
Video++, a Modern Image and Video Processing
C++ Framework.

Matthieu Garrigues
ENSTA-ParisTech,

828 Boulevard des Maréchaux,
91762 Palaiseau CEDEX, France,

http://www.ensta-paristech.fr
matthieu.garrigues@ensta-paristech.fr

Antoine Manzanera
ENSTA-ParisTech,

828 Boulevard des Maréchaux,
91762 Palaiseau CEDEX, France,

http://www.ensta-paristech.fr
antoine.manzanera@ensta-paristech.fr

Abstract—We present in this paper Video++, a new framework
targeting image and video applications running on multi-core
processors. While offering a high expressive power, we show that
it generates code running up to 32 times faster than the naive
equivalents. Taking advantage of the new C++11/C++14 features,
tools, we propose simple abstractions matching the performance
of hand optimized code. This paper gives an overview of the
library and demonstrates its efficiency with some benchmarks.

INTRODUCTION

Since the 60s, computer scientists have been using comput-
ers to automate the processing of digital images for many fields
like medical imaging, satellite imagery, video surveillance,
photography and others. Developers of theses applications have
always faced a major challenge: How to deal with a very
large amount of data in the shortest period of time, with
the available computing resources? Today, a 2cm2 processor
executes 10 000 faster than ENIAC, the biggest computer
of year 1946. This enables computers to handle a lot more
pixels per second. However, the growing demand of real-
time, embedded, high-resolution video applications, and the
heterogeneity of the modern processors has led to more and
more complexity in processor designs.

To overcome this increasing complexity, the introduction
of high level programming languages like C++ provided ab-
stractions allowing programmers to write shorter code, without
affecting the performances of the generated binary code.

Computer vision applications need genericity and perfor-
mance. For example, an image varies depending of the sensor
or the storage format. But, the algorithmic principle does not
vary much whether it has 8 bits or 32 bits values. It is desirable
to write one generic algorithm that handles many types of
images, running as fast as the specialized version that one
could write for each of them.

For this reason, C++ and its concept of template was widely
adopted by the community and many C++ frameworks were
created to ease the writing of fast image processing application
with generic, multi-dimensional image types and libraries of
algorithms.

The first standard of C++ was released in 1998, and the last
one in 2011. The next, C++14 is currently a draft but already
implemented in major compilers like G++ [1] or Clang++

[2]. The C++11 and C++14 standards greatly improve the
expressive power of the language.

We present in the following the existing image processing
frameworks, then present our motivations.

The most popular framework is the OpenCV library [3]
which was originally written in C, then extended to C++. It
contains a comprehensive set of computer vision primitives
covering many fields of applications. However, the fact that it
was first written in C prevents it from taking full advantage
of C++. Olena [4] is a platform embedding Milena, a C++
image processing library. It pushes the limit of genericity by
offering tools to write once an algorithm running on a broad
range of types of images like 2D and 3D dense images, graphs,
run-length encoded images and others. VIGRA [5], CIMG
[6] and ITK [7] are C++ toolkits for image processing. Like
Olena, they take advantage of C++ to implement generic image
types and image processing primitives. Halide [8] focuses on
high performance computing. It provides C++ abstractions and
a compiler with optimizations specialized for semi-automatic
parallelization of image processing kernels.

All these frameworks are mainly written with C++98,
lacking powerful features like lambda functions. Furthermore,
to workaround the language limitations they often rely on
complex and verbose meta programming, or heavy error-prone
use of the C++ preprocessor.

We propose in this paper to design a new framework
based on the new C++ standards and targeting multi-core
architectures. The resulting code is Video++, a fast tiny library
of 1 500 lines that enables a developer to write algorithms
running up to 32 times faster than the naive versions while
being as simple to write.

The main idea behind Video++ is to redesign from scratch
an image processing framework taking advantage of the new
C++ standards, new tools like OpenMP4, and progress in
compiler optimization. We believe that these advances can
simplify both the writing and the use of such framework,
leading to shorter code and faster executables.

By not explicitely using architecture-specific vector instruc-
tion such as SSE or NEON, Video++ is portable and lets the
compiler generate optimized code for the target instruction set.
Furthermore, the core of the library takes advantage of C++



templates to generate code that is trivial for the compiler to
optimize.

Section I presents the new C++ features on which Video++
relies. Then, section II gives an overview of the library. And in
section III, by benchmarking typical algorithms, we show that,
while having a much higher expressive power, the framework
matches the performances of a parallel hand-optimized code.
Actually, it outperforms naive implementations by a factor up
to x32, and OpenCV by a factor up to x5.6. The framework
is open source and accessible online via the git repository [9].

I. C++11 AND C++14

C++11 and C++14 standards bring new features giving the
opportunity to write image and video processing frameworks
that are more generic and more performant. This section
presents the subset of these features used by our framework.

A. Lambda Functions (C++11) and Generic Lambda Func-
tions (C++14)

The C++ standard committee introduced with C++11 the
concept of lambda function [10]. They refined it in C++14
with the addition of generic argument [11]. It allows to
define anonymous functions, that may be treated as immutable
variables, and passed as arguments to other functions.

Listing 1. Definition of a lambda function.
1 auto add = [] (int a, int b)
2 {
3 return a + b;
4 };

This construct also enables the definition of closures,
letting the programmer access to external variables, by copy
with operator = or by reference with operator &:

Listing 2. Lambda closure.
1 int X = 1;
2 int Y = 2;
3 auto fun = [&X, =Y] (int a, int b)
4 {
5 X = 4; Y = 4;
6 return X + Y + a + b;
7 };
8 int res = fun(1,2);
9 // res == 11

10 // X == 4
11 // Y == 2

C++14 extends the C++11 lambda functions with generic
lambda functions by allowing a lambda to have generic argu-
ments:

1 auto plus = [](auto a, auto b){ return a + b;
};

2 // plus(1, 2) == 3
3 // plus(std::string("a"),
4 // std::string("b")) == "ab"

Finally, a classic function can take a lambda function as
argument. It allows for example to create abstractions that map
a function on every element of a container. For example, in
Video++ it allows to apply a kernel function on all the pixels
of an image.

1 template <typename T, typename F>
2 void map(std::vector<T>& v, F f)
3 {
4 for (int i = 0; i < v.size(); i++)
5 f(v[i]);
6 }
7

8 std::vector<int> v = {1,2,3,4};
9 map(v, [](int& a) { a += 1; });

10 // v == {2,3,4,5};

B. Variadic Templates

In C++11, a variadic template [12] takes a variable number
of parameters. Recursion is often used to iterate on the list of
arguments.

1

2 // A function processing a list of argument
3

4 template <typename T, typename ...Tail>
5 inline void fun() {} // Case with 0 argument.
6

7 template <typename T, typename ...Tail>
8 inline void fun(T arg, Tail... tail) // Case

with N arguments
9 {

10 // process arg...
11 // then process the tail
12 fun(tail...); // Call fun on N-1 arguments.
13 }

Video++ uses variadic templates to build abstractions
that take a variable number of arguments. For example, the
pixel_wise construct (See sec. II-B) takes a variable number
of images.

C. Range-Based For Loops

The C++11 standard also adds range-based for loops [13],
a shorthand to loop over a whole container.

1 std::vector<int> v = {1,2,3,4};
2 for(auto& e: v) e += 1;

It applies on the container of the standard library and on
any container that implements a minimal container interface.
Video++ uses this construct for example to easily iterate on
image domains. Note that this notation generates a single
threaded loop.

D. OpenMP4 and Cilk™Plus

With the raw C++ language, the programmer needs to
manually spread threads over all cores, and to use vector
intrinsics that are architecture specific (SSE, AVX for x86,
and NEON for ARM).

OpenMP4 [14] and Cilk™Plus [15] are two frameworks
that enable to take advantage of the growing number of cores
and size of SIMD vectors available in a processor. With
these frameworks, some special constructs allow to express
the parallelism of a loop without binding the code to a specific
vector instruction set.



Listing 3. OpenMP and Cilk™Plus
1 // OpenMP 4
2 #pragma omp parallel simd for
3 for(int i = 0; i < 100; i++)
4 a[i] = b[i] + c[i];
5

6 // Cilkplus
7 a[0:100] = b[0:100] + c[0:100]

II. THE Video++ LIBRARY

This section presents the main principles of the framework
Video++.

A. Image Types and Domains

The Video++ imageNd<T, N> type holds a multi-
dimensional array of dimension N containing values of type
T. N and T are templates parameters. The domain of an image
is an N-hyper-rectangle accessible via the domain method.
image2d<V> and image3d<V> are simple aliases to imageNd
<V, 2> and imageNd<V, 3>.

The assignment operator shares the source data with des-
tination. It allows to avoid deep copies of images when the
container is passed by value to a function. Also, thanks to the
C++11 shared pointers, the library automatically frees memory
when an instance of image data is not referenced anymore.

1 {
2 // Allocates a 100 rows x 200 cols image of

int values.
3 image2d<int> img(100, 200);
4

5 // Initializes image values.
6 fill(img, 0);
7

8 // Access to the value of the first pixel.
9 int pixel0 = img(0,0);

10

11 // Assignment shares the data between two
containers.

12 image2d<int> img2 = img;
13

14 // img2 and img now share the same buffer:
15 img2(0,0) = 42;
16 // img(0,0) == img2(0,0)
17

18 // Clones an image to duplicate its data.
19 image2d<int> img3 = clone(img);
20 // img3 holds its own separate buffer.
21

22 // Adds an extra border of 2 pixels, useful
to speed up filters accessing
neighborhoods.

23 image2d<int> img(100, 200, border(2));
24

25 }
26 // The two allocated images are automatically

freed at the end of the scope.

To speed up access to the pixels, Video++ ensures that the
beginning of each row is aligned on 128 bits by padding, if
needed, the end of each line.

B. Parallel Image Kernels

The main feature of Video++ is the easy definition of
parallel image processing kernels. The framework allows to
define kernels that run up to 32 times faster (see sec. III) than
the naive non optimized version, while being shorter to write.

The pixel_wise construct allows to spread the execution
of a kernel over all the available CPU cores. Since it splits
the execution in several threads running on several cores, there
must be no dependency between the computation of two pixels.

pixel_wise takes a variable number of objects (images
or domains) and builds a kernel runner that will run a lambda
function via operator<<. The number of arguments of the
lambda function and pixel_wise must be equal. All the
containers must have the same domain of definition. For
readability, we overloaded operator<< so the kernel function
does not lengthen the argument list of pixel_wise exces-
sively.

The kernel runner passes to the lambda function each n-
tuple of elements sharing the same coordinates such that the ith
argument passed to the function will be an element of the ith
container. In listing 4, references a, b and c will respectively
take references to pixels of images A, B and C.

Listing 4. pixel_wise kernel
1 image2d<int> A(100, 100);
2 image2d<int> B(A.domain());
3 image2d<int> C(A.domain());
4

5 fill(B, 2);
6 fill(C, 3);
7

8 pixel_wise(A, B, C) << // Parallel iteration
on all pixels of A, B and C.

9 [] (int& a, int& b, int& c) {
10 // a, b and c are references to pixels of

A, B and C.
11 a = b + c;
12 };
13

14 // A is now filled with 5.

Behind the scene, pixel_wise uses two optimizations:

• OpenMP parallel loops, to fully exploit all cores
available. Each OpenMP thread processes at least one
image row such that two different threads do not write
on the same cache line: It would cause false sharing
[16] and degrade performances.

• 1D pointer arithmetic, to iterate on image buffers.
It provides a significant speedup over the traditional
2D image addressing such as image[row][col] or
image[row * n_cols + col].

C. Accessing Neighborhood

Video++ provides fast access to neighbor pixels. This
section explains how to access the neighborhoods.

The box_nbh2d construct allows to process all (or part
of) the pixels in a rectangle window centered on the current
p, where the size of the rectangle is set at compile time.



Note that the size of the neighborhood is passed as template
parameter such that the compiler can better optimize the
assembly with loop unrolling and vectorization. Listing 5
shows the implementation of a 5x5 box filter. The benchmark
of section III-B shows that this construct offers a significant
speedup.

Listing 5. A 5x5 box filter
1 image2d<int> A(1000, 1000, border(2)); // The

input.
2 image2d<int> B(A.domain(), border(2)); // The

output.
3

4 auto Bnbh = box_nbh2d<int, 5, 5>(A);
5

6 // Parallel Loop over pixels of A and B.
7 pixel_wise(A, Bnbh) <<
8 [] (int& a, auto& b_nbh) {
9 int sum = 0;

10

11 // Sum the whole 5x5 neighborhood.
12 b_nbh.for_all([&sum] (int& n) {sum += n;});
13

14 // Write the sum to the output pixel.
15 b = sum / 25;
16 };

D. Interoperability with OpenCV

The header vpp/opencv_bridge.hh, not included by
default, provides conversions to and from OpenCV image type
cv::Mat. It allows to run Video++ code on OpenCV images
and vice versa, without cloning the pixel buffer.

Responsibility for freeing the data will switch to OpenCV
or Video++ depending of the order of the destructor calls.

1 // Load JPG image in a vpp image using OpenCV
imread.

2 image<vuchar3> img = from_opencv<vuchar3>
3 (cv::imread("image.jpg"));
4

5 // Write a vpp image using OpenCV imwrite.
6 cv::imwrite("in.jpg", to_opencv(img));

E. Vector Types

Even though users of the library can store any pixel
type inside the image containers, Video++ provides aliases to
Eigen3 vector types for users who need linear algebra operators
on pixel values. The Eigen3 library provide type-safe generic
vectors and matrix type and linear algebra primitives. It is
highly optimized thanks to the use of SIMD vector extensions
(SSE, AVX, NEON) available today on many processors.

The vector types are noted vTN where:

• T is one the following: char, short, int, float, double,
uchar, ushort, uint.

• N is an integer between 0 and 4.

For exemple, vint2, vuchar3, vfloat4 are valid vector
types and the type image2d<vuchar4> can handle an RGBD
8-bit image.

III. BENCHMARKS

In programming languages, abstractions allow to write a
smaller and less error-prone code. However, the resulting code
often runs slower than a homologous manually optimized
program. In this section, we compare implementations of two
image processing loops and show that the proposed framework
allows to shorten the code without impacting its performances.
The benchmark also compares Video++ with the OpenCV
equivalent functions. These experiments ran on a 4 hyper-
threaded 3.2GHz cores Intel i7-4700HQ with AVX2 vector
extensions. All the executables were compiled with GCC 4.9.1
and the flags -03 -march=native.

A. A Pixel Wise Filter: Image Addition

Many image processing filters are simple functions that fill
pixels with computed values, thus featuring no dependencies
between computations regarding different pixels. This section
compares three versions of one of them: Adding two images,
or A(r,c)= B(r,c)+ C(r,c)

The first one is the naive version. It iterates on rows and
columns with two for loops and uses 2D addressing to access
pixels:

Listing 6. image add, naive version
1 for (int r = 0; r < A.nrows(); r++)
2 for (int c = 0; c < A.ncols(); c++)
3 {
4 A(r, c) = B(r, c) + C(r, c);
5 }

The second one uses the pixel_wise construct:

Listing 7. image add, pixel wise version
1 pixel_wise(A, B, C) << [] (int& a, int& b,
2 int& c)
3 {
4 a = b + c;
5 };

The third one is the more verbose, manually optimized
loop that we want to match in terms of running time. It
leverages a fast 1D addressing, multi-threading, and SIMD
vector extensions:

Listing 8. image add, raw OpenMP version
1 int nr = A.nrows();
2 #pragma omp parallel for
3 for (int r = 0; r < nr; r++)
4 {
5 int* curA = &A(r, 0);
6 int* curB = &B(r, 0);
7 int* curC = &C(r, 0);
8 int* endA = curA + A.nrows();
9

10 int nc = A.ncols();
11 #pragma omp simd
12 for (int i = 0; i < nc; i++)
13 {
14 curA[i] = curB[i] + curC[i];
15 }
16 }



Figure 1 and figure 2 show that the performances of the
Video++ pixel_wise and the raw OpenMP versions are very
close, while running 2x to 26x faster than the naive version,
and slighly faster than the OpenCV routine cv::add.
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Fig. 1. Cycles per pixel of the naive, pixel wise raw OpenMP and OpenCV
versions of image add with different image sizes. The three images fully fits
in the 6.2MB L2 cache only at the left of the vertical line.
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Fig. 2. Speedup of the pixel wise image add over the naive image add.

B. A Convolutional Filter: The Box Filter

Using the same protocol that in the previous section, we
compare four versions of a box filter. The naive version
launches four nested loops to iterate over the rows, columns
and neighbors. It accesses image values via 2D addressing:

Listing 9. box filter naive version
1 for (int r = 0; r < A.nrows(); r++)
2 for (int c = 0; c < A.ncols(); c++)
3 {
4 int sum = 0;
5 for (int d = -2; d <= 2; d++)
6 for (int e = -2; e <= 2; e++)

7 sum += B(r + d, c + e);
8 A(r, c) = sum / 25;
9 }

The shortest version (See listing 5) combines box_nbh2d
and pixel_wise. We wrote an other version by manually

optimizing the loops using OpenMP:

Listing 10. box filter OpenMP version
1 int nr = A.nrows();
2 #pragma omp parallel for
3 for (int r = 0; r < nr; r++)
4 {
5 int* curA = &A(vint2(r, 0));
6 int* curB = &B(vint2(r, 0));
7 int* endA = curA + A.nrows();
8

9 int nc = A.ncols();
10 int sum = 0;
11

12 int* rows[5];
13 for (int i = -2; i <= 2; i++)
14 rows[i + 2] = &B(vint2(r + i, 0));
15

16 for (int i = 0; i < nc; i++)
17 {
18 int sum = 0;
19 for (int d = -2; d <= 2; d++)
20 for (int e = -2; e <= 2; e++)
21 sum += rows[d + 2][i + e];
22 curA[i] = sum / 25;
23 }
24 }

As in the previous benchmark, the OpenMP and Video++
versions have the same running time while the naive version
is 16 to 32 times slower. The OpenCV cv::boxFilter is 5.6
times slower because it is single threaded.
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Fig. 3. Running times of the four implementations of a box filter with
different number of pixels. The two images fully fits in the 6.2MB L2 cache
only at the left of the vertical line.

IV. DISCUSSION AND CONCLUSIVE REMARKS

Although we ran the benchmark on a 4-hyperthreaded
cores, the library could scale on processors with more cores
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Fig. 4. Speedup of the pixel wise box filter over the naive version.

since OpenMP supports it. Furthermore, since we let the
compiler unroll and vectorize the loops, there is no restriction
on the vector instruction set as long as the compiler implements
the necessary optimizations.

Video++ provides a set of generic objects and routines
that allow to write efficient implementations of simple filters
quickly. At the moment, it is actually relevant only for local
and regular operations and only targets multi-cores CPUs.

As of today, the library introduced in this paper is a set of
tools that ease the writing of fast image processing applications
on multi-core CPUs. In a near future, we plan to extend the
library to support other architectures like GPUs (using tools
like C++AMP [17]) and provide fast implementations of more
filters, point detectors, and feature tracking.

We proposed in this paper a new open source framework to
build fast image and video processing applications. It heavily
relies on the new C++ standards C++11 and C++14 that are
now available in major compilers like GCC [1] or Clang [2].
We showed that while providing abstractions that allow to
develop applications faster, it does not make any compromise
in terms of performances. Every provided abstraction runs at
exactly the same speed as the manually optimized code and
up to 32 times faster than the naive version.
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