59 0.58 0.64 0.54 0.61
10 0.56 0.55 0.66 0.46 0.6
15 0.55 0.55 0.56 0.53 0.56

Phase and
Distance

5 0.58 0.58 0.56 0.6 0.57
10 0.57 0.57 0.58 0.56 0.57
15 0.41 0.4 0.39 0.43 0.4

In a second evaluation the audio branch was assessed concerning its capa-
bility to classify dysarthria patterns from temporal covariance matrices of spec-
trograms only, with 20 and 50 frequency bands. Each configuration was also
evaluated with five, ten, and fifteen slices per video. Table 2 summarizes the
achieved results, reporting a better score with the configuration of 20 frequen-
cies and ten slices (sensitivity of 64%). The improvement in results with 20
frequencies in sustained vowel pronunciation could be attributed to a higher
generalization capacity or efficiency in representing relevant features for detect-
ing individuals with Parkinson. It is possible that the learning covariance model
can extract more discriminative information with fewer dimensions, facilitating
the identification of distinctive patterns in the case of 20 frequencies.

Then, in a third experiment, the proposed approach was evaluated by fusing
vocal spectrogram frequencies with facial landmark phases and distances. In such
cases, it was considered 20 frequency bands for audio, and whole facial configura-
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Table 2. Dysarthria Audio classification with different frequencies and different num-
ber of video slices

Freqs Predictions
per video Ac Pr Sen Spec f1-s

20
5 0.52 0.52 0.6 0.45 0.55
10 0.62 0.61 0.64 0.6 0.62
15 0.57 0.57 0.58 0.56 0.57

50
5 0.54 0.54 0.5 0.57 0.52
10 0.55 0.55 0.51 0.58 0.53
15 0.53 0.54 0.5 0.56 0.52

Table 3. Multimodal (audi-video) classification with 20 speech frequencies, phase and
distance facial features

Fusion
Features

Predictions
per video Ac Pr Sen Spec f1-s

20 freqs,
phase

5 0.44 0.44 0.44 0.45 0.44
10 0.66 0.65 0.65 0.65 0.66
15 0.65 0.64 0.64 0.62 0.67

20 freqs,
Distance

5 0.6 0.59 0.69 0.56 0.61
10 0.58 0.61 0.61 0.58 0.59
15 0.64 0.63 0.63 0.6 0.65

20 freqs,
Distance,

Phase

5 0.58 0.58 0.58 0.54 0.6
10 0.70 0.69 0.73 0.68 0.71
15 0.62 0.62 0.62 0.64 0.61

tions. Table 3 summarizes the achieved results with multimodal configurations,
being the best performance achieved in the third experiment, where vocal fre-
quencies were fused with both facial landmark phase and distance, improving
accuracy to 70% (10 intervals). These results highlight the complementarity and
synergy of features extracted from both modalities. Also, the temporal interval
of ten frames shows an appropriate trade-off to capture pronunciation dynamics
and avoiding excessive fragmentation of the task.

5 Discussion and conclusive remarks

This work introduced an online multimodal approximation to classify Parkinson
disease from facial expression (hypomimia) and voice patterns (dysarthria). In
the literature there exist evidences that dysarthria, through the pronunciation
of sustained vowels, can identify speech difficulties, associated with early Parkin-
son’s disease [18]. Additionally, treatments have been proposed that use vowel
pronunciation in the attempt to improve these impairments [22]. Considering
that, this work reported a multimodal approach that integrates visual and audio
information to recover hypomimia and dysarthria-associated patterns. For doing
so, the proposed approach captured face landmarks in video, and coded spec-
trograms from audio, which are integrated into temporal covariance descriptors,



8 J. Archila et al.

allowing to obtain a representation of bimodal vocalization. Then, this temporal
covariance embedding is projected to a geometrical deep architecture to obtain
a refined second-order representation with the ability to distinguish Parkinson
patterns from control signals. Thanks to the sliding nature of time covariance
descriptors, the geometrical net can bring a prediction at each time interval,
allowing to detect abnormal patterns associated to PD, during the exercise, in
clinical routine.

Fig. 2. Probability prediction per interval of video (red line and green line), for all
vowels

Fig. 3. Probability per interval of video (red line and green line), for close vowels
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The proposed geometrical representation was validated with respect to iso-
lated video and audio patterns, and also with the integration of both modalities.
Using only videos, the proposed approach encodes temporal covariance matrices
using only the correlation among face landmarks. In such case, the proposed ap-
proach achieved 65% of accuracy, a f1-score of 69%, and a total of 4 Parkinson
and 5 Control subjects were correctly classified. The mistakes in classification
may be partially associated to instability of landmarks and recording conditions,

Fig. 4. Probability per interval of video (red line and green line), for open vowels

Fig. 5. Accuracy per interval of video for close vowels (red line), open vowels (green
line) and all vowels (blue line).
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but also to the limitation of visual information alone to determine Parkinsonian
patterns.

Regarding, an audio geometrical net, trained using only spectrogram voice
information, was obtained an accuracy of 62% and a f1-score of 62%. These
scores were achieved from a configuration of 20 frequencies an 10 intervals per
video. Then, we conducted multimodal experiments using a geometrical net,
learning from covariance matrices encoding the two modalities. In such case, the
multimodal approximation has a gain of 5% and 8% in accuracy, and a gain of
2% and 9% in f1-score.

Besides, the probability for the multimodal approach was calculated for pa-
tients and control subjects, for each video percentage during the sustained vowel
pronunciation (see Figure 2). The performance remains stable for both Parkin-
son’s and control groups, suggesting that all vocalization phases can yield similar
predictions. Figure 4 (resp. Figure 3) shows the probability predictions and ac-
curacy for the pronunciation of open vowels, in Spanish: A, E and O (resp. closed
vowels: I and U), for Control and Parkinson groups at each interval per video.
Interestingly, this categorization is related to movement: Closed vowels are pro-
duced with minimal mouth cavity amplitude, while open vowels involve greater
mouth cavity expansion with the tongue positioned low. The Figure 3 of the
closed vowels shows greater consistency in the control groups, maintaining the
average probability and its stable variability. As for the Parkinson group, higher
and more variable results were observed during the initial pronunciation of closed
vowels. Similarly, in Figure 4 of the open vowels, the Parkinson group presents
greater variability in the initial intervals. But in contrast to the group of closed
vowels for the Control group, the best-predicted values (closer to zero) are found
in intermediate pronunciation stages. These results show different dynamics for
each vowel group in patients and control subjects. The pronunciation is divided
into three phases: initial, stabilization, and decay [20]. Figure 5 indicate in the
initial phase (predictions at 10%, 20%, and 30%), there is significant effort, with
pronounced facial muscle movements. The most discriminative predictions in this
phase are 20% considering all vowels (blue line) with a mean accuracy of 72%.
The stabilization phase (predictions from 40% to 70%) represents the maximum
vocal production stability, with constant acoustic characteristics and minimal
facial movement. The most discriminative intervals here are at 50% of videos
with a mean accuracy of 70% (blue line). Finally, the decay phase (predictions
at 80%, 90%, and 100%) shows a decline in vocal production and increased fa-
cial movement until the mouth closes. The most discriminative intervals in this
phase are at 90% of video with a mean accuracy of 68% (blue line).

The red and green line indicate that accuracy trends for both open and closed
vowels remain relatively stable across video percentages, suggesting that predic-
tion variability does not significantly change, indicating robustness in results. For
control subjects, the most discriminative percentages are 20% for closed vowels
(red line) with a mean accuracy of 76% (initial stage) and 60% for open vowels
(green line) with a mean accuracy of 72% (stabilization stage). Future works will
include the analysis of enriched representations with other input modalities, as
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well as an investigation toward an end-to-end processing of the complete infor-
mation, since vowels are versatile and can combine with a variety of consonants
to create a wide range of sounds and words. Also, this study will be extended to
other voice instructions to explore the capabilities of the proposed approach.
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